top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in multi-channel resource allocation : throughput, delay, and complexity / / Bo Ji, Xiaojun Lin, Ness B. Shroff
Advances in multi-channel resource allocation : throughput, delay, and complexity / / Bo Ji, Xiaojun Lin, Ness B. Shroff
Autore Ji Bo <1982-, >
Pubbl/distr/stampa [San Rafael, California] : , : Morgan & Claypool, , 2017
Descrizione fisica 1 online resource (132 pages) : illustrations (some color)
Disciplina 384.54524
Collana Synthesis lectures on communication networks
Soggetto topico Radio resource management (Wireless communications)
Soggetto non controllato multi-channel
wireless networks
resource allocation
scheduling
utility maximization
throughput
delay
low-complexity
performance guarantee
CSMA
ISBN 1-62705-983-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Overview --
2. Intra-cell scheduling -- 2.1 Introduction -- 2.2 A simple system model -- 2.3 Pitfalls of the classical MaxWeight policy -- 2.4 Queue-length-based approaches -- 2.5 Delay-based approaches -- 2.6 Intuition of achieving optimality -- 2.7 Rate-function delay optimality -- 2.7.1 Assumptions on the arrival processes -- 2.7.2 Upper bound on the delay rate-function -- 2.7.3 Sufficient condition of rate-function delay optimality -- 2.7.4 Dominance property: frame-based scheduling and perfect matching -- 2.7.5 Vector matching in bipartite graphs -- 2.7.6 Proof sketch of rate-function delay optimality -- 2.8 Throughput optimality -- 2.8.1 Optimal throughput region -- 2.8.2 Sufficient condition of throughput optimality -- 2.9 Scheduling policies -- 2.9.1 Rate-function delay-optimal policies (DWM and DWM-n) -- 2.9.2 Throughput-optimal policies (DWM and d-MWS) -- 2.9.3 Low-complexity hybrid policies -- 2.10 Near-optimal delay rate-function -- 2.10.1 Delay-based server-side greedy -- 2.10.2 Main result and intuition -- 2.10.3 Equivalence property: delay-based queue-side-greedy -- 2.11 Simulations -- 2.12 Conclusion --
3. Network-wide scheduling -- 3.1 Introduction -- 3.2 Single-channel solutions based on MaxWeight -- 3.2.1 A simple network model -- 3.2.2 The MaxWeight algorithm -- 3.2.3 Low-complexity approximations to MaxWeight -- 3.2.4 Single-channel CSMA algorithms -- 3.3 Using multiple channels -- 3.3.1 Independent CSMA chains across channels -- 3.3.2 Complementary schedules across channels: a departure from -- MaxWeight -- 3.3.3 What to do if there is only one physical channel? -- 3.3.4 The notion of delay -- 3.3.5 Utility-maximization vs. throughput-maximization -- 3.4 Multi-channel CSMA algorithm -- 3.5 throughput/delay/complexity analysis -- 3.5.1 Utility optimality -- 3.5.2 Delay performance -- 3.5.3 Computational complexity and communication overhead -- 3.5.4 VMC-CSMA under exogenous packet arrivals -- 3.6 Implementation -- 3.7 Performance evaluation -- 3.8 Inter-cell coordination in OFDM systems -- 3.8.1 Model for an OFDM multi-cell system -- 3.8.2 Distributed algorithms based on multi-channel Gibbs sampling -- 3.9 Conclusion -- 3.10 Additional notes --
Bibliography -- Authors' biographies.
Record Nr. UNINA-9910151959403321
Ji Bo <1982-, >  
[San Rafael, California] : , : Morgan & Claypool, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cognitive radio-oriented wireless networks : 15th EAI International Conference, CrownCom 2020, Rome, Italy, November 25-26, 2020, Proceedings / / Giuseppe Caso, Luca De Nardis, Liljana Gavrilovska (editors)
Cognitive radio-oriented wireless networks : 15th EAI International Conference, CrownCom 2020, Rome, Italy, November 25-26, 2020, Proceedings / / Giuseppe Caso, Luca De Nardis, Liljana Gavrilovska (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (x, 192 pages)
Disciplina 384.54524
Collana Lecture notes of the Institute for Computer Sciences, Social Informatics, and Telecommunications Engineering
Soggetto topico Cognitive radio networks
ISBN 3-030-73423-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Conference Organization -- Contents -- Spectrum Sensing and Environment Awareness -- Active User Blind Detection Through Deep Learning -- 1 Introduction -- 2 System Model for the Massive Random Access -- 2.1 Non-coherent AUD -- 2.2 MAP Detectors -- 2.3 It-MAP Detector -- 3 A Neural Network Based Algorithm -- 3.1 The NN-MAP Estimate -- 3.2 The NN-MAP System Parameters -- 4 Results -- 5 Conclusion -- References -- Spectrum Sensing Based on Dynamic Primary User with Additive Laplacian Noise in Cognitive Radio -- 1 Introduction -- 2 System Model -- 3 Dynamic PU Modeling -- 3.1 Energy Detection -- 3.2 AVCD and i-AVCD -- 4 Results -- 5 Conclusion -- References -- Blind Source Separation for Wireless Networks: A Tool for Topology Sensing -- 1 Introduction -- 1.1 Existing Works -- 1.2 Application Scenarios -- 2 System Model and Problem Formulation -- 2.1 Data Acquisition and Channel Model -- 3 Blind Source Separation -- 3.1 Whitening and Estimation of the Number of Sources -- 3.2 Independent Component Analysis -- 3.3 Unmixed Signals Association -- 3.4 Excision Filter -- 4 Topology Inference Algorithms -- 4.1 Granger Causality -- 4.2 Transfer Entropy -- 5 Numerical Results -- 5.1 BSS Reconstruction Error -- 5.2 Topology Inference and Number of Nodes -- 5.3 Impact of Shadowing -- 6 Conclusion -- References -- Resource Management and Optimization -- Efficient Clustering Schemes Towards Information Collection -- 1 Introduction -- 2 Energy Efficiency in Cooperative Spectrum Sensing -- 3 Clustering Algorithms -- 4 Simulation Results -- 5 Conclusions -- References -- A Non-zero Sum Power Control Game with Uncertainty -- 1 Introduction -- 2 Communication Model -- 2.1 Auxiliary Notations and Results -- 2.2 Equilibrium Strategies -- 3 Stackelberg Game -- 3.1 Auxiliary Notations and Results -- 3.2 Stackelberg Equilibrium Strategies.
4 Discussion of the Results -- 5 Conclusions -- References -- Demonstrating Spectrally Efficient Asynchronous Coexistence for Machine Type Communication: A Software Defined Radio Approach -- 1 Introduction -- 2 Background -- 2.1 Related Work -- 3 Asynchronous Coexistence -- 4 SDR Approach for Coexistence Studies -- 4.1 Workflow -- 4.2 F-OFDM Filter Implementation -- 4.3 An Automated Test Framework for EVM and BER Measurements -- 5 Results -- 5.1 Simulations -- 5.2 Hardware Experiments -- 6 Conclusions and Future Work -- References -- Verticals and Applications -- Distance Estimation for Database-Assisted Autonomous Platooning -- 1 Introduction -- 2 Negative Impact of Distance Measurement Errors -- 2.1 Impact on Distance-Related Entries in Databases -- 2.2 Impact on Pathloss Modelling -- 2.3 Combined Distance Measurement Scheme -- 3 Pathloss Measurements - Conducted Experiment -- 4 Proposed UWB and GPS-Based Distance Measurements Fusion -- 5 Conclusions -- References -- A Priced-Deferred Acceptance (p-DA) Technique for D2D Communication in Factories of the Future -- 1 Introduction -- 2 System Model -- 3 The Resource Allocation Problem -- 3.1 QoS Admission and Power Allocation -- 3.2 Priced Deferred Acceptance Game Solution -- 4 Example Case Studies, Simulation Results and Discussion -- 5 Conclusions -- References -- Data-Driven Intelligent Management of Energy Constrained Autonomous Vehicles in Smart Cities -- 1 Introduction -- 1.1 Motivation -- 1.2 Related Work and Contributions -- 2 Electric Taxis Dataset and System Model -- 2.1 Dataset Description -- 2.2 EAV Flow Model -- 2.3 Energy Models for EAV -- 3 Intelligent Management System -- 3.1 Energy-Aware Passenger Requests Scheduling -- 3.2 Grid Load-Aware Charging Scheduling -- 4 Simulation Results and Analysis -- 4.1 The Supply and Optimal Demand of EAVs -- 4.2 Energy-Aware EAV Scheduling.
5 Conclusion -- References -- A Primer on Large Intelligent Surface (LIS) for Wireless Sensing in an Industrial Setting -- 1 Introduction -- 2 Problem Formulation -- 3 Holographic Sensing -- 4 Machine Learning for Holographic Sensing -- 4.1 Model Description -- 4.2 Dataset Format -- 5 Model Validation -- 5.1 Simulated Scenario -- 5.2 Received Power and Noise Modeling -- 5.3 Noise Averaging Strategy -- 5.4 Performance Metrics -- 6 Numerical Results and Discussion -- 6.1 Impact of Sampling and Noise Averaging -- 6.2 Impact of Antenna Spacing -- 6.3 LIS Aperture Comparisons -- 7 Conclusions -- References -- Business Models and Spectrum Management -- Scalability and Replicability of Spectrum for Private 5G Network Business: Insights into Radio Authorization Policies -- 1 Introduction -- 2 Theoretical Foundation and Key Concepts -- 2.1 Business Model Framework -- 2.2 Private 5G Network Spectrum Requirements -- 2.3 Radio Equipment Authorization -- 3 Analysis of Radio Authorization Frameworks -- 3.1 European Radio Authorization Framework -- 3.2 US Radio Equipment Authorization Framework -- 3.3 Comparison of FCC and EU Radio Product Authorization Processes -- 3.4 Radio Authorization Frameworks in Selected Countries -- 3.5 Discussion -- 4 Conclusions -- References -- Novel Spectrum Administration and Management Approaches Transform 5G Towards Open Ecosystemic Business Models -- 1 Introduction -- 2 Theoretical Foundation -- 2.1 Business Model Value Configuration -- 2.2 Spectrum Management Archetypes -- 3 The Business Perspective of Spectrum Administration and Management Enablers -- 3.1 Market Based Mechanism -- 3.2 Administrative Assignment -- 3.3 Spectrum Commons -- 3.4 Open Ecosystemic Business Antecedents -- 4 Conclusions -- References -- Moving from 5G in Verticals to Sustainable 6G: Business, Regulatory and Technical Research Prospects -- 1 Introduction.
2 State of the Art of 5G in Verticals -- 2.1 Business Perspective -- 2.2 Regulation Perspective -- 2.3 Technology Perspective -- 3 Towards Sustainable 6G -- 3.1 Role of UN SDGs in 6G -- 3.2 Business, Regulation and Technology Perspectives -- 4 Business Scenarios and Strategic Options for 6G -- 4.1 Methodology -- 4.2 6G Business Scenarios -- 4.3 Strategic Options for 6G as Simple Rules -- 5 Future Outlook and Conclusions -- References -- Author Index.
Record Nr. UNISA-996464432703316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Cognitive Radio-Oriented Wireless Networks : 15th EAI International Conference, CrownCom 2020, Rome, Italy, November 25-26, 2020, Proceedings / / edited by Giuseppe Caso, Luca De Nardis, Liljana Gavrilovska
Cognitive Radio-Oriented Wireless Networks : 15th EAI International Conference, CrownCom 2020, Rome, Italy, November 25-26, 2020, Proceedings / / edited by Giuseppe Caso, Luca De Nardis, Liljana Gavrilovska
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (x, 192 pages)
Disciplina 384.54524
Collana Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
Soggetto topico Computer networks
Coding theory
Information theory
Artificial intelligence
Application software
Computer science - Mathematics
Electronic digital computers - Evaluation
Computer Communication Networks
Coding and Information Theory
Artificial Intelligence
Computer and Information Systems Applications
Mathematics of Computing
System Performance and Evaluation
ISBN 3-030-73423-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Spectrum Sensing and Environment Awareness -- Active user blind detection through deep learning -- Spectrum Sensing Based on Dynamic Primary User With Additive Laplacian Noise in Cognitive Radio -- Blind Source Separation for Wireless Networks: a Tool for Topology Sensing -- Efficient Clustering Schemes Towards Information Collection -- A Non-zero Sum Power Control Game with Uncertainty -- Demonstrating Spectrally Efficient Asynchronous Coexistence for Machine Type Communication: A Software Defined Radio Approach -- 7 Distance Estimation for Database-assisted Autonomous Platooning -- A priced-Deferred Acceptance (p-DA) Technique for D2D Communication in Factories of the Future -- Data-Driven Intelligent Management of Energy Constrained Autonomous Vehicles in Smart Cities -- A Primer on Large Intelligent Surface (LIS) in an Industrial Setting -- Scalability and Replicability of Spectrum for Private 5G Network Business: Insights into Radio Authorization Policies -- Novel Spectrum Administration andManagement -- Approaches Transform 5G Towards Open Ecosystemic Business Models -- Moving from 5G in Verticals to Sustainable 6G: Business, Regulatory and Technical Research Prospects.
Record Nr. UNINA-9910484157403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Autore Elmasry George F.
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , 2020
Descrizione fisica 1 online resource (748 pages)
Disciplina 384.54524
Soggetto topico Radio resource management (Wireless communications)
Cognitive radio networks
ISBN 1-119-57379-3
1-119-57377-7
1-119-57378-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Author -- Preface -- List of Acronyms -- Part 1: DSA Basic Design Concept -- 1 Introduction -- 1.1 Summary of DSA decision making processes -- 1.2 The hierarchy of DSA decision making -- 1.3 The impact of DSA control traffic -- 1.4 The involvement of DSA decision making -- 1.5 The pitfalls of DSA decision making -- 1.6 Concluding remarks -- 1.7 1Exercises -- Bibliography -- 2 Spectrum Sensing Technique -- 2.1 Multidimensional spectrum sensing and sharing -- 2.2 Time, frequency and power spectrum sensing -- 2.3 Energy detection sensing -- 2.3.1 Energy detection sensing of a communications signal (same-channel in-band sensing) -- 2.3.2 Time domain energy detection -- 2.3.3 Frequency domain energy detection -- 2.4 Signal characteristics spectrum sensing -- 2.4.1 Matched filter based spectrum sensing -- 2.4.2 Autocorrelation based spectrum sensing -- 2.4.3 Spreading code spectrum sensing -- 2.4.4 Frequency hopping spectrum sensing -- 2.4.5 Orthogonality based spectrum sensing -- 2.4.6 Waveform based spectrum sensing -- 2.4.7 Cyclostationarity based spectrum sensing -- 2.5 Euclidean space based detection -- 2.5.1 Geographical space detection -- 2.5.2 Angle of RF beam detection -- 2.6 Other sensing techniques -- 2.7 Concluding remarks -- 2.8 Exercises -- Bibliography -- 3 Receiver Operating Characteristics (ROC) and Decision Fusion -- 3.1 Basic ROC model adaptation for DSA -- 3.2 Adapting the ROC model for same-channel in-band sensing -- 3.3 Decision fusion -- 3.3.1 Local decision fusion -- 3.3.1.1 Local decision fusion for same-channel in-band sensing -- 3.3.1.2 Local decision fusion with directional energy detection -- 3.3.2 Distributed and centralized decision fusion -- 3.4 Concluding remarks -- 3.5 Exercises -- Appendix A: Basic principles of the ROC model -- A1. The ROC curve as connecting points -- A2. The ROC curve classifications -- Bibliography -- 4 Designing a Hybrid DSA System -- 4.1 Reasons for using hybrid DSA design approach -- 4.2 Decision fusion cases.
4.3 The role of other cognitive processes -- 4.4 How far can distributed cooperative DSA design go? -- 4.5 Using a centralized DSA arbitrator -- 4.6 Concluding remarks -- 4.7 Exercises -- Bibliography -- Part 2: Case Studies -- 5 DSA as a Set of Cloud Services -- 5.1 DSA services in the hierarchy of heterogeneous networks -- 5.2 The generic DSA cognitive engine skeleton -- 5.2.1 The main thread in the central arbitrator DSA cognitive engine -- 5.2.2 A critical thread in the gateway DSA cognitive engine -- 5.2.3 The gateway cognitive engine propagation of fused information to the central arbitrator thread -- 5.3 DSA cloud services metrics -- 5.3.1 DSA cloud services metrics model -- 5.3.2 DSA cloud services metrology -- 5.3.3 Examples of DSA cloud services metrics -- 5.3.3.1 Response time -- 5.3.3.2 Hidden node -- 5.3.3.3 Meeting traffic demand -- 5.3.3.4 Rippling -- 5.3.3.5 Co-site interference impact -- 5.3.3.6 Other metrics -- 5.3.3.7 Generalizing a metric description -- 5.4 Concluding remarks -- 5.5 Exercises -- Bibliography -- 6 Dynamic Spectrum Management for 5G Cellular Systems -- 6.1 Basic concepts of 5G -- 6.2 Spatial modeling and the impact of 5G dense cell deployment -- 6.2.1 Spatial modeling and SIR -- 6.2.2. SIR and connectivity -- 6.2.3 Generl case connectivity and coverage -- 6.2.3.1 Transmission capacity -- 6.2.3.2 5G cell overlay -- 6.3 Stages of 5G SI cancellation -- 6.4 5G and cooperative spectrum sensing -- 6.4.1 The macrocell as the main fusion center -- 6.4.2 Spectrum agents (SAs) operate autonomously -- 6.4.3 The end user as its own arbitrator -- 6.5 Power control, orthogonality and 5G spectrum utilization -- 6.6 The role of the cell and end user devices in 5G DSM -- 6.7 Concluding remarks -- 6.8 Exercises -- Bibliography -- 7 DSA and 5G Adaptation to Military Communications -- 7.1 Multilayer security enhancements of 5G -- 7.2 MIMO design considerations -- 7.2.1 The use of MU MIMO -- 7.2.2 The use of MIMO channel training symbols for LPD/LPI.
7.2.3 The use of MIMO channel feedback mechanism for LPD/LPI -- 7.2.4 The use of MU MIMO for Multipath hopping -- 7.2.5 The use of MU MIMO to avoid eavesdroppers -- 7.2.6 The use of MU MIMO to discover jammers -- 7.2.7 Beamforming and LPI/LPD -- 7.3 Multifaceted optimization of MU MIMO channel in military applications -- 7.4 Other security approaches -- 7.4.1 Bottom up deployment approach -- 7.4.2 Switching a network to an anti-jamming (AJ) waveform -- 7.5 Concluding remarks -- 7.6 Exercises -- Bibliography -- 8 DSA and Co-site Interference Mitigation -- 8.1 Power spectral density lobes -- 8.2 Co-site interference between frequencies in different bands -- 8.3 Co-site interference for unlicensed frequency blocks -- 8.4 Adapting the platforḿs co-site interference analysis process for DSA services -- 8.5 Adapting the external systemś co-site interference analysis for DSA -- 8.6 Considering the inter-system co-site interference impact -- 8.7 Using lookup tables as weighted metrics -- 8.8 Co-site interference incorporation in decision fusion and fine-tuning of co-site impact -- 8.9 DSA systeḿs co-site interference impact on external systems -- 8.10 The locations where co-site interference lookup tables and metrics are utilized -- 8.11 Concluding Remarks -- Bibliography -- Part 3: TECHNIQUES FOR SPECTRUM MANAGEMENT OPERATIONS -- Page -- PREFACE iv -- INTRODUCTION v -- Chapter 1 OVERVIEW 1-1 -- Electromagnetic Spectrum 1-1 -- Definition 1-3 -- Objective 1-4 -- Core Functions 1-5 -- Army Spectrum Management Operations Process 1-5 -- Chapter 2 TACTICAL STAFF ORGANIZATION AND PLANNING 2-1 -- Spectrum Management Operations for Corps and Below 2-1 -- Division, Brigade and Battalion Spectrum Operations 2-3 -- Spectrum Managers Assigned to Cyber Electromagnetic Activity -- Working Group 2-3 -- Cyber Electromagnetic Activities Element 2-4 -- Tips for Spectrum Managers 2-6 -- The Military Decisionmaking Process 2-7 -- Support to the MDMP Steps 2-8 -- The Common Operational Picture 2-10.
Chapter 3 SUPPORT TO THE WARFIGHTING FUNCTIONS 3-1 -- Movement and Maneuver 3-1 -- Intelligence 3-1 -- Fires 3-1 -- Sustainment 3-2 -- Mission Command 3-2 -- Protection 3-4 -- Chapter 4 JOINT TASK FORCE CONSIDERATIONS 4-1 -- Inputs and Products of Joint Task Force Spectrum Managers 4-1 -- Joint Frequency Management Office 4-1 -- Joint Spectrum Management Element 4-3 -- Spectrum Management Support to Defense Support of Civil -- Authorities 4-6 -- Chapter 5 SPECTRUM MANAGEMENT OPERATIONS TOOLS 5-1 -- Tool Considerations 5-1 -- Joint Spectrum Interference Resolution Online 5-11 -- Joint Spectrum Data Repository 5-11 -- Appendix A SPECTRUM MANAGEMENT TASK LIST A-1 -- Appendix B CAPABILITIES AND COMPATIBILITY BETWEEN TOOLS B-1 -- Appendix C SPECTRUM PHYSICS C-1 -- Appendix D SPECTRUM MANAGEMENT LIFECYCLE D-1 -- Appendix E MILITARY TIME ZONE DESIGNATORS E-1 -- Part 4: THE IEEE STANDARDS 1900x - 2019 -- Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC) -- IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management -- 1. Overview 12 -- 1.1 Scope 12 -- 1.2 Purpose 12 -- 2. Acronyms and abbreviations 13 -- 3. Definitions of advanced radio system concepts 14 -- 3.1 Adaptive radio 14 -- 3.2 Cognitive radio 15 -- 3.3 Hardware-defined radio 15 -- 3.4 Hardware radio 15 -- 3.5 Intelligent radio 16 -- 3.6 Policy-based radio 16 -- 3.7 Reconfigurable radio 16 -- 3.8 Software-controlled radio 16 -- 3.9 Software-defined radio 16 -- 4. Definitions of radio system functional capabilities 17 -- 4.1 Adaptive modulation 17 -- 4.2 Cognition 17 -- 4.3 Cognitive control mechanism 17 -- 4.4 Cognitive process 17 -- 4.5 Cognitive radio system 18 -- 4.6 Frequency agility 18 -- 4.7 Geolocation capability 18 -- 4.8 Location awareness 18 -- 4.9 Policy-based control mechanism 18 -- 4.10 Policy conformance reasoner 19 -- 4.11 Policy enforcer 19 -- 4.12 Radio awareness 19 -- 4.13 Software controlled 19.
4.14 Software defined 19 -- 4.15 System strategy reasoning capability 19 -- 4.16 Transmit power control 20 -- 5. Definitions of decision-making and control concepts that support advanced radio system technologies 20 -- 5.1 Coexistence policy 20 -- 5.2 DSA policy language 20 -- 5.3 Formal policy 20 -- 5.4 Meta-policy 20 -- 5.5 Model-theoretic computational semantics 20 -- 5.6 Policy language 20 -- 5.7 Reasoner 21 -- 6. Definitions of network technologies that support advanced radio system technologies 21 -- 6.1 Cognitive radio network 21 -- 6.2 Dynamic spectrum access networks 21 -- 6.3 Reconfigurable networks 21 -- 7. Spectrum management definitions 21 -- 7.1 Allocation 21 -- 7.2 Clear channel assessment function 22 -- 7.3 Coexistence 22 -- 7.4 Coexistence mechanism 22 -- 7.5 Cognitive interference avoidance 22 -- 7.6 Collaboration 22 -- 7.7 Collaborative decoding 22 -- 7.8 Cooperation 23 -- 7.9 Data archive 23 -- 7.10 Distributed radio resource usage optimization 23 -- 7.11 Distributed sensing 23 -- 7.12 Dynamic channel assignment 23 -- 7.13 Dynamic frequency selection 23 -- 7.14 Dynamic frequency sharing 24 -- 7.15 Dynamic spectrum access 24 -- 7.16 Dynamic spectrum assignment 24 -- 7.17 Dynamic spectrum management 25 -- 7.18 Electromagnetic compatibility 25 -- 7.19 Frequency hopping 25 -- 7.20 Frequency sharing 25 -- 7.21 Hierarchical spectrum access 25 -- 7.22 Horizontal spectrum sharing 26 -- 7.23 Interference 26 -- 7.24 Opportunistic spectrum access 26 -- 7.25 Opportunistic spectrum management 26 -- 7.26 Policy authority 26 -- 7.27 Policy traceability 27 -- 7.28 Radio environment map 27 -- 7.29 RF environment map 27 -- 7.30 Sensing control information 27 -- 7.31 Sensing information 27 -- 7.32 Sensor 27 -- 7.33 Spectral opportunity 27 -- 7.34 Spectrum access 27 -- 7.35 Spectrum broker 28 -- 7.36 Spectrum efficiency 28 -- 7.37 Spectrum etiquette 28 -- 7.38 Spectrum leasing 28 -- 7.39 Spectrum management 28 -- 7.40 Spectrum overlay 29 -- 7.41 Spectrum owner 29.
7.42 Spectrum pooling 29 -- 7.43 Spectrum sensing 29 -- 7.44 Cooperative spectrum sensing 30 -- 7.45 Collaborative spectrum sensing 30 -- 7.46 Spectrum sharing 30 -- 7.47 Spectrum underlay 30 -- 7.48 Spectrum utilization 30 -- 7.49 Spectrum utilization efficiency 31 -- 7.50 Vertical spectrum sharing 31 -- 7.51 White space 32 -- 7.52 White space database 32 -- 7.53 White space frequency band 32 -- 7.54 White space spectrum band 32 -- 8. Glossary of ancillary terminology 32 -- 8.1 Air interface 32 -- 8.2 Digital policy 32 -- 8.3 Domain 33 -- 8.4 Interference temperature 33 -- 8.5 Interoperability 33 -- 8.6 Machine learning 33 -- 8.7 Machine-understandable policies 33 -- 8.8 Ontology 33 -- 8.9 Policy 34 -- 8.10 Quality of service 34 -- 8.11 Radio 34 -- 8.12 Radio node 35 -- 8.13 Radio spectrum 35 -- 8.14 Receiver 35 -- 8.15 Software 35 -- 8.16 Transmitter 35 -- 8.17 Waveform 35 -- 8.18 Waveform processing 36 -- Annex A (informative) Implications of advanced radio system technologies for spectrum 37 -- Annex B (informative) Explanatory notes on advanced radio system technologies and advanced spectrum management concepts 41 -- Annex C (informative) List of deleted terms from the previous versions of IEEE Std 1901.1 66 -- Annex D (informative) Bibliography 73 -- IEEE Recommended Practice for the Analysis of In-Band and Adjacent Band Interference and Coexistence Between Radio Systems -- 1. Overview 1 -- 1.1 Relationship to traditional spectrum management 1 -- 1.2 Introduction to this recommended practice 2 -- 1.3 Scope 2 -- 1.4 Purpose 3 -- 1.5 Rationale 3 -- 2. Normative references 5 -- 3. Definitions, acronyms, and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. Key concepts 8 -- 4.1 Interference and coexistence analysis 8 -- 4.2 Measurement event 8 -- 4.3 Interference event 9 -- 4.4 Harmful interference 9 -- 4.5 Physical and logical domains 9 -- 5. Structure of analysis and report 10 -- 5.1 Structure for analysis 10 -- 5.2 Process floẃdivergence, reduction, and convergence 12.
5.3 Report structure 14 -- 6. Scenario definition 14 -- 6.1 General 14 -- 6.2 Study question 16 -- 6.3 Benefits and impacts of proposal 16 -- 6.4 Scenario(s) and usage model 16 -- 6.5 Case(s) for analysis 25 -- 7. Criteria for interference 25 -- 7.1 General 25 -- 7.2 Interference characteristics 26 -- 7.3 Measurement event 28 -- 7.4 Interference event 28 -- 7.5 Harmful interference criteria 28 -- 8. Variables 32 -- 8.1 General 32 -- 8.2 Variable selection 34 -- 9. Analysiśmodeling, simulation, measurement, and testing 35 -- 9.1 General 35 -- 9.2 Selection of the analysis approach, tools, and techniques 36 -- 9.3 Matrix reduction 37 -- 9.4 Performing the analysis 38 -- 9.5 Quantification of benefits and interference 38 -- 9.6 Analysis of mitigation options 38 -- 9.7 Analysis uncertainty 38 -- 10. Conclusions and summary 39 -- 10.1 Benefits and impacts 39 -- 10.2 Summation 39 -- Annex A (informative) Propagation modeling 40 -- Annex B (informative) Audio interference 48 -- Annex C (informative) Spectrum utilization efficiency 51 -- Annex D (informative) Sample analysiśselection of listen-before-talk threshold 55 -- Annex E (informative) Sample analysiśeffect of out-of-band emissions on a LBT band 63 -- Annex F (informative) Sample analysiśLow-power radios operating in the TV band 70 -- Annex G (informative) Sample analysiśRF test levels for ANSI C63.9 [B3] 81 -- Annex H (normative) Glossary 89 -- Annex I (informative) Bibliography 93 -- IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 1 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 3 -- 3.1 Definitions 3 -- 3.2 Acronyms and abbreviations 5 -- 4. Overall system description 5 -- 4.1 System overview 5 -- 4.2 Summary of use cases 7 -- 4.3 Assumptions 8 -- 5. Requirements 9 -- 5.1 System requirements 9.
5.2 Functional requirements 12 -- 5.3 Information model requirements 14 -- 6. Architecture 14 -- 6.1 System description 14 -- 6.2 Functional description 18 -- 7. Information model 24 -- 7.1 Introduction 24 -- 7.2 Information modeling approach 25 -- 7.3 Information model classes 25 -- 8. Procedures 32 -- 8.1 Introduction 32 -- 8.2 Generic procedures 36 -- 8.3 Examples of use case realization 49 -- Annex A (informative) Use cases 53 -- A.1 Dynamic spectrum assignment 53 -- A.2 Dynamic spectrum sharing 59 -- A.3 Distributed radio resource usage optimization 61 -- Annex B (normative) Class definitions for information model 63 -- B.1 Notational tools 63 -- B.2 Common base class 64 -- B.3 Policy classes 64 -- B.4 Terminal classes 66 -- B.5 CWN classes 74 -- B.6 Relations between terminal and CWN classes 82 -- Annex C (normative) Data type definitions for information model 84 -- C.1 Function definitions 84 -- C.2 ASN.1 type definitions 86 -- Annex D (informative) Information model extensions and usage example 93 -- D.1 Functions for external management interface 93 -- D.2 Additional utility classes 94 -- D.3 Additional ASN.1 type definitions for utility classes 103 -- D.4 Example for distributed radio resource usage optimization use case 104 -- Annex E (informative) Deployment examples 109 -- E.1 Introduction 109 -- E.2 Deployment examples for single operator scenario 109 -- E.3 Multiple operator scenario 1 (NRM is inside operator) 114 -- E.4 Multiple operator scenario 2 (NRM is outside operator) 115 -- Annex F (informative) Bibliography 117 -- IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 2 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 2 -- 3.1 Definitions 2 -- 3.2 Acronyms and abbreviations 6 -- 4. Architecture requirements for policy-based control of DSA radio systems 8 -- 4.1 General architecture requirements 8.
4.2 Policy management requirements 9 -- 5. Architecture components and interfaces for policy-based control of DSA radio systems 10 -- 5.1 Policy management point 12 -- 5.2 Policy conformance reasoner 12 -- 5.3 Policy enforcer (PE) 14 -- 5.4 Policy repository 15 -- 5.5 System strategy reasoning capability (SSRC) 16 -- 6. Policy language and reasoning requirements 17 -- 6.1 Language expressiveness 18 -- 6.2 Reasoning about policies 27 -- Annex A (informative) Use cases 29 -- Annex B (informative) Illustrative examples of DSA policy-based architecture 31 -- Annex C (informative) Relation of IEEE 1900.5 policy architecture to other policy architectures 33 -- Annex D (informative) Characteristics of imperative (procedural) and declarative languages for satisfying language requirements for cognitive radio systems 35 -- Annex E (informative) Example sequence diagrams of IEEE 1900.5 system 36 -- E.1 Overview 36 -- E.2 Assumptions 36 -- E.3 Sequence diagram organization 37 -- Annex F (informative) Bibliography 41 -- IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and Other Advanced Radio Communication Systems -- 1. Overview 1 -- 1.1 Scope 2 -- 1.2 Purpose 2 -- 1.3 Interfaces and sample application areas 2 -- 1.4 Conformance keywords 4 -- 2. Normative references 4 -- 3. Definitions, acronyms and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. System model 8 -- 4.1 Scenario 1: Single CE/DA and single Sensor 8 -- 4.2 Scenario 2: Single CE/DA and multiple Sensors 9 -- 4.3 Scenario 3: Multiple CE/DA and single Sensor 10 -- 5. The IEEE 1900.6 reference model 11 -- 5.1 General description 11 -- 5.2 An implementation example of the IEEE 1900.6 reference model 14 -- 5.3 Service access points (SAPs) 15 -- 6. Information description 70 -- 6.1 Information categories 70 -- 6.2 Data types 73 -- 6.3 Description of sensing-related parameters 75 -- 6.4 Data representation 88 -- 7. State diagram and generic procedures 95.
7.1 State description 95 -- 7.2 State transition description 96 -- 7.3 Generic procedures 98 -- 7.4 Example procedures for use cases 101 -- Annex A (informative) Use cases 107 -- Annex B (informative) Use case classification 143 -- Annex C (informative) Implementation of distributed sensing 148 -- Annex D (informative) IEEE 1900.6 DA: Scope and usage 153 -- Annex E (informative) Analysis of available/future technologies 157 -- Annex F (informative) Bibliography 15 -- IEEE Standard for Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 2. Definitions, acronyms, and abbreviations 2 -- 2.1 Definitions 2 -- 2.2 Acronyms and abbreviations 2 -- 3. Reference model 3 -- 4. MAC sublayer 4 -- 4.1 Architecture of the MAC sublayer 4 -- 4.2 Type definition 4 -- 4.3 MAC frame formats 4 -- 4.4 MAC sublayer service specification 9 -- 4.5 MAC functional description 24 -- 5. PHY layer 37 -- 5.1 PHY layer service specification 37 -- 5.2 CRC method 42 -- 5.3 Channel coding (including interleaving and modulation) 42 -- 5.4 Mapping modulated symbols to carriers 47 -- 5.5 Transmitter requirements 53 -- Annex A (informative) Coexistence considerations 55.
Record Nr. UNINA-9910554805503321
Elmasry George F.  
Hoboken, New Jersey, USA : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Dynamic spectrum access decisions : local, distributed, centralized and hybrid designs / / George F. Elmasry
Autore Elmasry George F.
Pubbl/distr/stampa Hoboken, New Jersey, USA : , : Wiley, , 2020
Descrizione fisica 1 online resource (748 pages)
Disciplina 384.54524
Soggetto topico Radio resource management (Wireless communications)
Cognitive radio networks
ISBN 1-119-57379-3
1-119-57377-7
1-119-57378-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto About the Author -- Preface -- List of Acronyms -- Part 1: DSA Basic Design Concept -- 1 Introduction -- 1.1 Summary of DSA decision making processes -- 1.2 The hierarchy of DSA decision making -- 1.3 The impact of DSA control traffic -- 1.4 The involvement of DSA decision making -- 1.5 The pitfalls of DSA decision making -- 1.6 Concluding remarks -- 1.7 1Exercises -- Bibliography -- 2 Spectrum Sensing Technique -- 2.1 Multidimensional spectrum sensing and sharing -- 2.2 Time, frequency and power spectrum sensing -- 2.3 Energy detection sensing -- 2.3.1 Energy detection sensing of a communications signal (same-channel in-band sensing) -- 2.3.2 Time domain energy detection -- 2.3.3 Frequency domain energy detection -- 2.4 Signal characteristics spectrum sensing -- 2.4.1 Matched filter based spectrum sensing -- 2.4.2 Autocorrelation based spectrum sensing -- 2.4.3 Spreading code spectrum sensing -- 2.4.4 Frequency hopping spectrum sensing -- 2.4.5 Orthogonality based spectrum sensing -- 2.4.6 Waveform based spectrum sensing -- 2.4.7 Cyclostationarity based spectrum sensing -- 2.5 Euclidean space based detection -- 2.5.1 Geographical space detection -- 2.5.2 Angle of RF beam detection -- 2.6 Other sensing techniques -- 2.7 Concluding remarks -- 2.8 Exercises -- Bibliography -- 3 Receiver Operating Characteristics (ROC) and Decision Fusion -- 3.1 Basic ROC model adaptation for DSA -- 3.2 Adapting the ROC model for same-channel in-band sensing -- 3.3 Decision fusion -- 3.3.1 Local decision fusion -- 3.3.1.1 Local decision fusion for same-channel in-band sensing -- 3.3.1.2 Local decision fusion with directional energy detection -- 3.3.2 Distributed and centralized decision fusion -- 3.4 Concluding remarks -- 3.5 Exercises -- Appendix A: Basic principles of the ROC model -- A1. The ROC curve as connecting points -- A2. The ROC curve classifications -- Bibliography -- 4 Designing a Hybrid DSA System -- 4.1 Reasons for using hybrid DSA design approach -- 4.2 Decision fusion cases.
4.3 The role of other cognitive processes -- 4.4 How far can distributed cooperative DSA design go? -- 4.5 Using a centralized DSA arbitrator -- 4.6 Concluding remarks -- 4.7 Exercises -- Bibliography -- Part 2: Case Studies -- 5 DSA as a Set of Cloud Services -- 5.1 DSA services in the hierarchy of heterogeneous networks -- 5.2 The generic DSA cognitive engine skeleton -- 5.2.1 The main thread in the central arbitrator DSA cognitive engine -- 5.2.2 A critical thread in the gateway DSA cognitive engine -- 5.2.3 The gateway cognitive engine propagation of fused information to the central arbitrator thread -- 5.3 DSA cloud services metrics -- 5.3.1 DSA cloud services metrics model -- 5.3.2 DSA cloud services metrology -- 5.3.3 Examples of DSA cloud services metrics -- 5.3.3.1 Response time -- 5.3.3.2 Hidden node -- 5.3.3.3 Meeting traffic demand -- 5.3.3.4 Rippling -- 5.3.3.5 Co-site interference impact -- 5.3.3.6 Other metrics -- 5.3.3.7 Generalizing a metric description -- 5.4 Concluding remarks -- 5.5 Exercises -- Bibliography -- 6 Dynamic Spectrum Management for 5G Cellular Systems -- 6.1 Basic concepts of 5G -- 6.2 Spatial modeling and the impact of 5G dense cell deployment -- 6.2.1 Spatial modeling and SIR -- 6.2.2. SIR and connectivity -- 6.2.3 Generl case connectivity and coverage -- 6.2.3.1 Transmission capacity -- 6.2.3.2 5G cell overlay -- 6.3 Stages of 5G SI cancellation -- 6.4 5G and cooperative spectrum sensing -- 6.4.1 The macrocell as the main fusion center -- 6.4.2 Spectrum agents (SAs) operate autonomously -- 6.4.3 The end user as its own arbitrator -- 6.5 Power control, orthogonality and 5G spectrum utilization -- 6.6 The role of the cell and end user devices in 5G DSM -- 6.7 Concluding remarks -- 6.8 Exercises -- Bibliography -- 7 DSA and 5G Adaptation to Military Communications -- 7.1 Multilayer security enhancements of 5G -- 7.2 MIMO design considerations -- 7.2.1 The use of MU MIMO -- 7.2.2 The use of MIMO channel training symbols for LPD/LPI.
7.2.3 The use of MIMO channel feedback mechanism for LPD/LPI -- 7.2.4 The use of MU MIMO for Multipath hopping -- 7.2.5 The use of MU MIMO to avoid eavesdroppers -- 7.2.6 The use of MU MIMO to discover jammers -- 7.2.7 Beamforming and LPI/LPD -- 7.3 Multifaceted optimization of MU MIMO channel in military applications -- 7.4 Other security approaches -- 7.4.1 Bottom up deployment approach -- 7.4.2 Switching a network to an anti-jamming (AJ) waveform -- 7.5 Concluding remarks -- 7.6 Exercises -- Bibliography -- 8 DSA and Co-site Interference Mitigation -- 8.1 Power spectral density lobes -- 8.2 Co-site interference between frequencies in different bands -- 8.3 Co-site interference for unlicensed frequency blocks -- 8.4 Adapting the platforḿs co-site interference analysis process for DSA services -- 8.5 Adapting the external systemś co-site interference analysis for DSA -- 8.6 Considering the inter-system co-site interference impact -- 8.7 Using lookup tables as weighted metrics -- 8.8 Co-site interference incorporation in decision fusion and fine-tuning of co-site impact -- 8.9 DSA systeḿs co-site interference impact on external systems -- 8.10 The locations where co-site interference lookup tables and metrics are utilized -- 8.11 Concluding Remarks -- Bibliography -- Part 3: TECHNIQUES FOR SPECTRUM MANAGEMENT OPERATIONS -- Page -- PREFACE iv -- INTRODUCTION v -- Chapter 1 OVERVIEW 1-1 -- Electromagnetic Spectrum 1-1 -- Definition 1-3 -- Objective 1-4 -- Core Functions 1-5 -- Army Spectrum Management Operations Process 1-5 -- Chapter 2 TACTICAL STAFF ORGANIZATION AND PLANNING 2-1 -- Spectrum Management Operations for Corps and Below 2-1 -- Division, Brigade and Battalion Spectrum Operations 2-3 -- Spectrum Managers Assigned to Cyber Electromagnetic Activity -- Working Group 2-3 -- Cyber Electromagnetic Activities Element 2-4 -- Tips for Spectrum Managers 2-6 -- The Military Decisionmaking Process 2-7 -- Support to the MDMP Steps 2-8 -- The Common Operational Picture 2-10.
Chapter 3 SUPPORT TO THE WARFIGHTING FUNCTIONS 3-1 -- Movement and Maneuver 3-1 -- Intelligence 3-1 -- Fires 3-1 -- Sustainment 3-2 -- Mission Command 3-2 -- Protection 3-4 -- Chapter 4 JOINT TASK FORCE CONSIDERATIONS 4-1 -- Inputs and Products of Joint Task Force Spectrum Managers 4-1 -- Joint Frequency Management Office 4-1 -- Joint Spectrum Management Element 4-3 -- Spectrum Management Support to Defense Support of Civil -- Authorities 4-6 -- Chapter 5 SPECTRUM MANAGEMENT OPERATIONS TOOLS 5-1 -- Tool Considerations 5-1 -- Joint Spectrum Interference Resolution Online 5-11 -- Joint Spectrum Data Repository 5-11 -- Appendix A SPECTRUM MANAGEMENT TASK LIST A-1 -- Appendix B CAPABILITIES AND COMPATIBILITY BETWEEN TOOLS B-1 -- Appendix C SPECTRUM PHYSICS C-1 -- Appendix D SPECTRUM MANAGEMENT LIFECYCLE D-1 -- Appendix E MILITARY TIME ZONE DESIGNATORS E-1 -- Part 4: THE IEEE STANDARDS 1900x - 2019 -- Dynamic Spectrum Access Networks Standards Committee (DySPAN-SC) -- IEEE Standard for Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management -- 1. Overview 12 -- 1.1 Scope 12 -- 1.2 Purpose 12 -- 2. Acronyms and abbreviations 13 -- 3. Definitions of advanced radio system concepts 14 -- 3.1 Adaptive radio 14 -- 3.2 Cognitive radio 15 -- 3.3 Hardware-defined radio 15 -- 3.4 Hardware radio 15 -- 3.5 Intelligent radio 16 -- 3.6 Policy-based radio 16 -- 3.7 Reconfigurable radio 16 -- 3.8 Software-controlled radio 16 -- 3.9 Software-defined radio 16 -- 4. Definitions of radio system functional capabilities 17 -- 4.1 Adaptive modulation 17 -- 4.2 Cognition 17 -- 4.3 Cognitive control mechanism 17 -- 4.4 Cognitive process 17 -- 4.5 Cognitive radio system 18 -- 4.6 Frequency agility 18 -- 4.7 Geolocation capability 18 -- 4.8 Location awareness 18 -- 4.9 Policy-based control mechanism 18 -- 4.10 Policy conformance reasoner 19 -- 4.11 Policy enforcer 19 -- 4.12 Radio awareness 19 -- 4.13 Software controlled 19.
4.14 Software defined 19 -- 4.15 System strategy reasoning capability 19 -- 4.16 Transmit power control 20 -- 5. Definitions of decision-making and control concepts that support advanced radio system technologies 20 -- 5.1 Coexistence policy 20 -- 5.2 DSA policy language 20 -- 5.3 Formal policy 20 -- 5.4 Meta-policy 20 -- 5.5 Model-theoretic computational semantics 20 -- 5.6 Policy language 20 -- 5.7 Reasoner 21 -- 6. Definitions of network technologies that support advanced radio system technologies 21 -- 6.1 Cognitive radio network 21 -- 6.2 Dynamic spectrum access networks 21 -- 6.3 Reconfigurable networks 21 -- 7. Spectrum management definitions 21 -- 7.1 Allocation 21 -- 7.2 Clear channel assessment function 22 -- 7.3 Coexistence 22 -- 7.4 Coexistence mechanism 22 -- 7.5 Cognitive interference avoidance 22 -- 7.6 Collaboration 22 -- 7.7 Collaborative decoding 22 -- 7.8 Cooperation 23 -- 7.9 Data archive 23 -- 7.10 Distributed radio resource usage optimization 23 -- 7.11 Distributed sensing 23 -- 7.12 Dynamic channel assignment 23 -- 7.13 Dynamic frequency selection 23 -- 7.14 Dynamic frequency sharing 24 -- 7.15 Dynamic spectrum access 24 -- 7.16 Dynamic spectrum assignment 24 -- 7.17 Dynamic spectrum management 25 -- 7.18 Electromagnetic compatibility 25 -- 7.19 Frequency hopping 25 -- 7.20 Frequency sharing 25 -- 7.21 Hierarchical spectrum access 25 -- 7.22 Horizontal spectrum sharing 26 -- 7.23 Interference 26 -- 7.24 Opportunistic spectrum access 26 -- 7.25 Opportunistic spectrum management 26 -- 7.26 Policy authority 26 -- 7.27 Policy traceability 27 -- 7.28 Radio environment map 27 -- 7.29 RF environment map 27 -- 7.30 Sensing control information 27 -- 7.31 Sensing information 27 -- 7.32 Sensor 27 -- 7.33 Spectral opportunity 27 -- 7.34 Spectrum access 27 -- 7.35 Spectrum broker 28 -- 7.36 Spectrum efficiency 28 -- 7.37 Spectrum etiquette 28 -- 7.38 Spectrum leasing 28 -- 7.39 Spectrum management 28 -- 7.40 Spectrum overlay 29 -- 7.41 Spectrum owner 29.
7.42 Spectrum pooling 29 -- 7.43 Spectrum sensing 29 -- 7.44 Cooperative spectrum sensing 30 -- 7.45 Collaborative spectrum sensing 30 -- 7.46 Spectrum sharing 30 -- 7.47 Spectrum underlay 30 -- 7.48 Spectrum utilization 30 -- 7.49 Spectrum utilization efficiency 31 -- 7.50 Vertical spectrum sharing 31 -- 7.51 White space 32 -- 7.52 White space database 32 -- 7.53 White space frequency band 32 -- 7.54 White space spectrum band 32 -- 8. Glossary of ancillary terminology 32 -- 8.1 Air interface 32 -- 8.2 Digital policy 32 -- 8.3 Domain 33 -- 8.4 Interference temperature 33 -- 8.5 Interoperability 33 -- 8.6 Machine learning 33 -- 8.7 Machine-understandable policies 33 -- 8.8 Ontology 33 -- 8.9 Policy 34 -- 8.10 Quality of service 34 -- 8.11 Radio 34 -- 8.12 Radio node 35 -- 8.13 Radio spectrum 35 -- 8.14 Receiver 35 -- 8.15 Software 35 -- 8.16 Transmitter 35 -- 8.17 Waveform 35 -- 8.18 Waveform processing 36 -- Annex A (informative) Implications of advanced radio system technologies for spectrum 37 -- Annex B (informative) Explanatory notes on advanced radio system technologies and advanced spectrum management concepts 41 -- Annex C (informative) List of deleted terms from the previous versions of IEEE Std 1901.1 66 -- Annex D (informative) Bibliography 73 -- IEEE Recommended Practice for the Analysis of In-Band and Adjacent Band Interference and Coexistence Between Radio Systems -- 1. Overview 1 -- 1.1 Relationship to traditional spectrum management 1 -- 1.2 Introduction to this recommended practice 2 -- 1.3 Scope 2 -- 1.4 Purpose 3 -- 1.5 Rationale 3 -- 2. Normative references 5 -- 3. Definitions, acronyms, and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. Key concepts 8 -- 4.1 Interference and coexistence analysis 8 -- 4.2 Measurement event 8 -- 4.3 Interference event 9 -- 4.4 Harmful interference 9 -- 4.5 Physical and logical domains 9 -- 5. Structure of analysis and report 10 -- 5.1 Structure for analysis 10 -- 5.2 Process floẃdivergence, reduction, and convergence 12.
5.3 Report structure 14 -- 6. Scenario definition 14 -- 6.1 General 14 -- 6.2 Study question 16 -- 6.3 Benefits and impacts of proposal 16 -- 6.4 Scenario(s) and usage model 16 -- 6.5 Case(s) for analysis 25 -- 7. Criteria for interference 25 -- 7.1 General 25 -- 7.2 Interference characteristics 26 -- 7.3 Measurement event 28 -- 7.4 Interference event 28 -- 7.5 Harmful interference criteria 28 -- 8. Variables 32 -- 8.1 General 32 -- 8.2 Variable selection 34 -- 9. Analysiśmodeling, simulation, measurement, and testing 35 -- 9.1 General 35 -- 9.2 Selection of the analysis approach, tools, and techniques 36 -- 9.3 Matrix reduction 37 -- 9.4 Performing the analysis 38 -- 9.5 Quantification of benefits and interference 38 -- 9.6 Analysis of mitigation options 38 -- 9.7 Analysis uncertainty 38 -- 10. Conclusions and summary 39 -- 10.1 Benefits and impacts 39 -- 10.2 Summation 39 -- Annex A (informative) Propagation modeling 40 -- Annex B (informative) Audio interference 48 -- Annex C (informative) Spectrum utilization efficiency 51 -- Annex D (informative) Sample analysiśselection of listen-before-talk threshold 55 -- Annex E (informative) Sample analysiśeffect of out-of-band emissions on a LBT band 63 -- Annex F (informative) Sample analysiśLow-power radios operating in the TV band 70 -- Annex G (informative) Sample analysiśRF test levels for ANSI C63.9 [B3] 81 -- Annex H (normative) Glossary 89 -- Annex I (informative) Bibliography 93 -- IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 1 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 3 -- 3.1 Definitions 3 -- 3.2 Acronyms and abbreviations 5 -- 4. Overall system description 5 -- 4.1 System overview 5 -- 4.2 Summary of use cases 7 -- 4.3 Assumptions 8 -- 5. Requirements 9 -- 5.1 System requirements 9.
5.2 Functional requirements 12 -- 5.3 Information model requirements 14 -- 6. Architecture 14 -- 6.1 System description 14 -- 6.2 Functional description 18 -- 7. Information model 24 -- 7.1 Introduction 24 -- 7.2 Information modeling approach 25 -- 7.3 Information model classes 25 -- 8. Procedures 32 -- 8.1 Introduction 32 -- 8.2 Generic procedures 36 -- 8.3 Examples of use case realization 49 -- Annex A (informative) Use cases 53 -- A.1 Dynamic spectrum assignment 53 -- A.2 Dynamic spectrum sharing 59 -- A.3 Distributed radio resource usage optimization 61 -- Annex B (normative) Class definitions for information model 63 -- B.1 Notational tools 63 -- B.2 Common base class 64 -- B.3 Policy classes 64 -- B.4 Terminal classes 66 -- B.5 CWN classes 74 -- B.6 Relations between terminal and CWN classes 82 -- Annex C (normative) Data type definitions for information model 84 -- C.1 Function definitions 84 -- C.2 ASN.1 type definitions 86 -- Annex D (informative) Information model extensions and usage example 93 -- D.1 Functions for external management interface 93 -- D.2 Additional utility classes 94 -- D.3 Additional ASN.1 type definitions for utility classes 103 -- D.4 Example for distributed radio resource usage optimization use case 104 -- Annex E (informative) Deployment examples 109 -- E.1 Introduction 109 -- E.2 Deployment examples for single operator scenario 109 -- E.3 Multiple operator scenario 1 (NRM is inside operator) 114 -- E.4 Multiple operator scenario 2 (NRM is outside operator) 115 -- Annex F (informative) Bibliography 117 -- IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 1.3 Document overview 2 -- 2. Normative references 2 -- 3. Definitions, acronyms, and abbreviations 2 -- 3.1 Definitions 2 -- 3.2 Acronyms and abbreviations 6 -- 4. Architecture requirements for policy-based control of DSA radio systems 8 -- 4.1 General architecture requirements 8.
4.2 Policy management requirements 9 -- 5. Architecture components and interfaces for policy-based control of DSA radio systems 10 -- 5.1 Policy management point 12 -- 5.2 Policy conformance reasoner 12 -- 5.3 Policy enforcer (PE) 14 -- 5.4 Policy repository 15 -- 5.5 System strategy reasoning capability (SSRC) 16 -- 6. Policy language and reasoning requirements 17 -- 6.1 Language expressiveness 18 -- 6.2 Reasoning about policies 27 -- Annex A (informative) Use cases 29 -- Annex B (informative) Illustrative examples of DSA policy-based architecture 31 -- Annex C (informative) Relation of IEEE 1900.5 policy architecture to other policy architectures 33 -- Annex D (informative) Characteristics of imperative (procedural) and declarative languages for satisfying language requirements for cognitive radio systems 35 -- Annex E (informative) Example sequence diagrams of IEEE 1900.5 system 36 -- E.1 Overview 36 -- E.2 Assumptions 36 -- E.3 Sequence diagram organization 37 -- Annex F (informative) Bibliography 41 -- IEEE Standard for Spectrum Sensing Interfaces and Data Structures for Dynamic Spectrum Access and Other Advanced Radio Communication Systems -- 1. Overview 1 -- 1.1 Scope 2 -- 1.2 Purpose 2 -- 1.3 Interfaces and sample application areas 2 -- 1.4 Conformance keywords 4 -- 2. Normative references 4 -- 3. Definitions, acronyms and abbreviations 5 -- 3.1 Definitions 5 -- 3.2 Acronyms and abbreviations 7 -- 4. System model 8 -- 4.1 Scenario 1: Single CE/DA and single Sensor 8 -- 4.2 Scenario 2: Single CE/DA and multiple Sensors 9 -- 4.3 Scenario 3: Multiple CE/DA and single Sensor 10 -- 5. The IEEE 1900.6 reference model 11 -- 5.1 General description 11 -- 5.2 An implementation example of the IEEE 1900.6 reference model 14 -- 5.3 Service access points (SAPs) 15 -- 6. Information description 70 -- 6.1 Information categories 70 -- 6.2 Data types 73 -- 6.3 Description of sensing-related parameters 75 -- 6.4 Data representation 88 -- 7. State diagram and generic procedures 95.
7.1 State description 95 -- 7.2 State transition description 96 -- 7.3 Generic procedures 98 -- 7.4 Example procedures for use cases 101 -- Annex A (informative) Use cases 107 -- Annex B (informative) Use case classification 143 -- Annex C (informative) Implementation of distributed sensing 148 -- Annex D (informative) IEEE 1900.6 DA: Scope and usage 153 -- Annex E (informative) Analysis of available/future technologies 157 -- Annex F (informative) Bibliography 15 -- IEEE Standard for Radio Interface for White Space Dynamic Spectrum Access Radio Systems Supporting Fixed and Mobile Operation -- 1. Overview 1 -- 1.1 Scope 1 -- 1.2 Purpose 1 -- 2. Definitions, acronyms, and abbreviations 2 -- 2.1 Definitions 2 -- 2.2 Acronyms and abbreviations 2 -- 3. Reference model 3 -- 4. MAC sublayer 4 -- 4.1 Architecture of the MAC sublayer 4 -- 4.2 Type definition 4 -- 4.3 MAC frame formats 4 -- 4.4 MAC sublayer service specification 9 -- 4.5 MAC functional description 24 -- 5. PHY layer 37 -- 5.1 PHY layer service specification 37 -- 5.2 CRC method 42 -- 5.3 Channel coding (including interleaving and modulation) 42 -- 5.4 Mapping modulated symbols to carriers 47 -- 5.5 Transmitter requirements 53 -- Annex A (informative) Coexistence considerations 55.
Record Nr. UNINA-9910829922503321
Elmasry George F.  
Hoboken, New Jersey, USA : , : Wiley, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Economics of Database-Assisted Spectrum Sharing / / by Yuan Luo, Lin Gao, Jianwei Huang
Economics of Database-Assisted Spectrum Sharing / / by Yuan Luo, Lin Gao, Jianwei Huang
Autore Luo Yuan
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (X, 88 p. 25 illus.)
Disciplina 384.54524
Collana Wireless Networks
Soggetto topico Computer networks
Electrical engineering
Game theory
Computer Communication Networks
Communications Engineering, Networks
Game Theory
ISBN 3-319-43231-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Database-Assisted Spectrum Sharing -- Economics Theory Basics -- Spectrum Trading Market Model -- Information Trading Market Model -- Hybrid Spectrum and Information Market Model -- Conclusion and Outlook.
Record Nr. UNINA-9910255011903321
Luo Yuan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook : spectrum monitoring. Supplement / Radiocommunication Bureau
Handbook : spectrum monitoring. Supplement / Radiocommunication Bureau
Autore International telecommunication union : Radiocommunication Bureau
Pubbl/distr/stampa Geneva, : International telecommunication union, c2008
Descrizione fisica V, 194 p. : ill. ; 30 cm.
Disciplina 384.54
384.54524
ISBN 9261126111
9789261126117
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-NAP0475630
International telecommunication union : Radiocommunication Bureau  
Geneva, : International telecommunication union, c2008
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Handbook : spectrum monitoring / Radiocommunication Bureau
Handbook : spectrum monitoring / Radiocommunication Bureau
Autore International telecommunication union : Radiocommunication Bureau
Pubbl/distr/stampa Geneva, : International telecommunication union, ©2002
Descrizione fisica XIII, 585 p. : ill. ; 30 cm.
Disciplina 384.54
384.54524
ISBN 9261101011
9789261101015
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Spectrum monitoring handbook. -
Record Nr. UNISANNIO-NAP0475628
International telecommunication union : Radiocommunication Bureau  
Geneva, : International telecommunication union, ©2002
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
The radio spectrum [[electronic resource] ] : managing a strategic resource / / edited by Jean-Marc Chaduc, Gerard Pogorel
The radio spectrum [[electronic resource] ] : managing a strategic resource / / edited by Jean-Marc Chaduc, Gerard Pogorel
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (322 p.)
Disciplina 384.54/524
384.54524
Altri autori (Persone) ChaducJean-Marc
PogorelGerard
Collana ISTE
Soggetto topico Radio frequency allocation - Management
Resource allocation
Soggetto genere / forma Electronic books.
ISBN 1-282-16485-6
9786612164859
0-470-61094-8
0-470-39352-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Radio Spectrum; Table of Contents; Acknowledgement and Credits; Introduction; Part 1. The Basis of Spectrum Management; Chapter 1. A Bit of History, Physics and Mathematics; 1.1. Waves; 1.2. Propagation; 1.3. Directivity; 1.4. Link evaluation; Chapter 2. Telecommunications; 2.1. Modulation and bandwidth; 2.2. Bandwidth and noise; 2.3. C/N (or C/I) and S/Nm; 2.4. Multiplex, multiple access; 2.5. A balance between carrier power, noise and interferences; Chapter 3. Geography and Radio Communications: Radio Network Engineering; 3.1. Regions and countries
3.2. Radio implementation in the field3.3. Propagation on the Earth; 3.4. Space, orbits, satellite systems; 3.5. Terrestrial network coverage; 3.6. Coverage strategies; 3.7. Radio site protection; Chapter 4. Spectrum Sharing, Bases and Actors; 4.1. Radio frequencies: common goods; 4.2. Regulatory services for spectrum sharing by the ITU (allocation frequency tables); 4.3. The role of states in sharing the spectrum; 4.4. How to plan new applications and compatible services; 4.5. Regulation, harmonization, planning; 4.6. Is the spectrum resource scarce?; 4.7. Spectrum sharing: a summary
Chapter 5. Some Regulated Services5.1. The fixed service; 5.2. Mobile services; 5.3. Broadcasting; 5.4. Satellite services; 5.5. Geo and non-geo systems; 5.6. Some other regulatory services; Chapter 6. Recent Evolutions of Radio Services; 6.1. A family snapshot; 6.2. Enthusiastic telecommunications; 6.3. Hesitant broadcasters; 6.4. The promises of radiolocation; 6.5. Limits of the spectrum planning efficiency; Chapter 7. Regulatory Instruments for Spectrum Sharing; 7.1. Frequency allocation tables; 7.2. Plans; 7.3. Coordination; 7.4. Technical limits
Chapter 8. Frequency Assignment: A Contract8.1. Contracting parties; 8.2. Common bands and assignments; 8.3. Exclusive bands: preferential sub-bands; 8.4. Assignment procedures; 8.5. External requirements: site constraints; 8.6. Satellite systems; Chapter 9. Spectrum Monitoring; 9.1. Spectrum monitoring technical tools; 9.1.1. HF band monitoring; 9.1.2. Metric and decimetric band monitoring; 9.1.3. Microwave monitoring; 9.1.4. Satellite monitoring; 9.1.5. Mobile monitoring stations; 9.1.6. Airborne monitoring means; 9.2. Radio station inspections: major events
9.3. Claim for interference: legal prosecutions9.4. "Radio landscape" description; 9.5. Terminals; Part 2. Managers and their Practices; Chapter 10. New Technical Perspectives and Impact on Spectrum Management; 10.1. Spread spectrum technologies; 10.2. OFDM and MIMO; 10.3. Ultra wideband; 10.4. Dynamic spectrum access technologies; 10.5. Software-defined radio; 10.6. Cognitive radio; 10.7. Intersystem control; 10.8. Mesh networks; Chapter 11. The International Telecommunication Union (ITU); 11.1. The ITU today; 11.2. Radio Regulations; 11.2.1. The vocabulary of radiocommunications
11.2.2. Table of frequency allocations
Record Nr. UNINA-9910139522103321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The radio spectrum [[electronic resource] ] : managing a strategic resource / / edited by Jean-Marc Chaduc, Gerard Pogorel
The radio spectrum [[electronic resource] ] : managing a strategic resource / / edited by Jean-Marc Chaduc, Gerard Pogorel
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (322 p.)
Disciplina 384.54/524
384.54524
Altri autori (Persone) ChaducJean-Marc
PogorelGerard
Collana ISTE
Soggetto topico Radio frequency allocation - Management
Resource allocation
ISBN 1-282-16485-6
9786612164859
0-470-61094-8
0-470-39352-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Radio Spectrum; Table of Contents; Acknowledgement and Credits; Introduction; Part 1. The Basis of Spectrum Management; Chapter 1. A Bit of History, Physics and Mathematics; 1.1. Waves; 1.2. Propagation; 1.3. Directivity; 1.4. Link evaluation; Chapter 2. Telecommunications; 2.1. Modulation and bandwidth; 2.2. Bandwidth and noise; 2.3. C/N (or C/I) and S/Nm; 2.4. Multiplex, multiple access; 2.5. A balance between carrier power, noise and interferences; Chapter 3. Geography and Radio Communications: Radio Network Engineering; 3.1. Regions and countries
3.2. Radio implementation in the field3.3. Propagation on the Earth; 3.4. Space, orbits, satellite systems; 3.5. Terrestrial network coverage; 3.6. Coverage strategies; 3.7. Radio site protection; Chapter 4. Spectrum Sharing, Bases and Actors; 4.1. Radio frequencies: common goods; 4.2. Regulatory services for spectrum sharing by the ITU (allocation frequency tables); 4.3. The role of states in sharing the spectrum; 4.4. How to plan new applications and compatible services; 4.5. Regulation, harmonization, planning; 4.6. Is the spectrum resource scarce?; 4.7. Spectrum sharing: a summary
Chapter 5. Some Regulated Services5.1. The fixed service; 5.2. Mobile services; 5.3. Broadcasting; 5.4. Satellite services; 5.5. Geo and non-geo systems; 5.6. Some other regulatory services; Chapter 6. Recent Evolutions of Radio Services; 6.1. A family snapshot; 6.2. Enthusiastic telecommunications; 6.3. Hesitant broadcasters; 6.4. The promises of radiolocation; 6.5. Limits of the spectrum planning efficiency; Chapter 7. Regulatory Instruments for Spectrum Sharing; 7.1. Frequency allocation tables; 7.2. Plans; 7.3. Coordination; 7.4. Technical limits
Chapter 8. Frequency Assignment: A Contract8.1. Contracting parties; 8.2. Common bands and assignments; 8.3. Exclusive bands: preferential sub-bands; 8.4. Assignment procedures; 8.5. External requirements: site constraints; 8.6. Satellite systems; Chapter 9. Spectrum Monitoring; 9.1. Spectrum monitoring technical tools; 9.1.1. HF band monitoring; 9.1.2. Metric and decimetric band monitoring; 9.1.3. Microwave monitoring; 9.1.4. Satellite monitoring; 9.1.5. Mobile monitoring stations; 9.1.6. Airborne monitoring means; 9.2. Radio station inspections: major events
9.3. Claim for interference: legal prosecutions9.4. "Radio landscape" description; 9.5. Terminals; Part 2. Managers and their Practices; Chapter 10. New Technical Perspectives and Impact on Spectrum Management; 10.1. Spread spectrum technologies; 10.2. OFDM and MIMO; 10.3. Ultra wideband; 10.4. Dynamic spectrum access technologies; 10.5. Software-defined radio; 10.6. Cognitive radio; 10.7. Intersystem control; 10.8. Mesh networks; Chapter 11. The International Telecommunication Union (ITU); 11.1. The ITU today; 11.2. Radio Regulations; 11.2.1. The vocabulary of radiocommunications
11.2.2. Table of frequency allocations
Record Nr. UNINA-9910830477403321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui