top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
820-2021 : IEEE Standard Telephone Loop Performance Characteristics - Redline / / Institute of Electrical and Electronics Engineers
820-2021 : IEEE Standard Telephone Loop Performance Characteristics - Redline / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY : , : IEEE, , 2022
Descrizione fisica 1 online resource
Disciplina 384.64
Soggetto topico Telephone communication channels
ISBN 1-5044-9096-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574979803316
New York, NY : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE Std 1512.3-2006 (Revision of IEEE Std 1512.3-2002) : IEEE Standard for Hazardous Material Incident Management Message Sets for Use by Emergency Management Center / / Intelligent Transportation Systems of the IEEE Vehicular Technology Society
IEEE Std 1512.3-2006 (Revision of IEEE Std 1512.3-2002) : IEEE Standard for Hazardous Material Incident Management Message Sets for Use by Emergency Management Center / / Intelligent Transportation Systems of the IEEE Vehicular Technology Society
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2006
Descrizione fisica 1 online resource (172 pages)
Disciplina 384.64
Collana IEEE Std
Soggetto topico Emergency communication systems
Emergency communication systems - Standards
Emergency management - Standards
Hazardous substances - Transportation Accidents - Management - Standards
Intelligent transportation systems - Standards
ISBN 0-7381-5507-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1512.3-2006 (Revision of IEEE Std 1512.3-2002): IEEE Standard for Hazardous Material Incident Management Message Sets for Use by Emergency Management Centers
IEEE Std 1512.3-2006
Record Nr. UNINA-9910135403303321
Piscataway, NJ : , : IEEE, , 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Std 1512.3-2006 (Revision of IEEE Std 1512.3-2002) : IEEE Standard for Hazardous Material Incident Management Message Sets for Use by Emergency Management Center / / Intelligent Transportation Systems of the IEEE Vehicular Technology Society
IEEE Std 1512.3-2006 (Revision of IEEE Std 1512.3-2002) : IEEE Standard for Hazardous Material Incident Management Message Sets for Use by Emergency Management Center / / Intelligent Transportation Systems of the IEEE Vehicular Technology Society
Pubbl/distr/stampa Piscataway, NJ : , : IEEE, , 2006
Descrizione fisica 1 online resource (172 pages)
Disciplina 384.64
Collana IEEE Std
Soggetto topico Emergency communication systems
Emergency communication systems - Standards
Emergency management - Standards
Hazardous substances - Transportation Accidents - Management - Standards
Intelligent transportation systems - Standards
ISBN 0-7381-5507-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE Std 1512.3-2006 (Revision of IEEE Std 1512.3-2002): IEEE Standard for Hazardous Material Incident Management Message Sets for Use by Emergency Management Centers
IEEE Std 1512.3-2006
Record Nr. UNISA-996278281203316
Piscataway, NJ : , : IEEE, , 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Long-distance deals [[electronic resource]]
Long-distance deals [[electronic resource]]
Pubbl/distr/stampa [Washington, D.C.] : , : Federal Trade Commission, , [2000]
Descrizione fisica 2 unnumbered pages : digital, PDF file
Disciplina 384.64
342.0418
381.34
640.73
659.1
Soggetto topico Long distance telephone service - United States - Costs
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Long distance deals
Record Nr. UNINA-9910695823103321
[Washington, D.C.] : , : Federal Trade Commission, , [2000]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Autore Yarali Abdulrahman
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Descrizione fisica 1 online resource (269 pages)
Disciplina 384.64
Soggetto topico Emergency communication systems
ISBN 1-119-58013-7
1-119-57990-2
1-119-58015-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xvii -- Acknowledgment xix -- 1 Public Safety Networks from TETRA to Commercial Cellular Networks 1 -- 1.1 Introduction 1 -- 1.2 Evaluation of TETRA and TETRAPOL 3 -- 1.3 Understanding TETRA Modes of Operation 4 -- 1.3.1 TETRA Security 4 -- 1.3.2 Evaluating the Challenge of Data Transmission and Possible Solutions on TETRA Networks 5 -- 1.3.3 Comparing Public Safety Networks to the Commercial Cellular Networks 6 -- 1.3.3.1 Services 6 -- 1.3.3.2 Networks 6 -- 1.3.4 How to Overcome These Differences 7 -- 1.3.4.1 Limitations of TETRA 7 -- 1.3.4.2 Need for Broadband 8 -- 1.4 Unifying the Two Worlds of Public Safety Networks and Commercial Networks 8 -- 1.4.1 User Requirements 8 -- 1.4.2 Public Safety Network Migration 9 -- 1.4.3 Deployment Models 9 -- 1.5 The Transition from TETRA to LTE and the Current Initiatives 10 -- 1.5.1 Network Softwarization 10 -- 1.5.2 LTE Technology for Public Safety Communications 10 -- 1.5.3 LTE as a Public Safety Mobile Broadband Standard 11 -- 1.5.4 Security Enhancements for Public Safety LTE Features 11 -- 1.6 Conclusion 12 -- References 12 -- 2 Public Safety Networks Evolution Toward Broadband and Interoperability 15 -- 2.1 Introduction 15 -- 2.1.1 Communication Technology 15 -- 2.1.2 Wireless Communication Systems 16 -- 2.1.3 Government Involvement 17 -- 2.2 Evolution to Broadband Systems 18 -- 2.2.1 Determining Factors 19 -- 2.2.2 Evolution Process 21 -- 2.2.3 Broadband System Architecture 22 -- 2.2.4 Advantages of Broadband Systems 25 -- 2.3 Interoperability 28 -- 2.3.1 Developing an Interoperability Public Safety System 28 -- 2.3.2 Platform and Technology 29 -- 2.3.3 Benefits of Evolution 32 -- 2.4 Conclusion 33 -- 2.5 Recommendations 34 -- References 35 -- 3 Public Safety Communication Evolution 37 -- 3.1 Introduction 37 -- 3.1.1 Public Safety Network and Emergency Communication Networks 37 -- 3.2 Public Safety Standardization 39 -- 3.3 Evolution of Public Safety Communication 39 -- 3.3.1 Mission-Critical Voice 40 -- 3.3.2 Mission-Critical Data 41.
3.3.3 Requirements for Evolution in Communications 42 -- 3.4 Public Safety Networks 43 -- 3.4.1 Land Mobile Radio Systems (LMRS) 44 -- 3.4.1.1 SAFECOM Interoperability Continuum 46 -- 3.4.1.2 Wireless Broadband 46 -- 3.4.1.3 Wi-Fi in Ambulances 47 -- 3.4.1.4 Satellite Communications in EMS and Public Protection and Disaster Relief PPDR 47 -- 3.4.1.5 Technology in Patrol Communications 48 -- 3.4.1.6 Video Cameras 48 -- 3.4.2 Drivers of the Broadband Evolution 49 -- 3.5 4G and 4G LTE 50 -- 3.5.1 Benefits of 4G LTE in Public Safety Communication 51 -- 3.6 Fifth Generation (5G) 52 -- 3.6.1 Performance Targets and Benefits of 5G 55 -- 3.6.1.1 Security and Reliability 55 -- 3.6.1.2 Traffic Prioritization and Network Slicing 55 -- 3.6.1.3 Facial Recognition and License Plate Scanning in 5G 55 -- 3.6.1.4 Support for Sensor Proliferation and IoT 56 -- 3.6.1.5 Reduction of Trips Back to the Station 56 -- 3.7 Applying 4G and 5G Networks in Public Safety 57 -- 3.7.1 The Right Time to Implement 3GPP in Public Safety 59 -- 3.7.1.1 3GPP 59 -- 3.7.2 4G LTE as a Basis for Public Safety Communication Implementation 61 -- 3.7.3 Implementation of 5G in Public Safety 61 -- 3.8 Conclusion 61 -- References 62 -- 4 Keys to Building a Reliable Public Safety Communications Network 67 -- 4.1 Introduction 67 -- 4.2 Supporting the Law Enforcement Elements of Communication 67 -- 4.3 Components of Efficient Public Safety Communication Networks 68 -- 4.4 Networks Go Commercial 68 -- 4.5 Viable Business Prospects 69 -- 4.5.1 The Core Network 69 -- 4.5.2 The Radio Network 69 -- 4.6 The Industry Supports the Involvement of the Mobile Network Operators 70 -- 4.7 Policies for Public Safety Use of Commercial Wireless Networks 71 -- 4.8 Public Safety Networks Coverage: Availability and Reliability Even During Outages 72 -- 4.9 FirstNet Interoperability 72 -- 4.10 Solutions for Enhancing Availability and Reliability Even During Outages 73 -- 4.11 National Public Safety Broadband Network (NPSBN) 73 -- 4.12 Important Objectives of NPSBN 74.
4.13 The Future of FirstNet: Connecting Networks Together 75 -- 4.14 High Capacity Information Delivery 76 -- 4.15 Qualities that Facilitate Efficient High Capacity Information Handling 77 -- 4.15.1 FirstNet Has a Trustworthy Security System 77 -- 4.15.2 Concentrated Network Performance 77 -- 4.15.3 Simple and Scalable 77 -- 4.15.4 High Level of Vulnerability Safeguards 77 -- 4.16 FirstNet User Equipment 77 -- 4.17 Core Network 78 -- 4.18 Illustration: Layers of the LTE Network 78 -- 4.18.1 Transport Backhaul 79 -- 4.18.2 The Radio Access Networks 79 -- 4.18.3 Public Safety Devices 79 -- References 80 -- 5 Higher Generation of Mobile Communications and Public Safety 81 -- 5.1 Introduction 81 -- 5.2 Review of Existing Public Safety Networks 81 -- 5.2.1 What are LMR Systems? 82 -- 5.2.2 Services Offered by LMR Systems 83 -- 5.2.3 Adoption of Advanced Technologies to Supplement LMR 83 -- 5.2.4 Trunked Digital Network 84 -- 5.2.4.1 TETRAPOL Communication System 84 -- 5.2.4.2 The TETRA Communication System 85 -- 5.3 Is 4G LTE Forming a Good Enough Basis for Public Safety Implementations? 85 -- 5.3.1 Multi-Path Approach and the Convergence of Mission-Critical Communication 85 -- 5.3.2 Technical Aspects of LTE 86 -- 5.4 Is It Better to Wait for 5G Before Starting Public Safety Implementations? 87 -- 5.5 Will 5G Offer a Better Service than 4G for Public Safety? 88 -- 5.5.1 The Internet of Things and 5G 88 -- 5.5.2 5G Technical Aspects 89 -- 5.5.3 5G Network Costs 90 -- 5.5.4 Key Corner Cases for 5G 90 -- 5.5.5 Localization in 5G Networks 91 -- 5.6 What is the Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety? 91 -- 5.6.1 The Linkage Between 4G-5G Evolutions 91 -- 5.6.2 Spectrum for Public Safety 92 -- 5.7 Conclusion 94 -- References 95 -- 6 Roadmap Toward a Network Infrastructure for Public Safety and Security 97 -- 6.1 Introduction 97 -- 6.2 Evolution Toward Broadband 97 -- 6.2.1 Existing Situation 98 -- 6.3 Requirements for Public Safety Networks 99 -- 6.3.1 Network Requirements 100.
6.3.2 Priority Control 100 -- 6.4 Public Safety Standardization 100 -- 6.5 Flawless Mobile Broadband for Public Safety and Security 101 -- 6.6 Applications in Different Scenarios 102 -- 6.7 Public Safety Systems and Architectures 103 -- 6.7.1 Airwave 103 -- 6.7.2 LMR 104 -- 6.7.3 TETRA Security Analysis 105 -- 6.7.4 TETRA Services System 106 -- 6.7.5 The Architecture of TETRA 106 -- 6.7.5.1 The Interfaces of TETRA Network 106 -- 6.7.6 TETRA Network Components 106 -- 6.7.6.1 The Mobile Station 108 -- 6.7.6.2 TETRA Line Station 108 -- 6.7.6.3 The Switching Management Infrastructure 108 -- 6.7.6.4 Network Management Unit 108 -- 6.7.6.5 The Gateways 108 -- 6.7.6.6 How the TETRA System Operates 108 -- 6.7.7 TETRA Mobility Management 109 -- 6.7.8 The Security of TETRA Networks 109 -- 6.7.8.1 Confidentiality 109 -- 6.7.8.2 Integrity 109 -- 6.7.8.3 Reliability 109 -- 6.7.8.4 Non-repudiation 109 -- 6.7.8.5 Authentication 110 -- 6.7.9 The Process of Authentication in TETRA 110 -- 6.7.10 The Authentication Key 110 -- 6.7.11 Symmetric Key Algorithms 110 -- 6.7.12 The Process of Authentication Key Generation 111 -- 6.7.12.1 ESN (In United Kingdom) 111 -- 6.8 Emergency Services Network (ESN) in the United Kingdom 112 -- 6.8.1 Overview of the ESN 112 -- 6.8.2 The Deliverables of ESN 112 -- 6.8.3 The Main Deliverables of ESN 112 -- 6.9 SafeNet in South Korea 113 -- 6.10 FirstNet (in USA) 115 -- 6.10.1 The Benefits of FirstNet 117 -- 6.10.2 Public Safety Core of SafetyNet 117 -- 6.10.2.1 End-to-End Encryption 117 -- 6.10.3 Round the Clock Security Surveillance 118 -- 6.10.4 User Authentication 118 -- 6.10.5 Mission Critical Functionalities 118 -- 6.10.5.1 Tactical LTE Coverage 118 -- 6.11 Canadian Interoperability Technology Interest Group (CITIG) 118 -- 6.12 Centre for Disaster Management and Public Safety (CDMPS) at the University of Melbourne 119 -- 6.13 European Emergency Number Association (EENA) 120 -- 6.13.1 European Standardization Organization (ESO) 121 -- 6.13.2 Public Safety Communications ́ô Europe (PSCE) 121.
6.13.3 The Critical Communications Association (TCCA) 121 -- 6.14 Public Safety Network from LTE to 5G 122 -- 6.15 Convergence Solution for LTE and TETRA for AngoláÖs National Communications Network 124 -- 6.15.1 The Objectives of the Project 124 -- 6.15.2 Advantages of the LTE-TETRA Solutions 124 -- 6.15.3 Illustration: Before Integration and After Integration 125 -- 6.15.4 Overview of LTE Technology 125 -- 6.16 5GWireless Network and Public Safety Perspective 126 -- 6.16.1 Waiting for 5G for Public Safety Implementation 127 -- 6.17 The Linkage Between 4G and 5G Evolution 128 -- 6.17.1 Connecting 4G and 5G Solutions for Public Safety 128 -- 6.17.2 Deploying LTE Public Safety Networks 129 -- 6.18 Conclusion 129 -- References 130 -- 7 Bringing Public Safety Communications into the 21st Century 133 -- 7.1 Emerging Technologies with Life-Saving Potential 133 -- 7.1.1 Artificial Intelligence 134 -- 7.1.2 The Internet of Things (IoT) 136 -- 7.1.3 Blockchain 138 -- References 139 -- 8 4G LTE: The Future of Mobile Wireless Telecommunication Systems for Public Safety Networks 141 -- 8.1 Introduction 141 -- 8.2 Network Architecture 145 -- 8.3 User Equipment 145 -- 8.4 eNodeB 145 -- 8.5 Radio Access Network 146 -- 8.5.1 Gateways and Mobility Management Entities 146 -- 8.6 Evolved Packet Core (EPC) 147 -- 8.7 The Innovative Technologies 148 -- 8.8 PS-LTE and Public Safety 151 -- 8.9 PS-LTE 152 -- 8.10 Nationwide Public Safety Communication Systems 152 -- 8.11 Advantages of LTE Technology 152 -- 8.12 Driving Trends in Public Safety Communications 153 -- 8.13 Benefits of PS-LTE 155 -- 8.14 Benefits of Converged Networking in Public Safety 157 -- 8.15 Mobilizing Law Enforcement 157 -- References 159 -- 9 4G and 5G for PS: Technology Options, Issues, and Challenges 161 -- 9.1 Introduction 161 -- 9.2 4G LTE and Public Safety Implementation 162 -- 9.2.1 Reliability 162 -- 9.2.2 Cost Effectiveness 163 -- 9.2.3 Real-Time Communication 164 -- 9.2.4 Remote Deployment and Configuration 164.
9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.
11.3 Public Safety for 5G and 4G Networks 191 -- 11.4 Issues and Challenges Regarding 5G and 4G Cellular Connections 192 -- 11.5 Threats Against Privacy 192 -- 11.6 Threats Against Integrity 192 -- 11.7 Threats Against Availability 193 -- 11.8 Attacks Against Authentication 193 -- 11.9 Various Countermeasures to 4G and 5G Public Safety Threats 194 -- References 194 -- 12 Wireless Mesh Networking: A Key Solution for Rural and Public Safety Applications 195 -- 12.1 Introduction 195 -- 12.2 Wireless Mesh Networks 196 -- 12.3 WMN Challenges 197 -- 12.4 WMNs for Disaster Recovery and Emergency Services 198 -- 12.5 Reliability of Wireless Mesh Networks 199 -- 12.5.1 Self-configuration of Wireless Mesh Networks 199 -- 12.5.2 Fast Deployment and Low Installation Costs of Wireless Mesh Networks 199 -- 12.5.3 Voice Support of Wireless Mesh Networks 200 -- 12.6 Video/Image Support of Wireless Mesh Networks for Emergency Situations and Public Safety 200 -- 12.6.1 Video/Image Support of WMNs for Large Disasters 200 -- 12.6.2 WMNs Supporting Video Monitoring for Public Safety 201 -- 12.6.3 WMNs for Mobile Video Applications of Public Safety and Law Enforcement 202 -- 12.7 Interoperability of WMNs for Emergency Response and Public Safety Applications 202 -- 12.8 Security in Wireless Mesh Networks 203 -- 12.9 Conclusion 204 -- References 204 -- 13 Satellite for Public Safety and Emergency Communications 207 -- 13.1 Introduction 207 -- 13.2 Contextualizing Public Safety 208 -- 13.3 Public Safety Communications Today 208 -- 13.4 Satellite Communications in Public Safety 209 -- 13.4.1 Topology and Frequency Allocation 210 -- 13.4.2 Satellite Communications 210 -- 13.4.3 Applications of LEO and GEO Satellites in Public Safety Communication 211 -- 13.4.4 Mobile Satellite Systems 213 -- 13.4.4.1 Vehicle-Mounted Mobile Satellite Communications Systems 213 -- 13.4.4.2 Emergency Communications Trailers 216 -- 13.4.4.3 Flyaway Satellite Internet Systems 217 -- 13.4.5 VoIP Phone Service Over Satellite 218.
13.4.6 Fixed Satellite 219 -- 13.4.7 Frequency Allocations in FSS and MSS Systems 221 -- 13.5 Limitations of Satellite for Public Safety 222 -- 13.6 Conclusion 223 -- References 224 -- 14 Public Safety Communications Evolution: The Long Term Transition Toward a Desired Converged Future 227 -- 14.1 Introduction 227 -- 14.1.1 Toward Moving Public Safety Networks 227 -- 14.1.2 The Communication Needs of Public Safety Authorities 227 -- 14.1.3 The Nationwide Public Safety Broadband Networks 228 -- 14.1.4 Global Public Safety Community Aligning Behind LTE 230 -- 14.1.5 Understanding the Concept of E-Comm in Relation to Public Safety 231 -- 14.2 Transmission Trunking and Message Trunking 232 -- 14.2.1 Push-to-Talk Mechanisms 233 -- 14.2.2 Talk Groups and Group Calls 233 -- 14.2.3 Mobility of Radio Devices and Call Handover 233 -- 14.2.4 WarnSim: Learning About a Simulator for PSWN 233 -- 14.2.5 The Use Cases and Topologies of Public Safety Networks 235 -- 14.2.6 Standard Developments in Public Safety Networks 238 -- 14.2.7 The Future Challenges in Public Safety 240 -- 14.2.7.1 Moving Cells and Network Mobility 240 -- 14.2.7.2 Device-to-Device (D2D) Discovery and Communications 240 -- 14.2.7.3 Programmability and Flexibility 240 -- 14.2.7.4 Traffic Steering and Scheduling 241 -- 14.2.7.5 Optimization of Performance Metrics to Support Sufficient QoS 241 -- 14.2.8 Toward a Convergence Future of Public Safety Networks 241 -- 14.3 Conclusion 242 -- References 243 -- Index 245.
Record Nr. UNINA-9910555264203321
Yarali Abdulrahman  
Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Autore Yarali Abdulrahman
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Descrizione fisica 1 online resource (269 pages)
Disciplina 384.64
Soggetto topico Emergency communication systems
ISBN 1-119-58013-7
1-119-57990-2
1-119-58015-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xvii -- Acknowledgment xix -- 1 Public Safety Networks from TETRA to Commercial Cellular Networks 1 -- 1.1 Introduction 1 -- 1.2 Evaluation of TETRA and TETRAPOL 3 -- 1.3 Understanding TETRA Modes of Operation 4 -- 1.3.1 TETRA Security 4 -- 1.3.2 Evaluating the Challenge of Data Transmission and Possible Solutions on TETRA Networks 5 -- 1.3.3 Comparing Public Safety Networks to the Commercial Cellular Networks 6 -- 1.3.3.1 Services 6 -- 1.3.3.2 Networks 6 -- 1.3.4 How to Overcome These Differences 7 -- 1.3.4.1 Limitations of TETRA 7 -- 1.3.4.2 Need for Broadband 8 -- 1.4 Unifying the Two Worlds of Public Safety Networks and Commercial Networks 8 -- 1.4.1 User Requirements 8 -- 1.4.2 Public Safety Network Migration 9 -- 1.4.3 Deployment Models 9 -- 1.5 The Transition from TETRA to LTE and the Current Initiatives 10 -- 1.5.1 Network Softwarization 10 -- 1.5.2 LTE Technology for Public Safety Communications 10 -- 1.5.3 LTE as a Public Safety Mobile Broadband Standard 11 -- 1.5.4 Security Enhancements for Public Safety LTE Features 11 -- 1.6 Conclusion 12 -- References 12 -- 2 Public Safety Networks Evolution Toward Broadband and Interoperability 15 -- 2.1 Introduction 15 -- 2.1.1 Communication Technology 15 -- 2.1.2 Wireless Communication Systems 16 -- 2.1.3 Government Involvement 17 -- 2.2 Evolution to Broadband Systems 18 -- 2.2.1 Determining Factors 19 -- 2.2.2 Evolution Process 21 -- 2.2.3 Broadband System Architecture 22 -- 2.2.4 Advantages of Broadband Systems 25 -- 2.3 Interoperability 28 -- 2.3.1 Developing an Interoperability Public Safety System 28 -- 2.3.2 Platform and Technology 29 -- 2.3.3 Benefits of Evolution 32 -- 2.4 Conclusion 33 -- 2.5 Recommendations 34 -- References 35 -- 3 Public Safety Communication Evolution 37 -- 3.1 Introduction 37 -- 3.1.1 Public Safety Network and Emergency Communication Networks 37 -- 3.2 Public Safety Standardization 39 -- 3.3 Evolution of Public Safety Communication 39 -- 3.3.1 Mission-Critical Voice 40 -- 3.3.2 Mission-Critical Data 41.
3.3.3 Requirements for Evolution in Communications 42 -- 3.4 Public Safety Networks 43 -- 3.4.1 Land Mobile Radio Systems (LMRS) 44 -- 3.4.1.1 SAFECOM Interoperability Continuum 46 -- 3.4.1.2 Wireless Broadband 46 -- 3.4.1.3 Wi-Fi in Ambulances 47 -- 3.4.1.4 Satellite Communications in EMS and Public Protection and Disaster Relief PPDR 47 -- 3.4.1.5 Technology in Patrol Communications 48 -- 3.4.1.6 Video Cameras 48 -- 3.4.2 Drivers of the Broadband Evolution 49 -- 3.5 4G and 4G LTE 50 -- 3.5.1 Benefits of 4G LTE in Public Safety Communication 51 -- 3.6 Fifth Generation (5G) 52 -- 3.6.1 Performance Targets and Benefits of 5G 55 -- 3.6.1.1 Security and Reliability 55 -- 3.6.1.2 Traffic Prioritization and Network Slicing 55 -- 3.6.1.3 Facial Recognition and License Plate Scanning in 5G 55 -- 3.6.1.4 Support for Sensor Proliferation and IoT 56 -- 3.6.1.5 Reduction of Trips Back to the Station 56 -- 3.7 Applying 4G and 5G Networks in Public Safety 57 -- 3.7.1 The Right Time to Implement 3GPP in Public Safety 59 -- 3.7.1.1 3GPP 59 -- 3.7.2 4G LTE as a Basis for Public Safety Communication Implementation 61 -- 3.7.3 Implementation of 5G in Public Safety 61 -- 3.8 Conclusion 61 -- References 62 -- 4 Keys to Building a Reliable Public Safety Communications Network 67 -- 4.1 Introduction 67 -- 4.2 Supporting the Law Enforcement Elements of Communication 67 -- 4.3 Components of Efficient Public Safety Communication Networks 68 -- 4.4 Networks Go Commercial 68 -- 4.5 Viable Business Prospects 69 -- 4.5.1 The Core Network 69 -- 4.5.2 The Radio Network 69 -- 4.6 The Industry Supports the Involvement of the Mobile Network Operators 70 -- 4.7 Policies for Public Safety Use of Commercial Wireless Networks 71 -- 4.8 Public Safety Networks Coverage: Availability and Reliability Even During Outages 72 -- 4.9 FirstNet Interoperability 72 -- 4.10 Solutions for Enhancing Availability and Reliability Even During Outages 73 -- 4.11 National Public Safety Broadband Network (NPSBN) 73 -- 4.12 Important Objectives of NPSBN 74.
4.13 The Future of FirstNet: Connecting Networks Together 75 -- 4.14 High Capacity Information Delivery 76 -- 4.15 Qualities that Facilitate Efficient High Capacity Information Handling 77 -- 4.15.1 FirstNet Has a Trustworthy Security System 77 -- 4.15.2 Concentrated Network Performance 77 -- 4.15.3 Simple and Scalable 77 -- 4.15.4 High Level of Vulnerability Safeguards 77 -- 4.16 FirstNet User Equipment 77 -- 4.17 Core Network 78 -- 4.18 Illustration: Layers of the LTE Network 78 -- 4.18.1 Transport Backhaul 79 -- 4.18.2 The Radio Access Networks 79 -- 4.18.3 Public Safety Devices 79 -- References 80 -- 5 Higher Generation of Mobile Communications and Public Safety 81 -- 5.1 Introduction 81 -- 5.2 Review of Existing Public Safety Networks 81 -- 5.2.1 What are LMR Systems? 82 -- 5.2.2 Services Offered by LMR Systems 83 -- 5.2.3 Adoption of Advanced Technologies to Supplement LMR 83 -- 5.2.4 Trunked Digital Network 84 -- 5.2.4.1 TETRAPOL Communication System 84 -- 5.2.4.2 The TETRA Communication System 85 -- 5.3 Is 4G LTE Forming a Good Enough Basis for Public Safety Implementations? 85 -- 5.3.1 Multi-Path Approach and the Convergence of Mission-Critical Communication 85 -- 5.3.2 Technical Aspects of LTE 86 -- 5.4 Is It Better to Wait for 5G Before Starting Public Safety Implementations? 87 -- 5.5 Will 5G Offer a Better Service than 4G for Public Safety? 88 -- 5.5.1 The Internet of Things and 5G 88 -- 5.5.2 5G Technical Aspects 89 -- 5.5.3 5G Network Costs 90 -- 5.5.4 Key Corner Cases for 5G 90 -- 5.5.5 Localization in 5G Networks 91 -- 5.6 What is the Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety? 91 -- 5.6.1 The Linkage Between 4G-5G Evolutions 91 -- 5.6.2 Spectrum for Public Safety 92 -- 5.7 Conclusion 94 -- References 95 -- 6 Roadmap Toward a Network Infrastructure for Public Safety and Security 97 -- 6.1 Introduction 97 -- 6.2 Evolution Toward Broadband 97 -- 6.2.1 Existing Situation 98 -- 6.3 Requirements for Public Safety Networks 99 -- 6.3.1 Network Requirements 100.
6.3.2 Priority Control 100 -- 6.4 Public Safety Standardization 100 -- 6.5 Flawless Mobile Broadband for Public Safety and Security 101 -- 6.6 Applications in Different Scenarios 102 -- 6.7 Public Safety Systems and Architectures 103 -- 6.7.1 Airwave 103 -- 6.7.2 LMR 104 -- 6.7.3 TETRA Security Analysis 105 -- 6.7.4 TETRA Services System 106 -- 6.7.5 The Architecture of TETRA 106 -- 6.7.5.1 The Interfaces of TETRA Network 106 -- 6.7.6 TETRA Network Components 106 -- 6.7.6.1 The Mobile Station 108 -- 6.7.6.2 TETRA Line Station 108 -- 6.7.6.3 The Switching Management Infrastructure 108 -- 6.7.6.4 Network Management Unit 108 -- 6.7.6.5 The Gateways 108 -- 6.7.6.6 How the TETRA System Operates 108 -- 6.7.7 TETRA Mobility Management 109 -- 6.7.8 The Security of TETRA Networks 109 -- 6.7.8.1 Confidentiality 109 -- 6.7.8.2 Integrity 109 -- 6.7.8.3 Reliability 109 -- 6.7.8.4 Non-repudiation 109 -- 6.7.8.5 Authentication 110 -- 6.7.9 The Process of Authentication in TETRA 110 -- 6.7.10 The Authentication Key 110 -- 6.7.11 Symmetric Key Algorithms 110 -- 6.7.12 The Process of Authentication Key Generation 111 -- 6.7.12.1 ESN (In United Kingdom) 111 -- 6.8 Emergency Services Network (ESN) in the United Kingdom 112 -- 6.8.1 Overview of the ESN 112 -- 6.8.2 The Deliverables of ESN 112 -- 6.8.3 The Main Deliverables of ESN 112 -- 6.9 SafeNet in South Korea 113 -- 6.10 FirstNet (in USA) 115 -- 6.10.1 The Benefits of FirstNet 117 -- 6.10.2 Public Safety Core of SafetyNet 117 -- 6.10.2.1 End-to-End Encryption 117 -- 6.10.3 Round the Clock Security Surveillance 118 -- 6.10.4 User Authentication 118 -- 6.10.5 Mission Critical Functionalities 118 -- 6.10.5.1 Tactical LTE Coverage 118 -- 6.11 Canadian Interoperability Technology Interest Group (CITIG) 118 -- 6.12 Centre for Disaster Management and Public Safety (CDMPS) at the University of Melbourne 119 -- 6.13 European Emergency Number Association (EENA) 120 -- 6.13.1 European Standardization Organization (ESO) 121 -- 6.13.2 Public Safety Communications ́ô Europe (PSCE) 121.
6.13.3 The Critical Communications Association (TCCA) 121 -- 6.14 Public Safety Network from LTE to 5G 122 -- 6.15 Convergence Solution for LTE and TETRA for AngoláÖs National Communications Network 124 -- 6.15.1 The Objectives of the Project 124 -- 6.15.2 Advantages of the LTE-TETRA Solutions 124 -- 6.15.3 Illustration: Before Integration and After Integration 125 -- 6.15.4 Overview of LTE Technology 125 -- 6.16 5GWireless Network and Public Safety Perspective 126 -- 6.16.1 Waiting for 5G for Public Safety Implementation 127 -- 6.17 The Linkage Between 4G and 5G Evolution 128 -- 6.17.1 Connecting 4G and 5G Solutions for Public Safety 128 -- 6.17.2 Deploying LTE Public Safety Networks 129 -- 6.18 Conclusion 129 -- References 130 -- 7 Bringing Public Safety Communications into the 21st Century 133 -- 7.1 Emerging Technologies with Life-Saving Potential 133 -- 7.1.1 Artificial Intelligence 134 -- 7.1.2 The Internet of Things (IoT) 136 -- 7.1.3 Blockchain 138 -- References 139 -- 8 4G LTE: The Future of Mobile Wireless Telecommunication Systems for Public Safety Networks 141 -- 8.1 Introduction 141 -- 8.2 Network Architecture 145 -- 8.3 User Equipment 145 -- 8.4 eNodeB 145 -- 8.5 Radio Access Network 146 -- 8.5.1 Gateways and Mobility Management Entities 146 -- 8.6 Evolved Packet Core (EPC) 147 -- 8.7 The Innovative Technologies 148 -- 8.8 PS-LTE and Public Safety 151 -- 8.9 PS-LTE 152 -- 8.10 Nationwide Public Safety Communication Systems 152 -- 8.11 Advantages of LTE Technology 152 -- 8.12 Driving Trends in Public Safety Communications 153 -- 8.13 Benefits of PS-LTE 155 -- 8.14 Benefits of Converged Networking in Public Safety 157 -- 8.15 Mobilizing Law Enforcement 157 -- References 159 -- 9 4G and 5G for PS: Technology Options, Issues, and Challenges 161 -- 9.1 Introduction 161 -- 9.2 4G LTE and Public Safety Implementation 162 -- 9.2.1 Reliability 162 -- 9.2.2 Cost Effectiveness 163 -- 9.2.3 Real-Time Communication 164 -- 9.2.4 Remote Deployment and Configuration 164.
9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.
11.3 Public Safety for 5G and 4G Networks 191 -- 11.4 Issues and Challenges Regarding 5G and 4G Cellular Connections 192 -- 11.5 Threats Against Privacy 192 -- 11.6 Threats Against Integrity 192 -- 11.7 Threats Against Availability 193 -- 11.8 Attacks Against Authentication 193 -- 11.9 Various Countermeasures to 4G and 5G Public Safety Threats 194 -- References 194 -- 12 Wireless Mesh Networking: A Key Solution for Rural and Public Safety Applications 195 -- 12.1 Introduction 195 -- 12.2 Wireless Mesh Networks 196 -- 12.3 WMN Challenges 197 -- 12.4 WMNs for Disaster Recovery and Emergency Services 198 -- 12.5 Reliability of Wireless Mesh Networks 199 -- 12.5.1 Self-configuration of Wireless Mesh Networks 199 -- 12.5.2 Fast Deployment and Low Installation Costs of Wireless Mesh Networks 199 -- 12.5.3 Voice Support of Wireless Mesh Networks 200 -- 12.6 Video/Image Support of Wireless Mesh Networks for Emergency Situations and Public Safety 200 -- 12.6.1 Video/Image Support of WMNs for Large Disasters 200 -- 12.6.2 WMNs Supporting Video Monitoring for Public Safety 201 -- 12.6.3 WMNs for Mobile Video Applications of Public Safety and Law Enforcement 202 -- 12.7 Interoperability of WMNs for Emergency Response and Public Safety Applications 202 -- 12.8 Security in Wireless Mesh Networks 203 -- 12.9 Conclusion 204 -- References 204 -- 13 Satellite for Public Safety and Emergency Communications 207 -- 13.1 Introduction 207 -- 13.2 Contextualizing Public Safety 208 -- 13.3 Public Safety Communications Today 208 -- 13.4 Satellite Communications in Public Safety 209 -- 13.4.1 Topology and Frequency Allocation 210 -- 13.4.2 Satellite Communications 210 -- 13.4.3 Applications of LEO and GEO Satellites in Public Safety Communication 211 -- 13.4.4 Mobile Satellite Systems 213 -- 13.4.4.1 Vehicle-Mounted Mobile Satellite Communications Systems 213 -- 13.4.4.2 Emergency Communications Trailers 216 -- 13.4.4.3 Flyaway Satellite Internet Systems 217 -- 13.4.5 VoIP Phone Service Over Satellite 218.
13.4.6 Fixed Satellite 219 -- 13.4.7 Frequency Allocations in FSS and MSS Systems 221 -- 13.5 Limitations of Satellite for Public Safety 222 -- 13.6 Conclusion 223 -- References 224 -- 14 Public Safety Communications Evolution: The Long Term Transition Toward a Desired Converged Future 227 -- 14.1 Introduction 227 -- 14.1.1 Toward Moving Public Safety Networks 227 -- 14.1.2 The Communication Needs of Public Safety Authorities 227 -- 14.1.3 The Nationwide Public Safety Broadband Networks 228 -- 14.1.4 Global Public Safety Community Aligning Behind LTE 230 -- 14.1.5 Understanding the Concept of E-Comm in Relation to Public Safety 231 -- 14.2 Transmission Trunking and Message Trunking 232 -- 14.2.1 Push-to-Talk Mechanisms 233 -- 14.2.2 Talk Groups and Group Calls 233 -- 14.2.3 Mobility of Radio Devices and Call Handover 233 -- 14.2.4 WarnSim: Learning About a Simulator for PSWN 233 -- 14.2.5 The Use Cases and Topologies of Public Safety Networks 235 -- 14.2.6 Standard Developments in Public Safety Networks 238 -- 14.2.7 The Future Challenges in Public Safety 240 -- 14.2.7.1 Moving Cells and Network Mobility 240 -- 14.2.7.2 Device-to-Device (D2D) Discovery and Communications 240 -- 14.2.7.3 Programmability and Flexibility 240 -- 14.2.7.4 Traffic Steering and Scheduling 241 -- 14.2.7.5 Optimization of Performance Metrics to Support Sufficient QoS 241 -- 14.2.8 Toward a Convergence Future of Public Safety Networks 241 -- 14.3 Conclusion 242 -- References 243 -- Index 245.
Record Nr. UNINA-9910676530103321
Yarali Abdulrahman  
Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Autore Yarali Abdulrahman
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Descrizione fisica 1 online resource (269 pages)
Disciplina 384.64
Soggetto topico Emergency communication systems
ISBN 1-119-58013-7
1-119-57990-2
1-119-58015-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xvii -- Acknowledgment xix -- 1 Public Safety Networks from TETRA to Commercial Cellular Networks 1 -- 1.1 Introduction 1 -- 1.2 Evaluation of TETRA and TETRAPOL 3 -- 1.3 Understanding TETRA Modes of Operation 4 -- 1.3.1 TETRA Security 4 -- 1.3.2 Evaluating the Challenge of Data Transmission and Possible Solutions on TETRA Networks 5 -- 1.3.3 Comparing Public Safety Networks to the Commercial Cellular Networks 6 -- 1.3.3.1 Services 6 -- 1.3.3.2 Networks 6 -- 1.3.4 How to Overcome These Differences 7 -- 1.3.4.1 Limitations of TETRA 7 -- 1.3.4.2 Need for Broadband 8 -- 1.4 Unifying the Two Worlds of Public Safety Networks and Commercial Networks 8 -- 1.4.1 User Requirements 8 -- 1.4.2 Public Safety Network Migration 9 -- 1.4.3 Deployment Models 9 -- 1.5 The Transition from TETRA to LTE and the Current Initiatives 10 -- 1.5.1 Network Softwarization 10 -- 1.5.2 LTE Technology for Public Safety Communications 10 -- 1.5.3 LTE as a Public Safety Mobile Broadband Standard 11 -- 1.5.4 Security Enhancements for Public Safety LTE Features 11 -- 1.6 Conclusion 12 -- References 12 -- 2 Public Safety Networks Evolution Toward Broadband and Interoperability 15 -- 2.1 Introduction 15 -- 2.1.1 Communication Technology 15 -- 2.1.2 Wireless Communication Systems 16 -- 2.1.3 Government Involvement 17 -- 2.2 Evolution to Broadband Systems 18 -- 2.2.1 Determining Factors 19 -- 2.2.2 Evolution Process 21 -- 2.2.3 Broadband System Architecture 22 -- 2.2.4 Advantages of Broadband Systems 25 -- 2.3 Interoperability 28 -- 2.3.1 Developing an Interoperability Public Safety System 28 -- 2.3.2 Platform and Technology 29 -- 2.3.3 Benefits of Evolution 32 -- 2.4 Conclusion 33 -- 2.5 Recommendations 34 -- References 35 -- 3 Public Safety Communication Evolution 37 -- 3.1 Introduction 37 -- 3.1.1 Public Safety Network and Emergency Communication Networks 37 -- 3.2 Public Safety Standardization 39 -- 3.3 Evolution of Public Safety Communication 39 -- 3.3.1 Mission-Critical Voice 40 -- 3.3.2 Mission-Critical Data 41.
3.3.3 Requirements for Evolution in Communications 42 -- 3.4 Public Safety Networks 43 -- 3.4.1 Land Mobile Radio Systems (LMRS) 44 -- 3.4.1.1 SAFECOM Interoperability Continuum 46 -- 3.4.1.2 Wireless Broadband 46 -- 3.4.1.3 Wi-Fi in Ambulances 47 -- 3.4.1.4 Satellite Communications in EMS and Public Protection and Disaster Relief PPDR 47 -- 3.4.1.5 Technology in Patrol Communications 48 -- 3.4.1.6 Video Cameras 48 -- 3.4.2 Drivers of the Broadband Evolution 49 -- 3.5 4G and 4G LTE 50 -- 3.5.1 Benefits of 4G LTE in Public Safety Communication 51 -- 3.6 Fifth Generation (5G) 52 -- 3.6.1 Performance Targets and Benefits of 5G 55 -- 3.6.1.1 Security and Reliability 55 -- 3.6.1.2 Traffic Prioritization and Network Slicing 55 -- 3.6.1.3 Facial Recognition and License Plate Scanning in 5G 55 -- 3.6.1.4 Support for Sensor Proliferation and IoT 56 -- 3.6.1.5 Reduction of Trips Back to the Station 56 -- 3.7 Applying 4G and 5G Networks in Public Safety 57 -- 3.7.1 The Right Time to Implement 3GPP in Public Safety 59 -- 3.7.1.1 3GPP 59 -- 3.7.2 4G LTE as a Basis for Public Safety Communication Implementation 61 -- 3.7.3 Implementation of 5G in Public Safety 61 -- 3.8 Conclusion 61 -- References 62 -- 4 Keys to Building a Reliable Public Safety Communications Network 67 -- 4.1 Introduction 67 -- 4.2 Supporting the Law Enforcement Elements of Communication 67 -- 4.3 Components of Efficient Public Safety Communication Networks 68 -- 4.4 Networks Go Commercial 68 -- 4.5 Viable Business Prospects 69 -- 4.5.1 The Core Network 69 -- 4.5.2 The Radio Network 69 -- 4.6 The Industry Supports the Involvement of the Mobile Network Operators 70 -- 4.7 Policies for Public Safety Use of Commercial Wireless Networks 71 -- 4.8 Public Safety Networks Coverage: Availability and Reliability Even During Outages 72 -- 4.9 FirstNet Interoperability 72 -- 4.10 Solutions for Enhancing Availability and Reliability Even During Outages 73 -- 4.11 National Public Safety Broadband Network (NPSBN) 73 -- 4.12 Important Objectives of NPSBN 74.
4.13 The Future of FirstNet: Connecting Networks Together 75 -- 4.14 High Capacity Information Delivery 76 -- 4.15 Qualities that Facilitate Efficient High Capacity Information Handling 77 -- 4.15.1 FirstNet Has a Trustworthy Security System 77 -- 4.15.2 Concentrated Network Performance 77 -- 4.15.3 Simple and Scalable 77 -- 4.15.4 High Level of Vulnerability Safeguards 77 -- 4.16 FirstNet User Equipment 77 -- 4.17 Core Network 78 -- 4.18 Illustration: Layers of the LTE Network 78 -- 4.18.1 Transport Backhaul 79 -- 4.18.2 The Radio Access Networks 79 -- 4.18.3 Public Safety Devices 79 -- References 80 -- 5 Higher Generation of Mobile Communications and Public Safety 81 -- 5.1 Introduction 81 -- 5.2 Review of Existing Public Safety Networks 81 -- 5.2.1 What are LMR Systems? 82 -- 5.2.2 Services Offered by LMR Systems 83 -- 5.2.3 Adoption of Advanced Technologies to Supplement LMR 83 -- 5.2.4 Trunked Digital Network 84 -- 5.2.4.1 TETRAPOL Communication System 84 -- 5.2.4.2 The TETRA Communication System 85 -- 5.3 Is 4G LTE Forming a Good Enough Basis for Public Safety Implementations? 85 -- 5.3.1 Multi-Path Approach and the Convergence of Mission-Critical Communication 85 -- 5.3.2 Technical Aspects of LTE 86 -- 5.4 Is It Better to Wait for 5G Before Starting Public Safety Implementations? 87 -- 5.5 Will 5G Offer a Better Service than 4G for Public Safety? 88 -- 5.5.1 The Internet of Things and 5G 88 -- 5.5.2 5G Technical Aspects 89 -- 5.5.3 5G Network Costs 90 -- 5.5.4 Key Corner Cases for 5G 90 -- 5.5.5 Localization in 5G Networks 91 -- 5.6 What is the Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety? 91 -- 5.6.1 The Linkage Between 4G-5G Evolutions 91 -- 5.6.2 Spectrum for Public Safety 92 -- 5.7 Conclusion 94 -- References 95 -- 6 Roadmap Toward a Network Infrastructure for Public Safety and Security 97 -- 6.1 Introduction 97 -- 6.2 Evolution Toward Broadband 97 -- 6.2.1 Existing Situation 98 -- 6.3 Requirements for Public Safety Networks 99 -- 6.3.1 Network Requirements 100.
6.3.2 Priority Control 100 -- 6.4 Public Safety Standardization 100 -- 6.5 Flawless Mobile Broadband for Public Safety and Security 101 -- 6.6 Applications in Different Scenarios 102 -- 6.7 Public Safety Systems and Architectures 103 -- 6.7.1 Airwave 103 -- 6.7.2 LMR 104 -- 6.7.3 TETRA Security Analysis 105 -- 6.7.4 TETRA Services System 106 -- 6.7.5 The Architecture of TETRA 106 -- 6.7.5.1 The Interfaces of TETRA Network 106 -- 6.7.6 TETRA Network Components 106 -- 6.7.6.1 The Mobile Station 108 -- 6.7.6.2 TETRA Line Station 108 -- 6.7.6.3 The Switching Management Infrastructure 108 -- 6.7.6.4 Network Management Unit 108 -- 6.7.6.5 The Gateways 108 -- 6.7.6.6 How the TETRA System Operates 108 -- 6.7.7 TETRA Mobility Management 109 -- 6.7.8 The Security of TETRA Networks 109 -- 6.7.8.1 Confidentiality 109 -- 6.7.8.2 Integrity 109 -- 6.7.8.3 Reliability 109 -- 6.7.8.4 Non-repudiation 109 -- 6.7.8.5 Authentication 110 -- 6.7.9 The Process of Authentication in TETRA 110 -- 6.7.10 The Authentication Key 110 -- 6.7.11 Symmetric Key Algorithms 110 -- 6.7.12 The Process of Authentication Key Generation 111 -- 6.7.12.1 ESN (In United Kingdom) 111 -- 6.8 Emergency Services Network (ESN) in the United Kingdom 112 -- 6.8.1 Overview of the ESN 112 -- 6.8.2 The Deliverables of ESN 112 -- 6.8.3 The Main Deliverables of ESN 112 -- 6.9 SafeNet in South Korea 113 -- 6.10 FirstNet (in USA) 115 -- 6.10.1 The Benefits of FirstNet 117 -- 6.10.2 Public Safety Core of SafetyNet 117 -- 6.10.2.1 End-to-End Encryption 117 -- 6.10.3 Round the Clock Security Surveillance 118 -- 6.10.4 User Authentication 118 -- 6.10.5 Mission Critical Functionalities 118 -- 6.10.5.1 Tactical LTE Coverage 118 -- 6.11 Canadian Interoperability Technology Interest Group (CITIG) 118 -- 6.12 Centre for Disaster Management and Public Safety (CDMPS) at the University of Melbourne 119 -- 6.13 European Emergency Number Association (EENA) 120 -- 6.13.1 European Standardization Organization (ESO) 121 -- 6.13.2 Public Safety Communications ́ô Europe (PSCE) 121.
6.13.3 The Critical Communications Association (TCCA) 121 -- 6.14 Public Safety Network from LTE to 5G 122 -- 6.15 Convergence Solution for LTE and TETRA for AngoláÖs National Communications Network 124 -- 6.15.1 The Objectives of the Project 124 -- 6.15.2 Advantages of the LTE-TETRA Solutions 124 -- 6.15.3 Illustration: Before Integration and After Integration 125 -- 6.15.4 Overview of LTE Technology 125 -- 6.16 5GWireless Network and Public Safety Perspective 126 -- 6.16.1 Waiting for 5G for Public Safety Implementation 127 -- 6.17 The Linkage Between 4G and 5G Evolution 128 -- 6.17.1 Connecting 4G and 5G Solutions for Public Safety 128 -- 6.17.2 Deploying LTE Public Safety Networks 129 -- 6.18 Conclusion 129 -- References 130 -- 7 Bringing Public Safety Communications into the 21st Century 133 -- 7.1 Emerging Technologies with Life-Saving Potential 133 -- 7.1.1 Artificial Intelligence 134 -- 7.1.2 The Internet of Things (IoT) 136 -- 7.1.3 Blockchain 138 -- References 139 -- 8 4G LTE: The Future of Mobile Wireless Telecommunication Systems for Public Safety Networks 141 -- 8.1 Introduction 141 -- 8.2 Network Architecture 145 -- 8.3 User Equipment 145 -- 8.4 eNodeB 145 -- 8.5 Radio Access Network 146 -- 8.5.1 Gateways and Mobility Management Entities 146 -- 8.6 Evolved Packet Core (EPC) 147 -- 8.7 The Innovative Technologies 148 -- 8.8 PS-LTE and Public Safety 151 -- 8.9 PS-LTE 152 -- 8.10 Nationwide Public Safety Communication Systems 152 -- 8.11 Advantages of LTE Technology 152 -- 8.12 Driving Trends in Public Safety Communications 153 -- 8.13 Benefits of PS-LTE 155 -- 8.14 Benefits of Converged Networking in Public Safety 157 -- 8.15 Mobilizing Law Enforcement 157 -- References 159 -- 9 4G and 5G for PS: Technology Options, Issues, and Challenges 161 -- 9.1 Introduction 161 -- 9.2 4G LTE and Public Safety Implementation 162 -- 9.2.1 Reliability 162 -- 9.2.2 Cost Effectiveness 163 -- 9.2.3 Real-Time Communication 164 -- 9.2.4 Remote Deployment and Configuration 164.
9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.
11.3 Public Safety for 5G and 4G Networks 191 -- 11.4 Issues and Challenges Regarding 5G and 4G Cellular Connections 192 -- 11.5 Threats Against Privacy 192 -- 11.6 Threats Against Integrity 192 -- 11.7 Threats Against Availability 193 -- 11.8 Attacks Against Authentication 193 -- 11.9 Various Countermeasures to 4G and 5G Public Safety Threats 194 -- References 194 -- 12 Wireless Mesh Networking: A Key Solution for Rural and Public Safety Applications 195 -- 12.1 Introduction 195 -- 12.2 Wireless Mesh Networks 196 -- 12.3 WMN Challenges 197 -- 12.4 WMNs for Disaster Recovery and Emergency Services 198 -- 12.5 Reliability of Wireless Mesh Networks 199 -- 12.5.1 Self-configuration of Wireless Mesh Networks 199 -- 12.5.2 Fast Deployment and Low Installation Costs of Wireless Mesh Networks 199 -- 12.5.3 Voice Support of Wireless Mesh Networks 200 -- 12.6 Video/Image Support of Wireless Mesh Networks for Emergency Situations and Public Safety 200 -- 12.6.1 Video/Image Support of WMNs for Large Disasters 200 -- 12.6.2 WMNs Supporting Video Monitoring for Public Safety 201 -- 12.6.3 WMNs for Mobile Video Applications of Public Safety and Law Enforcement 202 -- 12.7 Interoperability of WMNs for Emergency Response and Public Safety Applications 202 -- 12.8 Security in Wireless Mesh Networks 203 -- 12.9 Conclusion 204 -- References 204 -- 13 Satellite for Public Safety and Emergency Communications 207 -- 13.1 Introduction 207 -- 13.2 Contextualizing Public Safety 208 -- 13.3 Public Safety Communications Today 208 -- 13.4 Satellite Communications in Public Safety 209 -- 13.4.1 Topology and Frequency Allocation 210 -- 13.4.2 Satellite Communications 210 -- 13.4.3 Applications of LEO and GEO Satellites in Public Safety Communication 211 -- 13.4.4 Mobile Satellite Systems 213 -- 13.4.4.1 Vehicle-Mounted Mobile Satellite Communications Systems 213 -- 13.4.4.2 Emergency Communications Trailers 216 -- 13.4.4.3 Flyaway Satellite Internet Systems 217 -- 13.4.5 VoIP Phone Service Over Satellite 218.
13.4.6 Fixed Satellite 219 -- 13.4.7 Frequency Allocations in FSS and MSS Systems 221 -- 13.5 Limitations of Satellite for Public Safety 222 -- 13.6 Conclusion 223 -- References 224 -- 14 Public Safety Communications Evolution: The Long Term Transition Toward a Desired Converged Future 227 -- 14.1 Introduction 227 -- 14.1.1 Toward Moving Public Safety Networks 227 -- 14.1.2 The Communication Needs of Public Safety Authorities 227 -- 14.1.3 The Nationwide Public Safety Broadband Networks 228 -- 14.1.4 Global Public Safety Community Aligning Behind LTE 230 -- 14.1.5 Understanding the Concept of E-Comm in Relation to Public Safety 231 -- 14.2 Transmission Trunking and Message Trunking 232 -- 14.2.1 Push-to-Talk Mechanisms 233 -- 14.2.2 Talk Groups and Group Calls 233 -- 14.2.3 Mobility of Radio Devices and Call Handover 233 -- 14.2.4 WarnSim: Learning About a Simulator for PSWN 233 -- 14.2.5 The Use Cases and Topologies of Public Safety Networks 235 -- 14.2.6 Standard Developments in Public Safety Networks 238 -- 14.2.7 The Future Challenges in Public Safety 240 -- 14.2.7.1 Moving Cells and Network Mobility 240 -- 14.2.7.2 Device-to-Device (D2D) Discovery and Communications 240 -- 14.2.7.3 Programmability and Flexibility 240 -- 14.2.7.4 Traffic Steering and Scheduling 241 -- 14.2.7.5 Optimization of Performance Metrics to Support Sufficient QoS 241 -- 14.2.8 Toward a Convergence Future of Public Safety Networks 241 -- 14.3 Conclusion 242 -- References 243 -- Index 245.
Altri titoli varianti Public safety networks from LTE to Five G
Record Nr. UNINA-9910825777203321
Yarali Abdulrahman  
Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui