The AB program in geometric analysis : sharp Sobolev inequalities and related problems / / Olivier Druet, Emmanuel Hebey |
Autore | Druet Olivier <1976-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
Descrizione fisica | 1 online resource (113 p.) |
Disciplina |
510 s
514/.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Variational inequalities (Mathematics)
Riemannian manifolds |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0359-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""5.4. Extremal functions for the A�part of the AB program""""5.5. Critical functions versus best constants""; ""5.6. Low dimension""; ""5.7. The B�part of the AB program""; ""Chapter 6. PDE Methods""; ""6.1. Weak pointwise estimates""; ""6.2. Strong pointwise estimates""; ""6.3. Exact asymptotic profile""; ""Chapter 7. The isoperimetric inequality""; ""Chapter 8. The H[sup(p)][sub(1)]�inequalities, 1 < p < dimM""; ""8.1. Sharp inequalities with respect to the A�constant""; ""8.2. Geometric rigidity attached to the first constant""
""8.3. A scale in powers of sharp Sobolev inequalities""""8.4. Extremal functions for the A�part of the AB program""; ""8.5. Sharp inequalities with respect to the B�constant""; ""Bibliography"" |
Record Nr. | UNINA-9910479935103321 |
Druet Olivier <1976->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The AB program in geometric analysis : sharp Sobolev inequalities and related problems / / Olivier Druet, Emmanuel Hebey |
Autore | Druet Olivier <1976-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
Descrizione fisica | 1 online resource (113 p.) |
Disciplina |
510 s
514/.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Variational inequalities (Mathematics)
Riemannian manifolds |
ISBN | 1-4704-0359-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""5.4. Extremal functions for the A�part of the AB program""""5.5. Critical functions versus best constants""; ""5.6. Low dimension""; ""5.7. The B�part of the AB program""; ""Chapter 6. PDE Methods""; ""6.1. Weak pointwise estimates""; ""6.2. Strong pointwise estimates""; ""6.3. Exact asymptotic profile""; ""Chapter 7. The isoperimetric inequality""; ""Chapter 8. The H[sup(p)][sub(1)]�inequalities, 1 < p < dimM""; ""8.1. Sharp inequalities with respect to the A�constant""; ""8.2. Geometric rigidity attached to the first constant""
""8.3. A scale in powers of sharp Sobolev inequalities""""8.4. Extremal functions for the A�part of the AB program""; ""8.5. Sharp inequalities with respect to the B�constant""; ""Bibliography"" |
Record Nr. | UNINA-9910788848003321 |
Druet Olivier <1976->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The AB program in geometric analysis : sharp Sobolev inequalities and related problems / / Olivier Druet, Emmanuel Hebey |
Autore | Druet Olivier <1976-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2002] |
Descrizione fisica | 1 online resource (113 p.) |
Disciplina |
510 s
514/.74 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Variational inequalities (Mathematics)
Riemannian manifolds |
ISBN | 1-4704-0359-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""5.4. Extremal functions for the A�part of the AB program""""5.5. Critical functions versus best constants""; ""5.6. Low dimension""; ""5.7. The B�part of the AB program""; ""Chapter 6. PDE Methods""; ""6.1. Weak pointwise estimates""; ""6.2. Strong pointwise estimates""; ""6.3. Exact asymptotic profile""; ""Chapter 7. The isoperimetric inequality""; ""Chapter 8. The H[sup(p)][sub(1)]�inequalities, 1 < p < dimM""; ""8.1. Sharp inequalities with respect to the A�constant""; ""8.2. Geometric rigidity attached to the first constant""
""8.3. A scale in powers of sharp Sobolev inequalities""""8.4. Extremal functions for the A�part of the AB program""; ""8.5. Sharp inequalities with respect to the B�constant""; ""Bibliography"" |
Record Nr. | UNINA-9910818014103321 |
Druet Olivier <1976->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2002] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The analysis of harmonic maps and their heat flows [[electronic resource] /] / Fanghua Lin, Changyou Wang |
Autore | Lin Fanghua |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (280 p.) |
Disciplina | 514/.74 |
Altri autori (Persone) | WangChangyou <1967-> |
Soggetto topico |
Harmonic maps
Heat equation Riemannian manifolds |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-93808-4
9786611938086 981-277-953-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; 3.2 Weakly harmonic maps in dimension two; 3.3 Stationary harmonic maps in higher dimensions; Preface; Organization of the book; Acknowledgements; 1 Introduction to harmonic maps; 1.1 Dirichlet principle of harmonic maps; 1.2 Intrinsic view of harmonic maps; 1.3 Extrinsic view of harmonic maps; 1.4 A few facts about harmonic maps; 1.5 Bochner identity for harmonic maps; 1.6 Second variational formula of harmonic maps; 2 Regularity of minimizing harmonic maps; 2.1 Minimizing harmonic maps in dimension two; 2.2 Minimizing harmonic maps in higher dimensions
2.3 Federer's dimension reduction principle2.4 Boundary regularity for minimizing harmonic maps; 2.5 Uniqueness of minimizing tangent maps; 2.6 Integrability of Jacobi fields and its applications; 3 Regularity of stationary harmonic maps; 3.1 Weakly harmonic maps into regular balls; 3.4 Stable-stationary harmonic maps into spheres; 4 Blow up analysis of stationary harmonic maps; 4.1 Preliminary analysis; 4.2 Rectifiability of defect measures; 4.3 Strong convergence and interior gradient estimates; 4.4 Boundary gradient estimates; 5 Heat ows to Riemannian manifolds of NPC; 5.1 Motivation 5.2 Existence of short time smooth solutions5.3 Existence of global smooth solutions under RN < 0; 5.4 An extension of Eells-Sampson's theorem; 6 Bubbling analysis in dimension two; 6.1 Minimal immersion of spheres; 6.2 Almost smooth heat ows in dimension two; 6.3 Finite time singularity in dimension two; 6.4 Bubbling phenomena for 2-D heat ows; 6.5 Approximate harmonic maps in dimension two; 7 Partially smooth heat ows; 7.1 Monotonicity formula and a priori estimates; 7.2 Global smooth solutions and weak compactness; 7.3 Finite time singularity in dimensions at least three 7.4 Nonuniqueness of heat flow of harmonic maps7.5 Global weak heat flows into spheres; 7.6 Global weak heat flows into general manifolds; 8 Blow up analysis on heat ows; 8.1 Obstruction to strong convergence; 8.2 Basic estimates; 8.3 Stratification of the concentration set; 8.4 Blow up analysis in dimension two; 8.5 Blow up analysis in dimensions n > 3; 9 Dynamics of defect measures in heat flows; 9.1 Generalized varifolds and rectifiability; 9.2 Generalized varifold flows and Brakke's motion; 9.3 Energy quantization of the defect measure; 9.4 Further remarks; Bibliography; Index |
Record Nr. | UNINA-9910454064403321 |
Lin Fanghua
![]() |
||
Hackensack, NJ, : World Scientific, c2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The analysis of harmonic maps and their heat flows [[electronic resource] /] / Fanghua Lin, Changyou Wang |
Autore | Lin Fanghua |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (280 p.) |
Disciplina | 514/.74 |
Altri autori (Persone) | WangChangyou <1967-> |
Soggetto topico |
Harmonic maps
Heat equation Riemannian manifolds |
ISBN |
1-281-93808-4
9786611938086 981-277-953-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; 3.2 Weakly harmonic maps in dimension two; 3.3 Stationary harmonic maps in higher dimensions; Preface; Organization of the book; Acknowledgements; 1 Introduction to harmonic maps; 1.1 Dirichlet principle of harmonic maps; 1.2 Intrinsic view of harmonic maps; 1.3 Extrinsic view of harmonic maps; 1.4 A few facts about harmonic maps; 1.5 Bochner identity for harmonic maps; 1.6 Second variational formula of harmonic maps; 2 Regularity of minimizing harmonic maps; 2.1 Minimizing harmonic maps in dimension two; 2.2 Minimizing harmonic maps in higher dimensions
2.3 Federer's dimension reduction principle2.4 Boundary regularity for minimizing harmonic maps; 2.5 Uniqueness of minimizing tangent maps; 2.6 Integrability of Jacobi fields and its applications; 3 Regularity of stationary harmonic maps; 3.1 Weakly harmonic maps into regular balls; 3.4 Stable-stationary harmonic maps into spheres; 4 Blow up analysis of stationary harmonic maps; 4.1 Preliminary analysis; 4.2 Rectifiability of defect measures; 4.3 Strong convergence and interior gradient estimates; 4.4 Boundary gradient estimates; 5 Heat ows to Riemannian manifolds of NPC; 5.1 Motivation 5.2 Existence of short time smooth solutions5.3 Existence of global smooth solutions under RN < 0; 5.4 An extension of Eells-Sampson's theorem; 6 Bubbling analysis in dimension two; 6.1 Minimal immersion of spheres; 6.2 Almost smooth heat ows in dimension two; 6.3 Finite time singularity in dimension two; 6.4 Bubbling phenomena for 2-D heat ows; 6.5 Approximate harmonic maps in dimension two; 7 Partially smooth heat ows; 7.1 Monotonicity formula and a priori estimates; 7.2 Global smooth solutions and weak compactness; 7.3 Finite time singularity in dimensions at least three 7.4 Nonuniqueness of heat flow of harmonic maps7.5 Global weak heat flows into spheres; 7.6 Global weak heat flows into general manifolds; 8 Blow up analysis on heat ows; 8.1 Obstruction to strong convergence; 8.2 Basic estimates; 8.3 Stratification of the concentration set; 8.4 Blow up analysis in dimension two; 8.5 Blow up analysis in dimensions n > 3; 9 Dynamics of defect measures in heat flows; 9.1 Generalized varifolds and rectifiability; 9.2 Generalized varifold flows and Brakke's motion; 9.3 Energy quantization of the defect measure; 9.4 Further remarks; Bibliography; Index |
Record Nr. | UNINA-9910782558103321 |
Lin Fanghua
![]() |
||
Hackensack, NJ, : World Scientific, c2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Catastrophe theory / Domenico P.L. Castrigiano, Sandra A. Hayes |
Autore | Castrigiano, Domenico P.L. |
Pubbl/distr/stampa | Reading, Mass. : Addison-Wesley Pub. Co., Advanced Book Program, c1993 |
Descrizione fisica | xv, 250 p. : ill. ; 24 cm |
Disciplina | 514/.74 |
Altri autori (Persone) | Hayes, Sandra A. |
Soggetto topico | Catastrophes (Mathematics) |
ISBN | 9780201555905 |
Classificazione | LC QA614.58 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991003792709707536 |
Castrigiano, Domenico P.L.
![]() |
||
Reading, Mass. : Addison-Wesley Pub. Co., Advanced Book Program, c1993 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov |
Autore | Pajitnov Andrei V |
Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2006 |
Descrizione fisica | 1 online resource (464 pages) |
Disciplina | 514/.74 |
Collana | De Gruyter studies in mathematics |
Soggetto topico |
Morse theory
Manifolds (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-19426-7
9786612194269 3-11-019797-9 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter |
Record Nr. | UNINA-9910454619003321 |
Pajitnov Andrei V
![]() |
||
Berlin ; ; New York, : De Gruyter, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Circle-valued Morse theory [[electronic resource] /] / Andrei V. Pajitnov |
Autore | Pajitnov Andrei V |
Pubbl/distr/stampa | Berlin ; ; New York, : De Gruyter, c2006 |
Descrizione fisica | 1 online resource (464 pages) |
Disciplina | 514/.74 |
Collana | De Gruyter studies in mathematics |
Soggetto topico |
Morse theory
Manifolds (Mathematics) |
Soggetto non controllato |
Differential geometry
Morse theory |
ISBN |
1-282-19426-7
9786612194269 3-11-019797-9 |
Classificazione | SK 350 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Introduction -- Part 1. Morse functions and vector fields on manifolds -- CHAPTER 1. Vector fields and C0 topology -- CHAPTER 2. Morse functions and their gradients -- CHAPTER 3. Gradient flows of real-valued Morse functions -- Part 2. Transversality, handles, Morse complexes -- CHAPTER 4. The Kupka-Smale transversality theory for gradient flows -- CHAPTER 5. Handles -- CHAPTER 6. The Morse complex of a Morse function -- Part 3. Cellular gradients -- CHAPTER 7. Condition (C) -- CHAPTER 8. Cellular gradients are C0-generic -- CHAPTER 9. Properties of cellular gradients -- Part 4. Circle-valued Morse maps and Novikov complexes -- CHAPTER 10. Completions of rings, modules and complexes -- CHAPTER 11. The Novikov complex of a circle-valued Morse map -- CHAPTER 12. Cellular gradients of circle-valued Morse functions and the Rationality Theorem -- CHAPTER 13. Counting closed orbits of the gradient flow -- CHAPTER 14. Selected topics in the Morse-Novikov theory -- Backmatter |
Record Nr. | UNINA-9910782523503321 |
Pajitnov Andrei V
![]() |
||
Berlin ; ; New York, : De Gruyter, c2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Classifying spaces of degenerating polarized Hodge structures / / Kazuya Kato and Sampei Usui |
Autore | Kato Kazuya (Kazuya) |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 |
Descrizione fisica | 1 online resource (349 p.) |
Disciplina | 514/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Hodge theory
Logarithms |
Soggetto genere / forma | Electronic books. |
ISBN |
1-4008-3711-1
0-691-13822-2 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 0. Overview -- Chapter 1. Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits -- Chapter 2. Logarithmic Hodge Structures -- Chapter 3. Strong Topology and Logarithmic Manifolds -- Chapter 4. Main Results -- Chapter 5. Fundamental Diagram -- Chapter 6. The Map ψ:D#val → DSL(2) -- Chapter 7. Proof of Theorem A -- Chapter 8. Proof of Theorem B -- Chapter 9. b-Spaces -- Chapter 10. Local Structures of DSL(2) and ΓDbSL(2),≤1 -- Chapter 11. Moduli of PLH with Coefficients -- Chapter 12. Examples and Problems -- Appendix -- References -- List of Symbols -- Index |
Record Nr. | UNINA-9910465704203321 |
Kato Kazuya (Kazuya)
![]() |
||
Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Classifying spaces of degenerating polarized Hodge structures / / Kazuya Kato and Sampei Usui |
Autore | Kato Kazuya (Kazuya) |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 |
Descrizione fisica | 1 online resource (349 p.) |
Disciplina | 514/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Hodge theory
Logarithms |
Soggetto non controllato |
Algebraic group
Algebraic variety Analytic manifold Analytic space Annulus (mathematics) Arithmetic group Atlas (topology) Canonical map Classifying space Coefficient Cohomology Compactification (mathematics) Complex manifold Complex number Congruence subgroup Conjecture Connected component (graph theory) Continuous function Convex cone Degeneracy (mathematics) Diagram (category theory) Differential form Direct image functor Divisor Elliptic curve Equivalence class Existential quantification Finite set Functor Geometry Hodge structure Hodge theory Homeomorphism Homomorphism Inverse function Iwasawa decomposition Local homeomorphism Local ring Local system Logarithmic Maximal compact subgroup Modular curve Modular form Moduli space Monodromy Monoid Morphism Natural number Nilpotent orbit Nilpotent Open problem Open set P-adic Hodge theory P-adic number Point at infinity Proper morphism Pullback (category theory) Quotient space (topology) Rational number Relative interior Ring (mathematics) Ring homomorphism Scientific notation Set (mathematics) Sheaf (mathematics) Smooth morphism Special case Strong topology Subgroup Subobject Subset Surjective function Tangent bundle Taylor series Theorem Topological space Topology Transversality (mathematics) Two-dimensional space Vector bundle Vector space Weak topology |
ISBN |
1-4008-3711-1
0-691-13822-2 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 0. Overview -- Chapter 1. Spaces of Nilpotent Orbits and Spaces of Nilpotent i-Orbits -- Chapter 2. Logarithmic Hodge Structures -- Chapter 3. Strong Topology and Logarithmic Manifolds -- Chapter 4. Main Results -- Chapter 5. Fundamental Diagram -- Chapter 6. The Map ψ:D#val → DSL(2) -- Chapter 7. Proof of Theorem A -- Chapter 8. Proof of Theorem B -- Chapter 9. b-Spaces -- Chapter 10. Local Structures of DSL(2) and ΓDbSL(2),≤1 -- Chapter 11. Moduli of PLH with Coefficients -- Chapter 12. Examples and Problems -- Appendix -- References -- List of Symbols -- Index |
Record Nr. | UNINA-9910791746503321 |
Kato Kazuya (Kazuya)
![]() |
||
Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|