A survey of combinatorial theory / Edited by Jagdish N. Srivastava...[ed altri] |
Pubbl/distr/stampa | Amsterdam : North Holland, 1973 |
Descrizione fisica | XVIII, 457 p. : ill. ritr. ; 22 cm |
Disciplina | 514.22 |
Soggetto topico | Topologia |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-990003243670203316 |
Amsterdam : North Holland, 1973 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910480983703321 |
Handel Michael <1949-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910788867203321 |
Handel Michael <1949-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Axes in outer space / / Michael Handel, Lee Mosher |
Autore | Handel Michael <1949-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2011 |
Descrizione fisica | 1 online resource (104 p.) |
Disciplina | 514.22 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Geometric group theory
Low-dimensional topology |
ISBN | 1-4704-0621-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1.1. Characterizations of the axis bundle""; ""1.2. The main theorems""; ""1.3. A question of Vogtmann""; ""1.4. Contents and proofs""; ""1.5. Problems and questions""; ""Chapter 2. Preliminaries""; ""2.1. Outer space and outer automorphisms""; ""2.2. Paths, circuits and edge paths""; ""2.3. Folds""; ""2.4. Train track maps""; ""2.5. The attracting tree T+""; ""2.6. Geodesic laminations in trees and marked graphs""; ""2.7. The expanding lamination -""; ""2.8. Relating - to T- and to T+""; ""Chapter 3. The ideal Whitehead graph""
""3.1. Definition and structure of the ideal Whitehead graph""""3.2. Asymptotic leaves and the ideal Whitehead graph""; ""3.3. T+ and the ideal Whitehead graph""; ""3.4. An example of an ideal Whitehead graph""; ""Chapter 4. Cutting and pasting local stable Whitehead graphs""; ""4.1. Pasting local stable Whitehead graphs""; ""4.2. Cutting local stable Whitehead graphs""; ""4.3. The finest local decomposition""; ""Chapter 5. Weak train tracks""; ""5.1. Local decomposition of the ideal Whitehead graph""; ""5.2. Folding up to a weak train track"" ""5.3. Comparing train tracks to weak train tracks""""5.4. Rigidity and irrigidity of - isometries""; ""5.5. Examples of exceptional weak train tracks""; ""Chapter 6. Topology of the axis bundle""; ""6.1. Continuity properties of the normalized axis bundle""; ""6.2. The Gromov topology on weak train tracks""; ""6.3. Properness of the length map""; ""6.4. Applying Skora's method to the Properness Theorem 6.1""; ""6.5. Remarks on stable train tracks""; ""Chapter 7. Fold lines""; ""7.1. Examples of fold paths""; ""7.2. Characterizing fold lines""; ""7.3. Direct limits of fold rays"" ""7.4. Legal laminations of split rays""""7.5. Weak train tracks on fold lines""; ""Bibliography"" |
Record Nr. | UNINA-9910828112203321 |
Handel Michael <1949-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Boundedly controlled topology : foundations of algebraic topology and simple homotopy theory / Douglas R. Anderson, Hans J. Munkholm |
Autore | Anderson, Douglas R. |
Pubbl/distr/stampa | Berlin [etc.] : Springer, c1988 |
Descrizione fisica | XII, 309 p. : ill. ; 25 cm. |
Disciplina | 514.22 |
Altri autori (Persone) | Munkholm, Hans J. |
Collana | Lecture notes in mathematics |
Soggetto topico | Topologia |
ISBN | 3-540-19397-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNIBAS-000012767 |
Anderson, Douglas R. | ||
Berlin [etc.] : Springer, c1988 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. della Basilicata | ||
|
Boundedly controlled topology : foundations of algebraic topology and simple homotopy theory / Douglas R. Anderson, Hans J. Munkholm |
Autore | Anderson, Douglas R. |
Pubbl/distr/stampa | Berlin : Springer-Verlag, c1988 |
Descrizione fisica | xii, 309 p. ; 25 cm. |
Disciplina | 514.22 |
Altri autori (Persone) | Munkholm, Hans J. |
Collana | Lecture notes in mathematics, 0075-8434 ; 1323 |
Soggetto topico |
Categories
Complexes Homotopy theory Piecewise linear topology |
ISBN | 0387193979 |
Classificazione |
AMS 57Q10
AMS 57R80 QA3.L28 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000722489707536 |
Anderson, Douglas R. | ||
Berlin : Springer-Verlag, c1988 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Braid groups / Christian Kassel, Vladimir Turaev ; with the graphical assistance of Olivier Dodane |
Autore | Kassel, Christian |
Pubbl/distr/stampa | New York : Springer, c2008 |
Descrizione fisica | XI, 340 p. ; 24 cm |
Disciplina | 514.22 |
Altri autori (Persone) | Turaev, Vladimir G. |
Collana | Graduate texts in mathematics |
Soggetto non controllato |
Teoria di braid
Rappresentazione di gruppi |
ISBN | 978-0-387-33841-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-990008733250403321 |
Kassel, Christian | ||
New York : Springer, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Braids and Self-Distributivity / Patrik Dehornoy |
Autore | Dehornoy, Patrick |
Pubbl/distr/stampa | Basel : Birkhauser, c2000 |
Descrizione fisica | xix, 623 p. ; 25 cm |
Disciplina | 514.22 |
Collana | Progress in mathematics |
Soggetto non controllato |
Gruppi di braid
Teoria degli insiemi Semigruppi liberi |
ISBN | 3-7643-6343-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-990001448310403321 |
Dehornoy, Patrick | ||
Basel : Birkhauser, c2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Classical topology and combinatorial group theory / John Stillwell |
Autore | Stillwell, John |
Edizione | [2nd ed. -] |
Pubbl/distr/stampa | New York : Springer-Verlag, c1993 |
Descrizione fisica | XII, 334 p. : 312 ill. ; 25 cm |
Disciplina | 514.22 |
Collana | Graduate texts in mathematics |
Soggetto non controllato |
Topologia algebrica
Geometria |
ISBN | 0-387-97970-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-990001320180403321 |
Stillwell, John | ||
New York : Springer-Verlag, c1993 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Classical topology and combinatorial group theory / by STILLWELL J. |
Autore | Stillwell, John |
Pubbl/distr/stampa | New York [etc.] : Springer-Verlag, 1980 |
Descrizione fisica | XII, 301 p. ; 24 cm |
Disciplina | 514.22 |
Collana | Graduate texts in mathematics |
Soggetto non controllato |
Topologia algebrica
Geometria |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-990001302590403321 |
Stillwell, John | ||
New York [etc.] : Springer-Verlag, 1980 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|