Autore |
Mali Olli
|
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa |
Dordrecht, Netherlands : , : Springer, , 2014
|
Descrizione fisica |
1 online resource (xiii, 355 pages) : illustrations
|
Disciplina |
366
|
Collana |
Computational Methods in Applied Sciences
|
Soggetto topico |
Numerical calculations - Verification
Mathematical models
|
ISBN |
94-007-7581-4
|
Formato |
Materiale a stampa  |
Livello bibliografico |
Monografia |
Lingua di pubblicazione |
eng
|
Nota di contenuto |
1 Errors Arising In Computer Simulation Methods -- 1.1 General scheme -- 1.2 Errors of mathematical models -- 1.3 Approximation errors -- 1.4 Numerical errors -- 2 Error Indicators -- 2.1 Error indicators and adaptive numerical methods -- 2.1.1 Error indicators for FEM solutions -- 2.1.2 Accuracy of error indicators -- 2.2 Error indicators for the energy norm -- 2.2.1 Error indicators based on interpolation estimates -- 2.2.2 Error indicators based on approximation of the error functional -- 2.2.3 Error indicators of the Runge type -- 2.3 Error indicators for goal-oriented quantities -- 2.3.1 Error indicators relying on the superconvergence of averaged fluxes in the primal and adjoint problems -- 2.3.2 Error indicators using the superconvergence of approximations in the primal problem -- 2.3.3 Error indicators based on partial equilibration of fluxes in the original problem -- 3 Guaranteed Error Bounds I -- 3.1 Ordinary differential equations -- 3.1.1 Derivation of guaranteed error bounds -- 3.1.2 Computation of error bounds -- 3.2 Partial differential equations -- 3.2.1 Maximal deviation from the exact solution -- 3.2.2 Minimal deviation from the exact solution -- 3.2.3 Particular cases -- 3.2.4 Problems with mixed boundary conditions -- 3.2.5 Estimates of global constants entering the majorant -- 3.2.6 Error majorants based on Poincar´e inequalities -- 3.2.7 Estimates with partially equilibrated fluxes -- 3.3 Error control algorithms -- 3.3.1 Global minimization of the majorant -- 3.3.2 Getting an error bound by local procedures -- 3.4 Indicators based on error majorants -- 3.5 Applications to adaptive methods -- 3.6 Combined (primal-dual) error norms and the majorant -- 4 Guaranteed Error Bounds II -- 4.1 Linear elasticity -- 4.1.1 Introduction -- 4.1.2 Euler–Bernoulli beam -- 4.1.3 The Kirchhoff–Love arch model -- 4.1.4 The Kirchhoff–Love plate -- 4.1.5 The Reissner–Mindlin plate -- 4.1.6 3D linear elasticity -- 4.1.7 The plane stress model -- 4.1.8 The plane strain model -- 4.2 The Stokes Problem -- 4.2.1 Divergence-free approximations -- 4.2.2 Approximations with nonzero divergence -- 4.2.3 Stokes problem in rotating system -- 4.3 A simple Maxwell type problem -- 4.3.1 Estimates of deviations from exact solutions -- 4.3.2 Numerical examples -- 4.4 Generalizations -- 4.4.1 Error majorant -- 4.4.2 Error minorant -- 5 Errors Generated By Uncertain Data -- 5.1 Mathematical models with incompletely known data -- 5.2 The accuracy limit -- 5.3 Estimates of the worst and best case scenario errors -- 5.4 Two-sided bounds of the radius of the solution set -- 5.5 Computable estimates of the radius of the solution set -- 5.5.1 Using the majorant -- 5.5.2 Using a reference solution -- 5.5.3 An advanced lower bound -- 5.6 Multiple sources of indeterminacy -- 5.6.1 Incompletely known right-hand side -- 5.6.2 The reaction diffusion problem -- 5.7 Error indication and indeterminate data -- 5.8 Linear elasticity with incompletely known Poisson ratio -- 5.8.1 Sensitivity of the energy functional -- 5.8.2 Example: axisymmetric model -- 6 Overview Of Other Results And Open Problems -- 6.1 Error estimates for approximations violating conformity -- 6.2 Linear elliptic equations -- 6.3 Time-dependent problems -- 6.4 Optimal control and inverse problems -- 6.5 Nonlinear boundary value problems -- 6.5.1 Variational inequalities -- 6.5.2 Elastoplasticity -- 6.5.3 Problems with power growth energy functionals -- 6.6 Modeling errors -- 6.7 Error bounds for iteration methods -- 6.7.1 General iteration algorithm -- 6.7.2 A priori estimates of errors -- 6.7.3 A posteriori estimates of errors -- 6.7.4 Advanced forms of error bounds -- 6.7.5 Systems of linear simultaneous equations -- 6.7.6 Ordinary differential equations -- 6.8 Roundoff errors -- 6.9 Open problems -- A Mathematical Background -- A.1 Vectors and tensors -- A.2 Spaces of functions -- A.2.1 Lebesgue and Sobolev spaces -- A.2.2 Boundary traces -- A.2.3 Linear functionals -- A.3 Inequalities -- A.3.1 The Hölder inequality -- A.3.2 The Poincaré and Friedrichs inequalities -- A.3.3 Korn’s inequality -- A.3.4 LBB inequality -- A.4 Convex functionals -- B Boundary Value Problems -- B.1 Generalized solutions of boundary value problems -- B.2 Variational statements of elliptic boundary value problems -- B.3 Saddle point statements of elliptic boundary value problems -- B.3.1 Introduction to the theory of saddle points -- B.3.2 Saddle point statements of linear elliptic problems -- B.3.3 Saddle point statements of nonlinear variational problems -- B.4 Numerical methods -- B.4.1 Finite difference methods -- B.4.2 Variational difference methods -- B.4.3 Petrov–Galerkin methods -- B.4.4 Mixed finite element methods -- B.4.5 Trefftz methods -- B.4.6 Finite volume methods -- B.4.7 Discontinuous Galerkin methods -- B.4.8 Fictitious domain methods -- C A Priori Verification Of Accuracy -- C.1 Projection error estimate -- C.2 Interpolation theory in Sobolev spaces -- C.3 A priori convergence rate estimates -- C.4 A priori error estimates for mixed FEM -- References -- Notation -- Index.
|
Record Nr. | UNINA-9910299716903321 |