top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced problems in mathematics : preparing for university / / Stephen Siklos
Advanced problems in mathematics : preparing for university / / Stephen Siklos
Autore Siklos Stephen
Edizione [New revised edition.]
Pubbl/distr/stampa Cambridge, UK : , : Open Book Publishers, , [2019]
Descrizione fisica 1 online resource (186 pages)
Disciplina 510.711
Soggetto topico Mathematics - Study and teaching (Higher)
Mathematics
Soggetto genere / forma Electronic books.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346052903321
Siklos Stephen  
Cambridge, UK : , : Open Book Publishers, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced problems in mathematics : preparing for university / / Stephen Siklos
Advanced problems in mathematics : preparing for university / / Stephen Siklos
Autore Siklos Stephen
Edizione [New revised edition.]
Pubbl/distr/stampa Open Book Publishers, 2019
Descrizione fisica 1 online resource (186 pages)
Disciplina 510.711
Soggetto topico Mathematics - Study and teaching (Higher)
Mathematics
Soggetto non controllato Mathematics
Elementary Problems
make sense of the world
mathematics beyond the classroom
Mental Skills
Arithmetic
Word Problems
Algebra
Geometry
Infinity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About this book -- STEP -- Worked Problems -- Problems -- Syllabus.
Record Nr. UNINA-9910563074303321
Siklos Stephen  
Open Book Publishers, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced problems in mathematics : preparing for university / / Stephen Siklos
Advanced problems in mathematics : preparing for university / / Stephen Siklos
Autore Siklos Stephen
Pubbl/distr/stampa Open Book Publishers, 2016
Descrizione fisica 1 online resource (174 pages) : illustrations ; digital, PDF file(s)
Disciplina 510.711
Collana OBP Series in Mathematics
Soggetto topico Mathematics - Study and teaching (Higher)
Calculus
Geometry
Soggetto non controllato geometry
calculus
probability and statistics
undergraduate mathematics course
step examinations
advanced mathematical problems
Imaginary unit
Stationary point
Trigonometric functions
ISBN 1-78374-145-7
1-78374-144-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About this book -- STEP -- Worked Problems ; Worked problem 1 ; Worked problem 2 ; Problems-- ‡a P1 An integer equation P2 Partitions of 10 and 20 P3 Mathematical deduction P4 Divisibility P5 The modulus function P6 The regular Reuleaux heptagon P7 Chain of equations P8 Trig. equations P9 Integration by substitution P10 True or false P11 Egyptian fractions P12 Maximising with constraints P13 Binomial expansion P14 Sketching subsets of the plane P15 More sketching subsets of the plane P16 Non-linear simultaneous equations P17 Inequalities P18 Inequalities from cubics P19 Logarithms P20 Cosmological models P21 Melting snowballs P22 Gregory's series P23 Intersection of ellipses P24 Sketching x m ( 1 - x ) n P25 Inequalities by area estimates P26 Simultaneous integral equations P27 Relation between coefficients of quartic for real roots P28 Fermat numbers P29 Telescoping series P30 Integer solutions of cubics P31 The harmonic series P32 Integration by substitution P33 More curve sketching P34 Trig sum P35 Roots o ‡a f a cubic equation P36 Root counting P37 Irrationality of e P38 Discontinuous integrands P39 A difficult integral P40 Estimating the value of an integral P41 Integrating the modulus function P42 Geometry P43 The t substitution P44 A differential-difference equation P45 Lagrange's identity P46 Bernoulli polynomials P47 Vector geometry P48 Solving a quartic P49 Areas and volumes P50 More curve sketching P51 Spherical loaf P52 Snowploughing P53 Tortoise and hare P54 How did the chicken cross the road? P55 Hank's gold mine P56 A chocolate orange P57 Lorry on bend P58 Fielding P59 Equilibrium of rod of non-uniform density P60 Newton's cradle P61 Kinematics of rotating target P62 Particle on wedge P63 Sphere on step P64 Elastic band on cylinder P65 A knock-out tournament P66 Harry the calculating horse P67 PIN guessing P68 Breaking plates P69 Lottery P70 Bodies in the fridge P71 Choosing keys P72 Commuting by train P ‡a 73 Collecting voles P74 Breaking a stick P75 Random quadratics -- Syllabus
Record Nr. UNINA-9910136292503321
Siklos Stephen  
Open Book Publishers, 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999
Pubbl/distr/stampa Providence : American Mathematical Society, 1998
Descrizione fisica 130 p. ; 29 cm.
Disciplina 510.711
ISBN 978-08-218-1070-5
ISSN 1040-7650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0049413
Providence : American Mathematical Society, 1998
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999
Pubbl/distr/stampa Providence, : American Mathematical Society, 1998
Descrizione fisica 130 p. ; 29 cm
Disciplina 510.711
ISBN 978-08-218-1070-5
ISSN 1040-7650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0049413
Providence, : American Mathematical Society, 1998
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999
Assistantships and graduate fellowships in the mathematical sciences : 1998-1999
Pubbl/distr/stampa Providence, : American Mathematical Society, 1998
Descrizione fisica 130 p. ; 29 cm
Disciplina 510.711
ISBN 978-08-218-1070-5
ISSN 1040-7650
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00049413
Providence, : American Mathematical Society, 1998
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 2018 : Beiträge zum gleichnamigen Symposium am 9. & 10. November 2018 an der Universität Duisburg-Essen / / Marcel Klinger, Alexander Schüler-Meyer, Lena Wessel (Hrsg.)
Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 2018 : Beiträge zum gleichnamigen Symposium am 9. & 10. November 2018 an der Universität Duisburg-Essen / / Marcel Klinger, Alexander Schüler-Meyer, Lena Wessel (Hrsg.)
Edizione [1st ed.]
Pubbl/distr/stampa Münster : , : WTM Verlag für wissenschaftliche Texte und Medien, , [2019]
Descrizione fisica 1 online resource (199 pages)
Disciplina 510.711
Collana Schriften zur Hochschuldidaktik Mathematik
Soggetto topico Mathematics - Study and teaching (Higher)
ISBN 3-95987-098-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto Intro -- Inhalt -- Klinger, Marcel -- Schüler-Meyer, Alexander -- Wessel, Lena -- Vielfalt, die verbindet: Der Übergang Schule-Hochschule im Rahmen des Hanse-Kolloquiums zur Hochschuldidaktik der Mathematik 2018 in Essen -- Barzel, Bärbel -- Von der Herausforderung, die Hochschuleingangsphase in Mathematik konstruktiv zu gestalten - Strukturen und Aufgaben -- Rønning, Frode -- Interaktion, Aktivität und Sprachförderung beim Lernen von Hochschulmathematik - Beispiele aus einem Norwegischen Entwicklungsprojekt -- Sarikaya, Nimet -- Furlan, Peter -- Ein Vergleich von Unterstützungsmaßnahmen im ersten Studienjahr zwischen Fachhochschule und Universität -- Altieri, Mike -- Schellenbach, Michael -- Schirmer, Evelyn -- Opfermann, Christiane -- Kunze, Jan Erik -- Regnet, Julian -- Paluch, Dirk -- Unreal Engine 4 trifft H5P und PBL - Integration einer virtuellen Realität mit interaktiven Erklärvideos in ein digitales Fachkonzept zur Unterstützung problembasierten Lernens -- Bach, Volker -- Barbas, Helena -- Gasser, Ingenuin -- Konieczny, Franz -- Lohse, Alexander -- Seiler, Ruedi -- Formatives Assessment in Mathe-Kursen für Erstsemester: Digitalisierung eine Chance? -- Bauer, Thomas -- Design von Aufgaben für Peer Instruction zum Einsatz in Übungsgruppen zur Analysis -- Blum, Silvia -- Diskontinuität in der Linearen Algebra: Was bedeutet der höhere Standpunkt? - Konkretisierung einer Denkfigur und qualitative Untersuchungen zu verschiedenen Zeitpunkten in der LehrerInnenbiografie -- Feil, Lidia -- Strauer, Dorothea -- Zwingmann, Katharina -- Entwurf und Einsatz von Lösungsbeispielen mit Lücken und Selbsterklärungsaufforderungen in Mathematikveranstaltungen für Studierende der Pharmazie und der Biologie -- Fleischmann, Yael -- Kempen, Leander -- Mai, Tobias -- Biehler, Rolf.
Die Online-Lernmaterialien von studiVEMINT: Einsatzszenarien im Blended Learning Format in mathematischen Vorkursen -- Lankeit, Elisa -- Biehler, Rolf -- Vorstellung einer Aufgabe zu den Zusammenhängen verschiedener Differenzierbarkeitsbegriffe im Mehrdimensionalen -- Moser-Fendel, Jeremias -- Wessel, Lena -- Klinger, Marcel -- Was bringen StudienanfängerInnen mit? - Konzeptualisierung des Vorwissens zu Algebra und Funktionen von Erstsemesterstudierenden in INT-Studiengängen -- Neuhaus, Silke -- Rach, Stefanie -- Situationales Interesse von Lehramtsstudierenden für hochschulmathematische Themen steigern -- Oldenburg, Reinhard -- Genetische Ideen in der Analysis I -- Stuhlmann, Ann Sophie -- Kooperative Beweisprozesse Mathematiklehramtsstudierender in der Studieneingangsphase -- Weygandt, Benedikt -- Skutella, Katharina -- Blick nach vorne, Blick zurück: Ein Lehrkonzept für Bachelor- und Masterstudierende zur Überbrückung beider Diskontinuitäten -- Wilzek, Wieland -- Interaktive dynamische Visualisierungen als Unterstützungsangebot im fachmathematischen Studium - Chancen und Gefahren der Anschauung.
Record Nr. UNINA-9910794278903321
Münster : , : WTM Verlag für wissenschaftliche Texte und Medien, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 2018 : Beiträge zum gleichnamigen Symposium am 9. & 10. November 2018 an der Universität Duisburg-Essen / / Marcel Klinger, Alexander Schüler-Meyer, Lena Wessel (Hrsg.)
Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 2018 : Beiträge zum gleichnamigen Symposium am 9. & 10. November 2018 an der Universität Duisburg-Essen / / Marcel Klinger, Alexander Schüler-Meyer, Lena Wessel (Hrsg.)
Edizione [1st ed.]
Pubbl/distr/stampa Münster : , : WTM Verlag für wissenschaftliche Texte und Medien, , [2019]
Descrizione fisica 1 online resource (199 pages)
Disciplina 510.711
Collana Schriften zur Hochschuldidaktik Mathematik
Soggetto topico Mathematics - Study and teaching (Higher)
ISBN 3-95987-098-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto Intro -- Inhalt -- Klinger, Marcel -- Schüler-Meyer, Alexander -- Wessel, Lena -- Vielfalt, die verbindet: Der Übergang Schule-Hochschule im Rahmen des Hanse-Kolloquiums zur Hochschuldidaktik der Mathematik 2018 in Essen -- Barzel, Bärbel -- Von der Herausforderung, die Hochschuleingangsphase in Mathematik konstruktiv zu gestalten - Strukturen und Aufgaben -- Rønning, Frode -- Interaktion, Aktivität und Sprachförderung beim Lernen von Hochschulmathematik - Beispiele aus einem Norwegischen Entwicklungsprojekt -- Sarikaya, Nimet -- Furlan, Peter -- Ein Vergleich von Unterstützungsmaßnahmen im ersten Studienjahr zwischen Fachhochschule und Universität -- Altieri, Mike -- Schellenbach, Michael -- Schirmer, Evelyn -- Opfermann, Christiane -- Kunze, Jan Erik -- Regnet, Julian -- Paluch, Dirk -- Unreal Engine 4 trifft H5P und PBL - Integration einer virtuellen Realität mit interaktiven Erklärvideos in ein digitales Fachkonzept zur Unterstützung problembasierten Lernens -- Bach, Volker -- Barbas, Helena -- Gasser, Ingenuin -- Konieczny, Franz -- Lohse, Alexander -- Seiler, Ruedi -- Formatives Assessment in Mathe-Kursen für Erstsemester: Digitalisierung eine Chance? -- Bauer, Thomas -- Design von Aufgaben für Peer Instruction zum Einsatz in Übungsgruppen zur Analysis -- Blum, Silvia -- Diskontinuität in der Linearen Algebra: Was bedeutet der höhere Standpunkt? - Konkretisierung einer Denkfigur und qualitative Untersuchungen zu verschiedenen Zeitpunkten in der LehrerInnenbiografie -- Feil, Lidia -- Strauer, Dorothea -- Zwingmann, Katharina -- Entwurf und Einsatz von Lösungsbeispielen mit Lücken und Selbsterklärungsaufforderungen in Mathematikveranstaltungen für Studierende der Pharmazie und der Biologie -- Fleischmann, Yael -- Kempen, Leander -- Mai, Tobias -- Biehler, Rolf.
Die Online-Lernmaterialien von studiVEMINT: Einsatzszenarien im Blended Learning Format in mathematischen Vorkursen -- Lankeit, Elisa -- Biehler, Rolf -- Vorstellung einer Aufgabe zu den Zusammenhängen verschiedener Differenzierbarkeitsbegriffe im Mehrdimensionalen -- Moser-Fendel, Jeremias -- Wessel, Lena -- Klinger, Marcel -- Was bringen StudienanfängerInnen mit? - Konzeptualisierung des Vorwissens zu Algebra und Funktionen von Erstsemesterstudierenden in INT-Studiengängen -- Neuhaus, Silke -- Rach, Stefanie -- Situationales Interesse von Lehramtsstudierenden für hochschulmathematische Themen steigern -- Oldenburg, Reinhard -- Genetische Ideen in der Analysis I -- Stuhlmann, Ann Sophie -- Kooperative Beweisprozesse Mathematiklehramtsstudierender in der Studieneingangsphase -- Weygandt, Benedikt -- Skutella, Katharina -- Blick nach vorne, Blick zurück: Ein Lehrkonzept für Bachelor- und Masterstudierende zur Überbrückung beider Diskontinuitäten -- Wilzek, Wieland -- Interaktive dynamische Visualisierungen als Unterstützungsangebot im fachmathematischen Studium - Chancen und Gefahren der Anschauung.
Record Nr. UNINA-9910820839503321
Münster : , : WTM Verlag für wissenschaftliche Texte und Medien, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
How to study for a mathematics degree [[electronic resource] /] / Lara Alcock
How to study for a mathematics degree [[electronic resource] /] / Lara Alcock
Autore Alcock Lara
Pubbl/distr/stampa Oxford, : Oxford University Press, 2012
Descrizione fisica 1 online resource (289 p.)
Disciplina 510.711
Soggetto topico Mathematics - Study and teaching (Higher)
Mathematics - Vocational guidance
Soggetto genere / forma Electronic books.
ISBN 1-283-71345-4
0-19-163736-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Symbols; Introduction; Part 1 Mathematics; 1 Calculation Procedures; 1.1 Calculation at school and at university; 1.2 Decisions about and within procedures; 1.3 Learning from few (or no) examples; 1.4 Generating your own exercises; 1.5 Writing out calculations; 1.6 Checking for errors; 1.7 Mathematics is not just procedures; 2 Abstract Objects; 2.1 Numbers as abstract objects; 2.2 Functions as abstract objects; 2.3 What kind of object is that, really?; 2.4 Objects as the results of procedures; 2.5 Hierarchical organization of objects; 2.6 Turning processes into objects
2.7 New objects: relations and binary operations2.8 New objects: symmetries; 3 Definitions; 3.1 Axioms, definitions and theorems; 3.2 What are axioms?; 3.3 What are definitions?; 3.4 What are theorems?; 3.5 Understanding definitions: even numbers; 3.6 Understanding definitions: increasing functions; 3.7 Understanding definitions: commutativity; 3.8 Understanding definitions: open sets; 3.9 Understanding definitions: limits; 3.10 Definitions and intuition; 4 Theorems; 4.1 Theorems and logical necessity; 4.2 A simple theorem about integers; 4.3 A theorem about functions and derivatives
4.4 A theorem with less familiar objects4.5 Logical language: 'if '; 4.6 Logical language: everyday uses of 'if '; 4.7 Logical language: quantifiers; 4.8 Logical language: multiple quantifiers; 4.9 Theorem rephrasing; 4.10 Understanding: logical form and meaning; 5 Proof; 5.1 Proofs in school mathematics; 5.2 Proving that a definition is satisfied; 5.3 Proving general statements; 5.4 Proving general theorems using definitions; 5.5 Definitions and other representations; 5.6 Proofs, logical deductions and objects; 5.7 Proving obvious things
5.8 Believing counterintuitive things: the harmonic series5.9 Believing counterintuitive things: Earth and rope; 5.10 Will my whole degree be proofs?; 6 Proof Types and Tricks; 6.1 General proving strategies; 6.2 Direct proof; 6.3 Proof by contradiction; 6.4 Proof by induction; 6.5 Uniqueness proofs; 6.6 Adding and subtracting the same thing; 6.7 Trying things out; 6.8 'I would never have thought of that'; 7 Reading Mathematics; 7.1 Independent reading; 7.2 Reading your lecture notes; 7.3 Reading for understanding; 7.4 Reading for synthesis; 7.5 Using summaries for revision
7.6 Reading for memory7.7 Using diagrams for memory; 7.8 Reading proofs for memory; 8 Writing Mathematics; 8.1 Recognizing good writing; 8.2 Why should a student write well?; 8.3 Writing a clear argument; 8.4 Using notation correctly; 8.5 Arrows and brackets; 8.6 Exceptions and mistakes; 8.7 Separating out the task of writing; Part 2 Study Skills; 9 Lectures; 9.1 What are lectures like?; 9.2 What are lecturers like?; 9.3 Making lectures work for you; 9.4 Tackling common problems; 9.5 Learning in lectures; 9.6 Courtesy in lectures; 9.7 Feedback on lectures; 10 Other People
10.1 Lecturers as teachers
Record Nr. UNINA-9910462168003321
Alcock Lara  
Oxford, : Oxford University Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
How to study for a mathematics degree / Lara Alcock
How to study for a mathematics degree / Lara Alcock
Autore Alcock Lara
Pubbl/distr/stampa Oxford, : Oxford University Press, 2012
Descrizione fisica 1 online resource (289 p.)
Disciplina 510.711
Soggetto topico Mathematics - Study and teaching (Higher)
Mathematics - Vocational guidance
ISBN 0-19-163737-8
1-283-71345-4
0-19-163736-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Symbols; Introduction; Part 1 Mathematics; 1 Calculation Procedures; 1.1 Calculation at school and at university; 1.2 Decisions about and within procedures; 1.3 Learning from few (or no) examples; 1.4 Generating your own exercises; 1.5 Writing out calculations; 1.6 Checking for errors; 1.7 Mathematics is not just procedures; 2 Abstract Objects; 2.1 Numbers as abstract objects; 2.2 Functions as abstract objects; 2.3 What kind of object is that, really?; 2.4 Objects as the results of procedures; 2.5 Hierarchical organization of objects; 2.6 Turning processes into objects
2.7 New objects: relations and binary operations2.8 New objects: symmetries; 3 Definitions; 3.1 Axioms, definitions and theorems; 3.2 What are axioms?; 3.3 What are definitions?; 3.4 What are theorems?; 3.5 Understanding definitions: even numbers; 3.6 Understanding definitions: increasing functions; 3.7 Understanding definitions: commutativity; 3.8 Understanding definitions: open sets; 3.9 Understanding definitions: limits; 3.10 Definitions and intuition; 4 Theorems; 4.1 Theorems and logical necessity; 4.2 A simple theorem about integers; 4.3 A theorem about functions and derivatives
4.4 A theorem with less familiar objects4.5 Logical language: 'if '; 4.6 Logical language: everyday uses of 'if '; 4.7 Logical language: quantifiers; 4.8 Logical language: multiple quantifiers; 4.9 Theorem rephrasing; 4.10 Understanding: logical form and meaning; 5 Proof; 5.1 Proofs in school mathematics; 5.2 Proving that a definition is satisfied; 5.3 Proving general statements; 5.4 Proving general theorems using definitions; 5.5 Definitions and other representations; 5.6 Proofs, logical deductions and objects; 5.7 Proving obvious things
5.8 Believing counterintuitive things: the harmonic series5.9 Believing counterintuitive things: Earth and rope; 5.10 Will my whole degree be proofs?; 6 Proof Types and Tricks; 6.1 General proving strategies; 6.2 Direct proof; 6.3 Proof by contradiction; 6.4 Proof by induction; 6.5 Uniqueness proofs; 6.6 Adding and subtracting the same thing; 6.7 Trying things out; 6.8 'I would never have thought of that'; 7 Reading Mathematics; 7.1 Independent reading; 7.2 Reading your lecture notes; 7.3 Reading for understanding; 7.4 Reading for synthesis; 7.5 Using summaries for revision
7.6 Reading for memory7.7 Using diagrams for memory; 7.8 Reading proofs for memory; 8 Writing Mathematics; 8.1 Recognizing good writing; 8.2 Why should a student write well?; 8.3 Writing a clear argument; 8.4 Using notation correctly; 8.5 Arrows and brackets; 8.6 Exceptions and mistakes; 8.7 Separating out the task of writing; Part 2 Study Skills; 9 Lectures; 9.1 What are lectures like?; 9.2 What are lecturers like?; 9.3 Making lectures work for you; 9.4 Tackling common problems; 9.5 Learning in lectures; 9.6 Courtesy in lectures; 9.7 Feedback on lectures; 10 Other People
10.1 Lecturers as teachers
Record Nr. UNINA-9910786357403321
Alcock Lara  
Oxford, : Oxford University Press, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui