Advanced engineering mathematics / Erwin Kreyszig
| Advanced engineering mathematics / Erwin Kreyszig |
| Autore | Kreyszig, Erwin <1922-2008> |
| Edizione | [7nd ed.] |
| Pubbl/distr/stampa | New York : John Wiley & Sons Inc., 1993 |
| Descrizione fisica | XVII, 1271 p., app. e tav. A-113, I-18 ; 25 cm |
| Disciplina | 510.2462 |
| Soggetto non controllato |
Matematica per non matematici (ingegneri, sociologi, etc..)
Esposizione a livello elementare - Libri di testo |
| ISBN | 0-471-59989-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-990000865580403321 |
Kreyszig, Erwin <1922-2008>
|
||
| New York : John Wiley & Sons Inc., 1993 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced engineering mathematics / Erwin Kreyszig
| Advanced engineering mathematics / Erwin Kreyszig |
| Autore | Kreyszig, Erwin |
| Edizione | [7th ed] |
| Pubbl/distr/stampa | New York [etc.] : John Wiley & Sons, copyr. 1993 |
| Disciplina | 510.2462 |
| Soggetto non controllato | ingegneria matematica |
| ISBN | 0-471-55380-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-990000137660203316 |
Kreyszig, Erwin
|
||
| New York [etc.] : John Wiley & Sons, copyr. 1993 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advanced engineering mathematics / Erwin Kreyszig
| Advanced engineering mathematics / Erwin Kreyszig |
| Autore | Kreyszig, Erwin |
| Edizione | [7th ed.] |
| Pubbl/distr/stampa | New York [et al.] : John Wiley & Sons, c1993 |
| Descrizione fisica | xvii, 1271, [128] p. ; 26 cm |
| Disciplina | 510.2462 |
| Soggetto topico | Matematica avanzata per Ingegneria |
| ISBN | 0471599891 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000151229707536 |
Kreyszig, Erwin
|
||
| New York [et al.] : John Wiley & Sons, c1993 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Advanced engineering mathematics / C. Ray Wylie, Louis C. Barret
| Advanced engineering mathematics / C. Ray Wylie, Louis C. Barret |
| Autore | WYLIE, Clarence Raymond |
| Edizione | [6. ed.] |
| Pubbl/distr/stampa | New York : McGraw-Hill, copyr. 1995 |
| Descrizione fisica | XV, 1362 p. ; 25 cm |
| Disciplina | 510.2462 |
| Altri autori (Persone) | BARRETT, Louis C. |
| Soggetto topico | Matematica - Applicazioni all'ingegneria |
| ISBN | 0-07-072206-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-990001192070203316 |
WYLIE, Clarence Raymond
|
||
| New York : McGraw-Hill, copyr. 1995 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advanced mathematical tools for automatic control engineers . Volume 2 Stochastic techniques / / Alexander S. Poznyak
| Advanced mathematical tools for automatic control engineers . Volume 2 Stochastic techniques / / Alexander S. Poznyak |
| Autore | Poznyak Alexander S |
| Pubbl/distr/stampa | Oxford ; ; Amsterdam, : Elsevier, 2009 |
| Descrizione fisica | 1 online resource (568 p.) |
| Disciplina |
510.2462
629.8312 |
| Soggetto topico |
Automatic control
Engineering instruments |
| ISBN |
1-282-30936-6
9786612309366 0-08-091403-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front cover; Half title page; Dedication; Title page; Copyright page; Contents; Preface; Notations and Symbols; List of Figures; List of Tables; PART I: Basics of Probability; Chapter 1. Probability Space; 1.1. Set operations, algebras and sigma-algebras; 1.2. Measurable and probability spaces; 1.3. Borel algebra and probability measures; 1.4. Independence and conditional probability; Chapter 2. Random Variables; 2.1. Measurable functions and random variables; 2.2. Transformation of distributions; 2.3. Continuous random variables; Chapter 3. Mathematical Expectation
3.1. Definition of mathematical expectation3.2. Calculation of mathematical expectation; 3.3. Covariance, correlation and independence; Chapter 4. Basic Probabilistic Inequalities; 4.1. Moment-type inequalities; 4.2. Probability inequalities for maxima of partial sums; 4.3. Inequalities between moments of sums and summands; Chapter 5. Characteristic Functions; 5.1. Definitions and examples; 5.2. Basic properties of characteristic functions; 5.3. Uniqueness and inversion; PART II: Discrete Time Processes; Chapter 6. Random Sequences; 6.1. Random process in discrete and continuous time 6.2. Infinitely often events6.3. Properties of Lebesgue integral with probabilistic measure; 6.4. Convergence; Chapter 7. Martingales; 7.1. Conditional expectation relative to a sigma-algebra; 7.2. Martingales and related concepts; 7.3. Main martingale inequalities; 7.4. Convergence; Chapter 8. Limit Theorems as Invariant Laws; 8.1. Characteristics of dependence; 8.2. Law of large numbers; 8.3. Central limit theorem; 8.4. Logarithmic iterative law; PART III: Continuous Time Processes; Chapter 9. Basic Properties of Continuous Time Processes; 9.1. Main definitions; 9.2. Second-order processes 9.3. Processes with orthogonal and independent incrementsChapter 10. Markov Processes; 10.1. Definition of Markov property; 10.2. Chapman--Kolmogorov equation and transition function; 10.3. Diffusion processes; 10.4. Markov chains; Chapter 11. Stochastic Integrals; 11.1. Time-integral of a sample-path; 11.2. ?-stochastic integrals; 11.3. The Itô stochastic integral; 11.4. The Stratonovich stochastic integral; Chapter 12. Stochastic Differential Equations; 12.1. Solution as a stochastic process; 12.2. Solutions as diffusion processes; 12.3. Reducing by change of variables 12.4. Linear stochastic differential equationsPART IV: Applications; Chapter 13. Parametric Identification; 13.1. Introduction; 13.2. Some models of dynamic processes; 13.3. LSM estimating; 13.4. Convergence analysis; 13.5. Information bounds for identification methods; 13.6. Efficient estimates; 13.7. Robustification of identification procedures; Chapter 14. Filtering, Prediction and Smoothing; 14.1. Estimation of random vectors; 14.2. State-estimating of linear discrete-time processes; 14.3. State-estimating of linear continuous-time processes; Chapter 15. Stochastic Approximation 15.1. Outline of chapter |
| Record Nr. | UNINA-9911006785203321 |
Poznyak Alexander S
|
||
| Oxford ; ; Amsterdam, : Elsevier, 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Elementary mathematical and computational tools for electrical and computer engineers using matlab / Jamal T. Manassah
| Elementary mathematical and computational tools for electrical and computer engineers using matlab / Jamal T. Manassah |
| Autore | MANASSAH, Jamal T. |
| Pubbl/distr/stampa | Boca Raton [etc.] : CRC Press, c2001 |
| Descrizione fisica | 352 p. : ill. ; 24 cm. |
| Disciplina | 510.2462 |
| Soggetto topico |
Ingegneria elettrica - Metodi matematici
Programmi MATLAB |
| ISBN | 0-8493-1080-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-990000869660203316 |
MANASSAH, Jamal T.
|
||
| Boca Raton [etc.] : CRC Press, c2001 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Engineering mathematics [e-book] / John Bird
| Engineering mathematics [e-book] / John Bird |
| Autore | Bird, J. O. |
| Edizione | [4th ed.] |
| Pubbl/distr/stampa | Oxford ; Boston : Newnes, 2003 |
| Descrizione fisica | x, 544 p. : ill. |
| Disciplina | 510.2462 |
| Altri autori (Enti) | Elsevier Science Publishers |
| Soggetto topico |
Engineering mathematics
Engineering mathematics - Problems, exercises, etc |
| Soggetto genere / forma | Electronic books. |
| Formato | Risorse elettroniche |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991003225509707536 |
Bird, J. O.
|
||
| Oxford ; Boston : Newnes, 2003 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Engineering Mathematics: A Foundation for Electronic, Electrical, Communications and Systems Engineers
| Engineering Mathematics: A Foundation for Electronic, Electrical, Communications and Systems Engineers |
| Autore | Croft Anthony |
| Edizione | [4th ed.] |
| Pubbl/distr/stampa | [Place of publication not identified], : Pearson Education Limited, 2012 |
| Descrizione fisica | 1 online resource (983 pages) |
| Disciplina | 510.2462 |
| Soggetto topico |
Engineering & Applied Sciences
Applied Mathematics |
| Soggetto genere / forma | Libros electrónicos. |
| ISBN |
1-283-68373-3
0-273-71987-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Engineering Mathematics -- Contents -- Preface -- Acknowledgements -- Review of algebraic techniques -- Introduction -- Laws of indices -- Number bases -- Polynomial equations -- Algebraic fractions -- Solution of inequalities -- Partial fractions -- Summation notation -- Review exercises 1 -- Engineering functions -- Introduction -- Numbers and intervals -- Basic concepts of functions -- Review of some common engineering functions and techniques -- Review exercises 2 -- The trigonometric functions -- Introduction -- Degrees and radians -- The trigonometric ratios -- The sine, cosine and tangent functions -- The sinc x function -- Trigonometric identities -- Modelling waves using sin t and cos t -- Trigonometric equations -- Review exercises 3 -- Coordinate systems -- Introduction -- Cartesian coordinate system - two dimensions -- Cartesian coordinate system - three dimensions -- Polar coordinates -- Some simple polar curves -- Cylindrical polar coordinates -- Spherical polar coordinates -- Review exercises 4 -- Discrete mathematics -- Introduction -- Set theory -- Logic -- Boolean algebra -- Review exercises 5 -- Sequences and series -- Introduction -- Sequences -- Series -- The binomial theorem -- Power series -- Sequences arising from the iterative solution of non-linear equations -- Review exercises 6 -- Vectors -- Introduction -- Vectors and scalars: basic concepts -- Cartesian components -- Scalar fields and vector fields -- The scalar product -- The vector product -- Vectors of n dimensions -- Review exercises 7 -- Matrix algebra -- Introduction -- Basic definitions -- Addition, subtraction and multiplication -- Robot coordinate frames -- Some special matrices -- The inverse of a 2 × 2 matrix -- Determinants -- The inverse of a 3 × 3 matrix -- Application to the solution of simultaneous equations -- Gaussian elimination.
Eigenvalues and eigenvectors -- Analysis of electrical networks -- Iterative techniques for the solution of simultaneous equations -- Computer solutions of matrix problems -- Review exercises 8 -- Complex numbers -- Introduction -- Complex numbers -- Operations with complex numbers -- Graphical representation of complex numbers -- Polar form of a complex number -- Vectors and complex numbers -- The exponential form of a complex number -- Phasors -- De Moivre's theorem -- Loci and regions of the complex plane -- Review exercises 9 -- Differentiation -- Introduction -- Graphical approach to differentiation -- Limits and continuity -- Rate of change at a specific point -- Rate of change at a general point -- Existence of derivatives -- Common derivatives -- Differentiation as a linear operator -- Review exercises 10 -- Techniques of differentiation -- Introduction -- Rules of differentiation -- Parametric, implicit and logarithmic differentiation -- Higher derivatives -- Review exercises 11 -- Applications of differentiation -- Introduction -- Maximum points and minimum points -- Points of inflexion -- The Newton--Raphson method for solving equations -- Differentiation of vectors -- Review exercises 12 -- Integration -- Introduction -- Elementary integration -- Definite and indefinite integrals -- Review exercises 13 -- Techniques of integration -- Introduction -- Integration by parts -- Integration by substitution -- Integration using partial fractions -- Review exercises 14 -- Applications of integration -- Introduction -- Average value of a function -- Root mean square value of a function -- Review exercises 15 -- Further topics in integration -- Introduction -- Orthogonal functions -- Improper integrals -- Integral properties of the delta function -- Integration of piecewise continuous functions -- Integration of vectors -- Review exercises 16. Numerical integration -- Introduction -- Trapezium rule -- Simpson's rule -- Review exercises 17 -- Taylor polynomials, Taylor series and Maclaurin series -- Introduction -- Linearization using first-order Taylor polynomials -- Second-order Taylor polynomials -- Taylor polynomials of the nth order -- Taylor's formula and the remainder term -- Taylor and Maclaurin series -- Review exercises 18 -- Ordinary differential equations I -- Introduction -- Basic definitions -- First-order equations: simple equations and separation of variables -- First-order linear equations: use of an integrating factor -- Second-order linear equations -- Review exercises 19 -- Ordinary differential equations II -- Introduction -- Analogue simulation -- Higher order equations -- State-space models -- Numerical methods -- Euler's method -- Improved Euler method -- Runge-Kutta method of order 4 -- Review exercises 20 -- The Laplace transform -- Introduction -- Definition of the Laplace transform -- Laplace transforms of some common functions -- Properties of the Laplace transform -- Laplace transform of derivatives and integrals -- Inverse Laplace transforms -- Using partial fractions to find the inverse Laplace transform -- Finding the inverse Laplace transform using complex numbers -- The convolution theorem -- Solving linear constant coefficient differential equations using the Laplace transform -- Transfer functions -- Poles, zeros and the s plane -- Laplace transforms of some special functions -- Review exercises 21 -- Difference equations and the z Transform -- Introduction -- Basic definitions -- Rewriting difference equations -- Block diagram representation of difference equations -- Design of a discrete-time controller -- Numerical solution of difference equations -- Definition of the z transform -- Sampling a continuous signal. The relationship between the z transform and the Laplace transform -- Properties of the z transform -- Inversion of z transform -- The z transform and difference equations -- Review exercises 22 -- Fourier series -- Introduction -- Periodic waveforms -- Odd and even functions -- Orthogonality relations and other useful identities -- Fourier series -- Half-range series -- Parseval's theorem -- Complex notation -- Frequency response of a linear system -- Review exercises 23 -- The Fourier transform -- Introduction -- The Fourier transform - definitions -- Some properties of the Fourier transform -- Spectra -- The t−ω duality principle -- Fourier transforms of some special functions -- The relationship between the Fourier transform and the Laplace transform -- Convolution and correlation -- The discrete Fourier transform -- Derivation of the d.f.t. -- Using the d.f.t. to estimate a Fourier transform -- Matrix representation of the d.f.t. -- Some properties of the d.f.t. -- The discrete cosine transform -- Discrete convolution and correlation -- Review exercises 24 -- Functions of several variables -- Introduction -- Functions of more than one variable -- Partial derivatives -- Higher order derivatives -- Partial differential equations -- Taylor polynomials and Taylor series in two variables -- Maximum and minimum points of a function of two variables -- Review exercises 25 -- Vector calculus -- Introduction -- Partial differentiation of vectors -- The gradient of a scalar field -- The divergence of a vector field -- The curl of a vector field -- Combining the operators grad, div and curl -- Vector calculus and electromagnetism -- Review exercises 26 -- Line integrals and multiple integrals -- Introduction -- Line integrals -- Evaluation of line integrals in two dimensions -- Evaluation of line integrals in three dimensions. Conservative fields and potential functions -- Double and triple integrals -- Some simple volume and surface integrals -- The divergence theorem and Stokes' theorem -- Maxwell's equations in integral form -- Review exercises 27 -- Probability -- Introduction -- Introducing probability -- Mutually exclusive events: the addition law of probability -- Complementary events -- Concepts from communication theory -- Conditional probability: the multiplication law -- Independent events -- Review exercises 28 -- Statistics and probability distributions -- Introduction -- Random variables -- Probability distributions - discrete variable -- Probability density functions - continuous variable -- Mean value -- Standard deviation -- Expected value of a random variable -- Standard deviation of a random variable -- Permutations and combinations -- The binomial distribution -- The Poisson distribution -- The uniform distribution -- The exponential distribution -- The normal distribution -- Reliability engineering -- Review exercises 29 -- Appendix I Representing a continuous function and a sequence as a sum of weighted impulses -- Appendix II The greek alphabet -- Appendix III SI units and prefixes -- Appendix IV The binomial expansion of (n−N/n)n -- Index. |
| Altri titoli varianti | Engineering mathematics |
| Record Nr. | UNINA-9910150233903321 |
Croft Anthony
|
||
| [Place of publication not identified], : Pearson Education Limited, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Higher engineering mathematics / B. S. Grewal ; with the assistance of J. S. Grewal
| Higher engineering mathematics / B. S. Grewal ; with the assistance of J. S. Grewal |
| Autore | Grewal, B. S. |
| Edizione | [33. ed. revised and enlarged] |
| Pubbl/distr/stampa | Delhi, : Khanna Publishers, 1997 |
| Descrizione fisica | XVI, 1307 p. ; 21 cm |
| Disciplina |
510
510.2462 |
| Soggetto topico | MATEMATICA - MANUALI PER INGEGNERI |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISANNIO-NAP0516158 |
Grewal, B. S.
|
||
| Delhi, : Khanna Publishers, 1997 | ||
| Lo trovi qui: Univ. del Sannio | ||
| ||
Mathematics for electrical engineering and computing [[electronic resource] /] / Mary Attenborough
| Mathematics for electrical engineering and computing [[electronic resource] /] / Mary Attenborough |
| Autore | Attenborough Mary (Mary Patricia), <1954-> |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Oxford ; ; Burlington, MA, : Newnes, 2003 |
| Descrizione fisica | 1 online resource (563 p.) |
| Disciplina | 510.2462 |
| Soggetto topico |
Electrical engineering - Mathematics
Computer science - Mathematics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-4175-0555-9
1-281-00303-4 9786611003036 0-08-047340-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Front matter; Half Title Page; Title Page; Copyright; Contents; Preface; Acknowledgements; Part 1: Sets, functions, and calculus; 1. Sets and functions; 1.1 Introduction; 1.2 Sets; 1.3 Operations on sets; 1.4 Relations and functions; 1.5 Combining functions; 1.6 Summary; 1.7 Exercises; 2. Functions and their graphs; 2.1 Introduction; 2.2 The straight line: y=mx+c; 2.4 The function y=1/x; 2.5 The functions y=ax; 2.6 Graph sketching using simple transformations; 2.7 The modulus function, y=|x| or y=abs(x); 2.8 Symmetry of functions and their graphs; 2.9 Solving inequalities
2.10 Using graphs to find an expression for the function from experimental data 2.11 Summary; 2.12 Exercises; 3. Problem solving and the art of the convincing argument; 3.1 Introduction; 3.2 Describing a problem in mathematical language; 3.3 Propositions and predicates; 3.4 Operations on propositions and predicates; 3.5 Equivalence; 3.6 Implication; 3.7 Making sweeping statements; 3.8 Other applications of predicates; 3.9 Summary; 3.10 Exercises; 4. Boolean algebra; 4.1 Introduction; 4.2 Algebra; 4.3 Boolean algebras; 4.4 Digital circuits; 4.5 Summary; 4.6 Exercises 5. Trigonometric functions and waves 5.1 Introduction; 5.2 Trigonometric functions and radians; 5.3 Graphs and important properties; 5.4 Wave functions of time and distance; 5.5 Trigonometric identities; 5.6 Superposition; 5.7 Inverse trigonometric functions; 5.8 Solving the trigonometric equations sin x=1, cos x=a, tan x=a; 5.9 Summary; 5.10 Exercises; 6. Differentiation; 6.1 Introduction; 6.2 The average rate of change and the gradient of a chord; 6.3 The derivative function; 6.4 Some common derivatives; 6.5 Finding the derivative of combinations of functions 6.6 Applications of differentiation 6.7 Summary; 6.9 Exercises; 7. Integration; 7.1 Introduction; 7.2 Integration; 7.3 Finding integrals; 7.4 Applications of integration; 7.5 The definite integral; 7.6 The mean value and r.m.s. value; 7.7 Numerical Methods of Integration; 7.8 Summary; 7.9 Exercises; 8. The exponential function; 8.1 Introduction; 8.2 Exponential growth and decay; 8.3 The exponential function y=et; 8.4 The hyperbolic functions; 8.5 More differentiation and integration; 8.6 Summary; 8.7 Exercises; 9. Vectors; 9.1 Introduction; 9.2 Vectors and vector quantities 9.3 Addition and subtraction of vectors 9.5 Application of vectors to represent waves (phasors); 9.6 Multiplication of a vector by a scalar and unit vectors; 9.7 Basis vectors; 9.8 Products of vectors; 9.9 Vector equation of a line; 9.10 Summary; 9.12 Exercises; 10. Complex numbers; 10.1 Introduction; 10.2 Phasor rotation by p/2; 10.3 Complex numbers and operations; 10.4 Solution of quadratic equations; 10.5 Polar form of a complex number; 10.6 Applications of complex numbers to AC linear circuits; 10.7 Circular motion; 10.8 The importance of being exponential; 10.9 Summary; 10.10 Exercises 11. Maxima and minima and sketching functions |
| Record Nr. | UNINA-9910456042003321 |
Attenborough Mary (Mary Patricia), <1954->
|
||
| Oxford ; ; Burlington, MA, : Newnes, 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||