Calcolo tensoriale / B. Spain ; traduzione di A. Palamidessi
| Calcolo tensoriale / B. Spain ; traduzione di A. Palamidessi |
| Autore | Spain, Barry |
| Pubbl/distr/stampa | Roma : Cremonese, 1971 |
| Descrizione fisica | VIII, 142 p. ; 19 cm |
| Disciplina | 512.57 |
| Collana | Poliedro |
| Soggetto non controllato | Calcolo tensoriale |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Titolo uniforme | |
| Record Nr. | UNIPARTHENOPE-000019041 |
Spain, Barry
|
||
| Roma : Cremonese, 1971 | ||
| Lo trovi qui: Univ. Parthenope | ||
| ||
Clifford algebras : an introduction / / D.J.H. Garling [[electronic resource]]
| Clifford algebras : an introduction / / D.J.H. Garling [[electronic resource]] |
| Autore | Garling D. J. H. |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2011 |
| Descrizione fisica | 1 online resource (vii, 200 pages) : digital, PDF file(s) |
| Disciplina | 512.57 |
| Collana | London Mathematical Society student texts |
| Soggetto topico | Clifford algebras |
| ISBN |
1-107-22240-0
1-280-77308-1 1-139-07669-8 9786613683854 0-511-97299-7 1-139-08124-1 1-139-07097-5 1-139-07897-6 1-139-08351-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; London Mathematical Society Student Texts 78: Clifford Algebras: An Introduction; Title; Copyright; Contents; Introduction; PART ONE: THE ALGEBRAIC ENVIRONMENT; 1: Groups and vector spaces; 1.1 Groups; 1.2 Vector spaces; 1.3 Duality of vector spaces; 2: Algebras, representations and modules; 2.1 Algebras; 2.2 Group representations; 2.3 The quaternions; 2.4 Representations and modules; 2.5 Module homomorphisms; 2.6 Simple modules; 2.7 Semi-simple modules; 3: Multilinear algebra; 3.1 Multilinear mappings; 3.2 Tensor products; 3.3 The trace
3.4 Alternating mappings and the exterior algebra3.5 The symmetric tensor algebra; 3.6 Tensor products of algebras; 3.7 Tensor products of super-algebras; PART TWO: QUADRATIC FORMS AND CLIFFORD ALGEBRAS; 4: Quadratic forms; 4.1 Real quadratic forms; 4.2 Orthogonality; 4.3 Diagonalization; 4.4 Adjoint mappings; 4.5 Isotropy; 4.6 Isometries and the orthogonal group; 4.8 The Cartan-Dieudonné theorem; 4.9 The groups SO(3) and SO(4); 4.10 Complex quadratic forms; 4.11 Complex inner-product spaces; 5: Clifford algebras; 5.1 Clifford algebras; 5.2 Existence; 5.3 Three involutions 5.4 Centralizers, and the centre5.5 Simplicity; 5.6 The trace and quadratic form on A(E, q); 5.7 The group G(E; q) of invertible elements of A(E, q); 6: Classifying Clifford algebras; 6.1 Frobenius' theorem; 6.2 Clifford algebras A(E, q) with dimE = 2; 6.3 Clifford's theorem; 6.4 Classifying even Clifford algebras; 6.5 Cartan's periodicity law; 6.6 Classifying complex Clifford algebras; 7: Representing Clifford algebras; 7.1 Spinors; 7.2 The Clifford algebras Ak,k; 7.3 The algebras Bk,k+1 and Ak,k+1; 7.4 The algebras Ak+1,k and Ak+2,k; 7.5 Clifford algebras A(E, q) with dim E = 3 7.6 Clifford algebras A(E, q) with dim E = 47.7 Clifford algebras A(E, q) with dim E = 5; 7.8 The algebras A6, B7, A7 and A8; 8: Spin; 8.1 Clifford groups; 8.2 Pin and Spin groups; 8.3 Replacing q by ?q; 8.4 The spin group for odd dimensions; 8.5 Spin groups, for d = 2; 8.6 Spin groups, for d = 3; 8.7 Spin groups, for d = 4; 8.8 The group Spin5; 8.9 Examples of spin groups for d >= 6; 8.10 Table of results; PART THREE: SOME APPLICATIONS; 9: Some applications to physics; 9.1 Particles with spin 1/2; 9.2 The Dirac operator; 9.3 Maxwell's equations; 9.4 The Dirac equation 10: Clifford analyticity10.1 Clifford analyticity; 10.2 Cauchy's integral formula; 10.3 Poisson kernels and the Dirichlet problem; 10.4 The Hilbert transform; 10.5 Augmented Dirac operators; 10.6 Subharmonicity properties; 10.7 The Riesz transform; 10.8 The Dirac operator on a Riemannian manifold; 11: Representations of Spind and SO(d); 11.1 Compact Lie groups and their representations; 11.2 Representations of SU(2); 11.3 Representations of Spind and SO(d) for d<=4; 12: Some suggestions for further reading; The algebraic environment; Quadratic spaces; Clifford algebras Clifford algebras and harmonic analysis |
| Record Nr. | UNINA-9910461741803321 |
Garling D. J. H.
|
||
| Cambridge : , : Cambridge University Press, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Clifford algebras : an introduction / / D.J.H. Garling [[electronic resource]]
| Clifford algebras : an introduction / / D.J.H. Garling [[electronic resource]] |
| Autore | Garling D. J. H. |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2011 |
| Descrizione fisica | 1 online resource (vii, 200 pages) : digital, PDF file(s) |
| Disciplina | 512.57 |
| Collana | London Mathematical Society student texts |
| Soggetto topico | Clifford algebras |
| ISBN |
1-107-22240-0
1-280-77308-1 1-139-07669-8 9786613683854 0-511-97299-7 1-139-08124-1 1-139-07097-5 1-139-07897-6 1-139-08351-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; London Mathematical Society Student Texts 78: Clifford Algebras: An Introduction; Title; Copyright; Contents; Introduction; PART ONE: THE ALGEBRAIC ENVIRONMENT; 1: Groups and vector spaces; 1.1 Groups; 1.2 Vector spaces; 1.3 Duality of vector spaces; 2: Algebras, representations and modules; 2.1 Algebras; 2.2 Group representations; 2.3 The quaternions; 2.4 Representations and modules; 2.5 Module homomorphisms; 2.6 Simple modules; 2.7 Semi-simple modules; 3: Multilinear algebra; 3.1 Multilinear mappings; 3.2 Tensor products; 3.3 The trace
3.4 Alternating mappings and the exterior algebra3.5 The symmetric tensor algebra; 3.6 Tensor products of algebras; 3.7 Tensor products of super-algebras; PART TWO: QUADRATIC FORMS AND CLIFFORD ALGEBRAS; 4: Quadratic forms; 4.1 Real quadratic forms; 4.2 Orthogonality; 4.3 Diagonalization; 4.4 Adjoint mappings; 4.5 Isotropy; 4.6 Isometries and the orthogonal group; 4.8 The Cartan-Dieudonné theorem; 4.9 The groups SO(3) and SO(4); 4.10 Complex quadratic forms; 4.11 Complex inner-product spaces; 5: Clifford algebras; 5.1 Clifford algebras; 5.2 Existence; 5.3 Three involutions 5.4 Centralizers, and the centre5.5 Simplicity; 5.6 The trace and quadratic form on A(E, q); 5.7 The group G(E; q) of invertible elements of A(E, q); 6: Classifying Clifford algebras; 6.1 Frobenius' theorem; 6.2 Clifford algebras A(E, q) with dimE = 2; 6.3 Clifford's theorem; 6.4 Classifying even Clifford algebras; 6.5 Cartan's periodicity law; 6.6 Classifying complex Clifford algebras; 7: Representing Clifford algebras; 7.1 Spinors; 7.2 The Clifford algebras Ak,k; 7.3 The algebras Bk,k+1 and Ak,k+1; 7.4 The algebras Ak+1,k and Ak+2,k; 7.5 Clifford algebras A(E, q) with dim E = 3 7.6 Clifford algebras A(E, q) with dim E = 47.7 Clifford algebras A(E, q) with dim E = 5; 7.8 The algebras A6, B7, A7 and A8; 8: Spin; 8.1 Clifford groups; 8.2 Pin and Spin groups; 8.3 Replacing q by ?q; 8.4 The spin group for odd dimensions; 8.5 Spin groups, for d = 2; 8.6 Spin groups, for d = 3; 8.7 Spin groups, for d = 4; 8.8 The group Spin5; 8.9 Examples of spin groups for d >= 6; 8.10 Table of results; PART THREE: SOME APPLICATIONS; 9: Some applications to physics; 9.1 Particles with spin 1/2; 9.2 The Dirac operator; 9.3 Maxwell's equations; 9.4 The Dirac equation 10: Clifford analyticity10.1 Clifford analyticity; 10.2 Cauchy's integral formula; 10.3 Poisson kernels and the Dirichlet problem; 10.4 The Hilbert transform; 10.5 Augmented Dirac operators; 10.6 Subharmonicity properties; 10.7 The Riesz transform; 10.8 The Dirac operator on a Riemannian manifold; 11: Representations of Spind and SO(d); 11.1 Compact Lie groups and their representations; 11.2 Representations of SU(2); 11.3 Representations of Spind and SO(d) for d<=4; 12: Some suggestions for further reading; The algebraic environment; Quadratic spaces; Clifford algebras Clifford algebras and harmonic analysis |
| Record Nr. | UNINA-9910790005003321 |
Garling D. J. H.
|
||
| Cambridge : , : Cambridge University Press, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Clifford algebras and Lie theory / Eckhard Meinrenken
| Clifford algebras and Lie theory / Eckhard Meinrenken |
| Autore | Meinrenken, Eckhard |
| Pubbl/distr/stampa | Berlin : Springer, 2013 |
| Descrizione fisica | XX, 321 p. ; 24 cm |
| Disciplina | 512.57 |
| Collana | Ergebnisse der mathematik und ihrer grenzgebiete 3. Folge |
| Soggetto non controllato |
Algebre di Clifford - Spinori
Super algebre semplici semisemplici riduttive - Radici Algebre inviluppanti universali Metodi omologici per le super algebre di Lie |
| ISBN | 978-3-642-36215-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990009793700403321 |
Meinrenken, Eckhard
|
||
| Berlin : Springer, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Clifford Algebras and Lie Theory / / by Eckhard Meinrenken
| Clifford Algebras and Lie Theory / / by Eckhard Meinrenken |
| Autore | Meinrenken Eckhard |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 |
| Descrizione fisica | 1 online resource (321 p.) |
| Disciplina | 512.57 |
| Collana | Ergebnisse der Mathematik und ihrer Grezgebiete. |
| Soggetto topico |
Topological groups
Lie groups Associative rings Rings (Algebra) Mathematical physics Differential geometry Physics Topological Groups, Lie Groups Associative Rings and Algebras Mathematical Applications in the Physical Sciences Differential Geometry Mathematical Methods in Physics |
| ISBN | 3-642-36216-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Conventions -- List of Symbols -- 1 Symmetric bilinear forms -- 2 Clifford algebras -- 3 The spin representation -- 4 Covariant and contravariant spinors -- 5 Enveloping algebras -- 6 Weil algebras -- 7 Quantum Weil algebras -- 8 Applications to reductive Lie algebras -- 9 D(g; k) as a geometric Dirac operator -- 10 The Hopf–Koszul–Samelson Theorem -- 11 The Clifford algebra of a reductive Lie algebra -- A Graded and filtered super spaces -- B Reductive Lie algebras -- C Background on Lie groups -- References -- Index. |
| Record Nr. | UNINA-9910739481703321 |
Meinrenken Eckhard
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Clifford algebras and spinors / Pertti Lounesto
| Clifford algebras and spinors / Pertti Lounesto |
| Autore | Lounesto, Pertti |
| Pubbl/distr/stampa | Cambridge : Cambridge University Press, c1997 |
| Descrizione fisica | ix, 306 p. : ill. ; 23 cm |
| Disciplina | 512.57 |
| Collana | London Mathematical Society lecture note series |
| Soggetto non controllato |
Algebra lineare
Algebre di clifford Spinori Analisi spinoriale Funzioni di variabili ipercomplesse |
| ISBN | 0-521-59916-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990001162660403321 |
Lounesto, Pertti
|
||
| Cambridge : Cambridge University Press, c1997 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Clifford algebras and spinors / Pertti Lounesto
| Clifford algebras and spinors / Pertti Lounesto |
| Autore | Lounesto, Pertti |
| Pubbl/distr/stampa | Cambridge (UK) : Cambridge University Press, c1997 |
| Descrizione fisica | ix, 306 p. : ill. ; 23 cm |
| Disciplina | 512.57 |
| Collana | London Mathematical Society lecture note series |
| Soggetto non controllato |
Algebre di clifford
Spinori Analisi lineare Analisi spinoriale Funzioni di variabili ipercomplesse |
| ISBN | 0-521-59916-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990001126300403321 |
Lounesto, Pertti
|
||
| Cambridge (UK) : Cambridge University Press, c1997 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Clifford algebras and spinors / P. Lounesto
| Clifford algebras and spinors / P. Lounesto |
| Autore | Lounesto, Pertti |
| Pubbl/distr/stampa | Cambridge : Cambridge University Press, 1997 |
| Descrizione fisica | VIII, 306 p. ; 23 cm. |
| Disciplina | 512.57 |
| Collana | London Mathematical Society Lecture Note Series |
| Soggetto topico | Algebra di Clifford |
| ISBN | 0-521-59916-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNIBAS-000011326 |
Lounesto, Pertti
|
||
| Cambridge : Cambridge University Press, 1997 | ||
| Lo trovi qui: Univ. della Basilicata | ||
| ||
Clifford algebras and spinors / Pertti Lounesto
| Clifford algebras and spinors / Pertti Lounesto |
| Autore | Lounesto, Pertti |
| Pubbl/distr/stampa | Cambridge ; New York : Cambridge University Press, 1997 |
| Descrizione fisica | ix, 306 p. : ill. ; 23 cm |
| Disciplina | 512.57 |
| Collana | London Mathematical Society lecture note series, 0076-0552 ; 239 |
| Soggetto topico |
Clifford algebras
Spinor analysis |
| ISBN | 0521599164 |
| Classificazione |
AMS 15A66
QA199.L68 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000747189707536 |
Lounesto, Pertti
|
||
| Cambridge ; New York : Cambridge University Press, 1997 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Clifford algebras and the classical groups / Ian R. Porteous
| Clifford algebras and the classical groups / Ian R. Porteous |
| Autore | Porteous, Ian R. |
| Pubbl/distr/stampa | Cambridge : Cambridge University Press, 1995 |
| Descrizione fisica | x, 295 p. : ill. ; 24 cm |
| Disciplina | 512.57 |
| Collana | Cambridge studies in advanced mathematics ; 50 |
| Soggetto topico | Clifford algebras |
| ISBN | 0521551773 |
| Classificazione |
510:53
510.16 510.17 510.20 510.22 510.55 AMS 15A66 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000855799707536 |
Porteous, Ian R.
|
||
| Cambridge : Cambridge University Press, 1995 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||