Advanced problems in mathematics : preparing for university / / Stephen Siklos |
Autore | Siklos Stephen |
Edizione | [New revised edition.] |
Pubbl/distr/stampa | Cambridge, UK : , : Open Book Publishers, , [2019] |
Descrizione fisica | 1 online resource (186 pages) |
Disciplina | 510.711 |
Soggetto topico |
Mathematics - Study and teaching (Higher)
Mathematics |
Soggetto genere / forma | Electronic books. |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910346052903321 |
Siklos Stephen | ||
Cambridge, UK : , : Open Book Publishers, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced problems in mathematics : preparing for university / / Stephen Siklos |
Autore | Siklos Stephen |
Edizione | [New revised edition.] |
Pubbl/distr/stampa | Open Book Publishers, 2019 |
Descrizione fisica | 1 online resource (186 pages) |
Disciplina | 510.711 |
Soggetto topico |
Mathematics - Study and teaching (Higher)
Mathematics |
Soggetto non controllato |
Mathematics
Elementary Problems make sense of the world mathematics beyond the classroom Mental Skills Arithmetic Word Problems Algebra Geometry Infinity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | About this book -- STEP -- Worked Problems -- Problems -- Syllabus. |
Record Nr. | UNINA-9910563074303321 |
Siklos Stephen | ||
Open Book Publishers, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced problems in mathematics : preparing for university / / Stephen Siklos |
Autore | Siklos Stephen |
Pubbl/distr/stampa | Open Book Publishers, 2016 |
Descrizione fisica | 1 online resource (174 pages) : illustrations ; digital, PDF file(s) |
Disciplina | 510.711 |
Collana | OBP Series in Mathematics |
Soggetto topico |
Mathematics - Study and teaching (Higher)
Calculus Geometry |
Soggetto non controllato |
geometry
calculus probability and statistics undergraduate mathematics course step examinations advanced mathematical problems Imaginary unit Stationary point Trigonometric functions |
ISBN |
1-78374-145-7
1-78374-144-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | About this book -- STEP -- Worked Problems ; Worked problem 1 ; Worked problem 2 ; Problems-- ‡a P1 An integer equation P2 Partitions of 10 and 20 P3 Mathematical deduction P4 Divisibility P5 The modulus function P6 The regular Reuleaux heptagon P7 Chain of equations P8 Trig. equations P9 Integration by substitution P10 True or false P11 Egyptian fractions P12 Maximising with constraints P13 Binomial expansion P14 Sketching subsets of the plane P15 More sketching subsets of the plane P16 Non-linear simultaneous equations P17 Inequalities P18 Inequalities from cubics P19 Logarithms P20 Cosmological models P21 Melting snowballs P22 Gregory's series P23 Intersection of ellipses P24 Sketching x m ( 1 - x ) n P25 Inequalities by area estimates P26 Simultaneous integral equations P27 Relation between coefficients of quartic for real roots P28 Fermat numbers P29 Telescoping series P30 Integer solutions of cubics P31 The harmonic series P32 Integration by substitution P33 More curve sketching P34 Trig sum P35 Roots o ‡a f a cubic equation P36 Root counting P37 Irrationality of e P38 Discontinuous integrands P39 A difficult integral P40 Estimating the value of an integral P41 Integrating the modulus function P42 Geometry P43 The t substitution P44 A differential-difference equation P45 Lagrange's identity P46 Bernoulli polynomials P47 Vector geometry P48 Solving a quartic P49 Areas and volumes P50 More curve sketching P51 Spherical loaf P52 Snowploughing P53 Tortoise and hare P54 How did the chicken cross the road? P55 Hank's gold mine P56 A chocolate orange P57 Lorry on bend P58 Fielding P59 Equilibrium of rod of non-uniform density P60 Newton's cradle P61 Kinematics of rotating target P62 Particle on wedge P63 Sphere on step P64 Elastic band on cylinder P65 A knock-out tournament P66 Harry the calculating horse P67 PIN guessing P68 Breaking plates P69 Lottery P70 Bodies in the fridge P71 Choosing keys P72 Commuting by train P ‡a 73 Collecting voles P74 Breaking a stick P75 Random quadratics -- Syllabus |
Record Nr. | UNINA-9910136292503321 |
Siklos Stephen | ||
Open Book Publishers, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999 |
Pubbl/distr/stampa | Providence : American Mathematical Society, 1998 |
Descrizione fisica | 130 p. ; 29 cm. |
Disciplina | 510.711 |
ISBN | 978-08-218-1070-5 |
ISSN | 1040-7650 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-SUN0049413 |
Providence : American Mathematical Society, 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999 |
Pubbl/distr/stampa | Providence, : American Mathematical Society, 1998 |
Descrizione fisica | 130 p. ; 29 cm |
Disciplina | 510.711 |
ISBN | 978-08-218-1070-5 |
ISSN | 1040-7650 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0049413 |
Providence, : American Mathematical Society, 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999 |
Pubbl/distr/stampa | Providence, : American Mathematical Society, 1998 |
Descrizione fisica | 130 p. ; 29 cm |
Disciplina | 510.711 |
ISBN | 978-08-218-1070-5 |
ISSN | 1040-7650 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00049413 |
Providence, : American Mathematical Society, 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 2018 : Beiträge zum gleichnamigen Symposium am 9. & 10. November 2018 an der Universität Duisburg-Essen / / Marcel Klinger, Alexander Schüler-Meyer, Lena Wessel (Hrsg.) |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Münster : , : WTM Verlag für wissenschaftliche Texte und Medien, , [2019] |
Descrizione fisica | 1 online resource (199 pages) |
Disciplina | 510.711 |
Collana | Schriften zur Hochschuldidaktik Mathematik |
Soggetto topico | Mathematics - Study and teaching (Higher) |
ISBN | 3-95987-098-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Intro -- Inhalt -- Klinger, Marcel -- Schüler-Meyer, Alexander -- Wessel, Lena -- Vielfalt, die verbindet: Der Übergang Schule-Hochschule im Rahmen des Hanse-Kolloquiums zur Hochschuldidaktik der Mathematik 2018 in Essen -- Barzel, Bärbel -- Von der Herausforderung, die Hochschuleingangsphase in Mathematik konstruktiv zu gestalten - Strukturen und Aufgaben -- Rønning, Frode -- Interaktion, Aktivität und Sprachförderung beim Lernen von Hochschulmathematik - Beispiele aus einem Norwegischen Entwicklungsprojekt -- Sarikaya, Nimet -- Furlan, Peter -- Ein Vergleich von Unterstützungsmaßnahmen im ersten Studienjahr zwischen Fachhochschule und Universität -- Altieri, Mike -- Schellenbach, Michael -- Schirmer, Evelyn -- Opfermann, Christiane -- Kunze, Jan Erik -- Regnet, Julian -- Paluch, Dirk -- Unreal Engine 4 trifft H5P und PBL - Integration einer virtuellen Realität mit interaktiven Erklärvideos in ein digitales Fachkonzept zur Unterstützung problembasierten Lernens -- Bach, Volker -- Barbas, Helena -- Gasser, Ingenuin -- Konieczny, Franz -- Lohse, Alexander -- Seiler, Ruedi -- Formatives Assessment in Mathe-Kursen für Erstsemester: Digitalisierung eine Chance? -- Bauer, Thomas -- Design von Aufgaben für Peer Instruction zum Einsatz in Übungsgruppen zur Analysis -- Blum, Silvia -- Diskontinuität in der Linearen Algebra: Was bedeutet der höhere Standpunkt? - Konkretisierung einer Denkfigur und qualitative Untersuchungen zu verschiedenen Zeitpunkten in der LehrerInnenbiografie -- Feil, Lidia -- Strauer, Dorothea -- Zwingmann, Katharina -- Entwurf und Einsatz von Lösungsbeispielen mit Lücken und Selbsterklärungsaufforderungen in Mathematikveranstaltungen für Studierende der Pharmazie und der Biologie -- Fleischmann, Yael -- Kempen, Leander -- Mai, Tobias -- Biehler, Rolf.
Die Online-Lernmaterialien von studiVEMINT: Einsatzszenarien im Blended Learning Format in mathematischen Vorkursen -- Lankeit, Elisa -- Biehler, Rolf -- Vorstellung einer Aufgabe zu den Zusammenhängen verschiedener Differenzierbarkeitsbegriffe im Mehrdimensionalen -- Moser-Fendel, Jeremias -- Wessel, Lena -- Klinger, Marcel -- Was bringen StudienanfängerInnen mit? - Konzeptualisierung des Vorwissens zu Algebra und Funktionen von Erstsemesterstudierenden in INT-Studiengängen -- Neuhaus, Silke -- Rach, Stefanie -- Situationales Interesse von Lehramtsstudierenden für hochschulmathematische Themen steigern -- Oldenburg, Reinhard -- Genetische Ideen in der Analysis I -- Stuhlmann, Ann Sophie -- Kooperative Beweisprozesse Mathematiklehramtsstudierender in der Studieneingangsphase -- Weygandt, Benedikt -- Skutella, Katharina -- Blick nach vorne, Blick zurück: Ein Lehrkonzept für Bachelor- und Masterstudierende zur Überbrückung beider Diskontinuitäten -- Wilzek, Wieland -- Interaktive dynamische Visualisierungen als Unterstützungsangebot im fachmathematischen Studium - Chancen und Gefahren der Anschauung. |
Record Nr. | UNINA-9910794278903321 |
Münster : , : WTM Verlag für wissenschaftliche Texte und Medien, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 2018 : Beiträge zum gleichnamigen Symposium am 9. & 10. November 2018 an der Universität Duisburg-Essen / / Marcel Klinger, Alexander Schüler-Meyer, Lena Wessel (Hrsg.) |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Münster : , : WTM Verlag für wissenschaftliche Texte und Medien, , [2019] |
Descrizione fisica | 1 online resource (199 pages) |
Disciplina | 510.711 |
Collana | Schriften zur Hochschuldidaktik Mathematik |
Soggetto topico | Mathematics - Study and teaching (Higher) |
ISBN | 3-95987-098-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Intro -- Inhalt -- Klinger, Marcel -- Schüler-Meyer, Alexander -- Wessel, Lena -- Vielfalt, die verbindet: Der Übergang Schule-Hochschule im Rahmen des Hanse-Kolloquiums zur Hochschuldidaktik der Mathematik 2018 in Essen -- Barzel, Bärbel -- Von der Herausforderung, die Hochschuleingangsphase in Mathematik konstruktiv zu gestalten - Strukturen und Aufgaben -- Rønning, Frode -- Interaktion, Aktivität und Sprachförderung beim Lernen von Hochschulmathematik - Beispiele aus einem Norwegischen Entwicklungsprojekt -- Sarikaya, Nimet -- Furlan, Peter -- Ein Vergleich von Unterstützungsmaßnahmen im ersten Studienjahr zwischen Fachhochschule und Universität -- Altieri, Mike -- Schellenbach, Michael -- Schirmer, Evelyn -- Opfermann, Christiane -- Kunze, Jan Erik -- Regnet, Julian -- Paluch, Dirk -- Unreal Engine 4 trifft H5P und PBL - Integration einer virtuellen Realität mit interaktiven Erklärvideos in ein digitales Fachkonzept zur Unterstützung problembasierten Lernens -- Bach, Volker -- Barbas, Helena -- Gasser, Ingenuin -- Konieczny, Franz -- Lohse, Alexander -- Seiler, Ruedi -- Formatives Assessment in Mathe-Kursen für Erstsemester: Digitalisierung eine Chance? -- Bauer, Thomas -- Design von Aufgaben für Peer Instruction zum Einsatz in Übungsgruppen zur Analysis -- Blum, Silvia -- Diskontinuität in der Linearen Algebra: Was bedeutet der höhere Standpunkt? - Konkretisierung einer Denkfigur und qualitative Untersuchungen zu verschiedenen Zeitpunkten in der LehrerInnenbiografie -- Feil, Lidia -- Strauer, Dorothea -- Zwingmann, Katharina -- Entwurf und Einsatz von Lösungsbeispielen mit Lücken und Selbsterklärungsaufforderungen in Mathematikveranstaltungen für Studierende der Pharmazie und der Biologie -- Fleischmann, Yael -- Kempen, Leander -- Mai, Tobias -- Biehler, Rolf.
Die Online-Lernmaterialien von studiVEMINT: Einsatzszenarien im Blended Learning Format in mathematischen Vorkursen -- Lankeit, Elisa -- Biehler, Rolf -- Vorstellung einer Aufgabe zu den Zusammenhängen verschiedener Differenzierbarkeitsbegriffe im Mehrdimensionalen -- Moser-Fendel, Jeremias -- Wessel, Lena -- Klinger, Marcel -- Was bringen StudienanfängerInnen mit? - Konzeptualisierung des Vorwissens zu Algebra und Funktionen von Erstsemesterstudierenden in INT-Studiengängen -- Neuhaus, Silke -- Rach, Stefanie -- Situationales Interesse von Lehramtsstudierenden für hochschulmathematische Themen steigern -- Oldenburg, Reinhard -- Genetische Ideen in der Analysis I -- Stuhlmann, Ann Sophie -- Kooperative Beweisprozesse Mathematiklehramtsstudierender in der Studieneingangsphase -- Weygandt, Benedikt -- Skutella, Katharina -- Blick nach vorne, Blick zurück: Ein Lehrkonzept für Bachelor- und Masterstudierende zur Überbrückung beider Diskontinuitäten -- Wilzek, Wieland -- Interaktive dynamische Visualisierungen als Unterstützungsangebot im fachmathematischen Studium - Chancen und Gefahren der Anschauung. |
Record Nr. | UNINA-9910820839503321 |
Münster : , : WTM Verlag für wissenschaftliche Texte und Medien, , [2019] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
How to study for a mathematics degree [[electronic resource] /] / Lara Alcock |
Autore | Alcock Lara |
Pubbl/distr/stampa | Oxford, : Oxford University Press, 2012 |
Descrizione fisica | 1 online resource (289 p.) |
Disciplina | 510.711 |
Soggetto topico |
Mathematics - Study and teaching (Higher)
Mathematics - Vocational guidance |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-71345-4
0-19-163736-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Symbols; Introduction; Part 1 Mathematics; 1 Calculation Procedures; 1.1 Calculation at school and at university; 1.2 Decisions about and within procedures; 1.3 Learning from few (or no) examples; 1.4 Generating your own exercises; 1.5 Writing out calculations; 1.6 Checking for errors; 1.7 Mathematics is not just procedures; 2 Abstract Objects; 2.1 Numbers as abstract objects; 2.2 Functions as abstract objects; 2.3 What kind of object is that, really?; 2.4 Objects as the results of procedures; 2.5 Hierarchical organization of objects; 2.6 Turning processes into objects
2.7 New objects: relations and binary operations2.8 New objects: symmetries; 3 Definitions; 3.1 Axioms, definitions and theorems; 3.2 What are axioms?; 3.3 What are definitions?; 3.4 What are theorems?; 3.5 Understanding definitions: even numbers; 3.6 Understanding definitions: increasing functions; 3.7 Understanding definitions: commutativity; 3.8 Understanding definitions: open sets; 3.9 Understanding definitions: limits; 3.10 Definitions and intuition; 4 Theorems; 4.1 Theorems and logical necessity; 4.2 A simple theorem about integers; 4.3 A theorem about functions and derivatives 4.4 A theorem with less familiar objects4.5 Logical language: 'if '; 4.6 Logical language: everyday uses of 'if '; 4.7 Logical language: quantifiers; 4.8 Logical language: multiple quantifiers; 4.9 Theorem rephrasing; 4.10 Understanding: logical form and meaning; 5 Proof; 5.1 Proofs in school mathematics; 5.2 Proving that a definition is satisfied; 5.3 Proving general statements; 5.4 Proving general theorems using definitions; 5.5 Definitions and other representations; 5.6 Proofs, logical deductions and objects; 5.7 Proving obvious things 5.8 Believing counterintuitive things: the harmonic series5.9 Believing counterintuitive things: Earth and rope; 5.10 Will my whole degree be proofs?; 6 Proof Types and Tricks; 6.1 General proving strategies; 6.2 Direct proof; 6.3 Proof by contradiction; 6.4 Proof by induction; 6.5 Uniqueness proofs; 6.6 Adding and subtracting the same thing; 6.7 Trying things out; 6.8 'I would never have thought of that'; 7 Reading Mathematics; 7.1 Independent reading; 7.2 Reading your lecture notes; 7.3 Reading for understanding; 7.4 Reading for synthesis; 7.5 Using summaries for revision 7.6 Reading for memory7.7 Using diagrams for memory; 7.8 Reading proofs for memory; 8 Writing Mathematics; 8.1 Recognizing good writing; 8.2 Why should a student write well?; 8.3 Writing a clear argument; 8.4 Using notation correctly; 8.5 Arrows and brackets; 8.6 Exceptions and mistakes; 8.7 Separating out the task of writing; Part 2 Study Skills; 9 Lectures; 9.1 What are lectures like?; 9.2 What are lecturers like?; 9.3 Making lectures work for you; 9.4 Tackling common problems; 9.5 Learning in lectures; 9.6 Courtesy in lectures; 9.7 Feedback on lectures; 10 Other People 10.1 Lecturers as teachers |
Record Nr. | UNINA-9910462168003321 |
Alcock Lara | ||
Oxford, : Oxford University Press, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
How to study for a mathematics degree / Lara Alcock |
Autore | Alcock Lara |
Pubbl/distr/stampa | Oxford, : Oxford University Press, 2012 |
Descrizione fisica | 1 online resource (289 p.) |
Disciplina | 510.711 |
Soggetto topico |
Mathematics - Study and teaching (Higher)
Mathematics - Vocational guidance |
ISBN |
0-19-163737-8
1-283-71345-4 0-19-163736-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Contents; Symbols; Introduction; Part 1 Mathematics; 1 Calculation Procedures; 1.1 Calculation at school and at university; 1.2 Decisions about and within procedures; 1.3 Learning from few (or no) examples; 1.4 Generating your own exercises; 1.5 Writing out calculations; 1.6 Checking for errors; 1.7 Mathematics is not just procedures; 2 Abstract Objects; 2.1 Numbers as abstract objects; 2.2 Functions as abstract objects; 2.3 What kind of object is that, really?; 2.4 Objects as the results of procedures; 2.5 Hierarchical organization of objects; 2.6 Turning processes into objects
2.7 New objects: relations and binary operations2.8 New objects: symmetries; 3 Definitions; 3.1 Axioms, definitions and theorems; 3.2 What are axioms?; 3.3 What are definitions?; 3.4 What are theorems?; 3.5 Understanding definitions: even numbers; 3.6 Understanding definitions: increasing functions; 3.7 Understanding definitions: commutativity; 3.8 Understanding definitions: open sets; 3.9 Understanding definitions: limits; 3.10 Definitions and intuition; 4 Theorems; 4.1 Theorems and logical necessity; 4.2 A simple theorem about integers; 4.3 A theorem about functions and derivatives 4.4 A theorem with less familiar objects4.5 Logical language: 'if '; 4.6 Logical language: everyday uses of 'if '; 4.7 Logical language: quantifiers; 4.8 Logical language: multiple quantifiers; 4.9 Theorem rephrasing; 4.10 Understanding: logical form and meaning; 5 Proof; 5.1 Proofs in school mathematics; 5.2 Proving that a definition is satisfied; 5.3 Proving general statements; 5.4 Proving general theorems using definitions; 5.5 Definitions and other representations; 5.6 Proofs, logical deductions and objects; 5.7 Proving obvious things 5.8 Believing counterintuitive things: the harmonic series5.9 Believing counterintuitive things: Earth and rope; 5.10 Will my whole degree be proofs?; 6 Proof Types and Tricks; 6.1 General proving strategies; 6.2 Direct proof; 6.3 Proof by contradiction; 6.4 Proof by induction; 6.5 Uniqueness proofs; 6.6 Adding and subtracting the same thing; 6.7 Trying things out; 6.8 'I would never have thought of that'; 7 Reading Mathematics; 7.1 Independent reading; 7.2 Reading your lecture notes; 7.3 Reading for understanding; 7.4 Reading for synthesis; 7.5 Using summaries for revision 7.6 Reading for memory7.7 Using diagrams for memory; 7.8 Reading proofs for memory; 8 Writing Mathematics; 8.1 Recognizing good writing; 8.2 Why should a student write well?; 8.3 Writing a clear argument; 8.4 Using notation correctly; 8.5 Arrows and brackets; 8.6 Exceptions and mistakes; 8.7 Separating out the task of writing; Part 2 Study Skills; 9 Lectures; 9.1 What are lectures like?; 9.2 What are lecturers like?; 9.3 Making lectures work for you; 9.4 Tackling common problems; 9.5 Learning in lectures; 9.6 Courtesy in lectures; 9.7 Feedback on lectures; 10 Other People 10.1 Lecturers as teachers |
Record Nr. | UNINA-9910786357403321 |
Alcock Lara | ||
Oxford, : Oxford University Press, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|