Environmental data analysis with MatLab [[electronic resource] /] / William Menke, Joshua Menke |
Autore | Menke William |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier, c2012 |
Descrizione fisica | 1 online resource (282 p.) |
Disciplina | 363.7001/5118 |
Altri autori (Persone) | MenkeJoshua E <1976-> (Joshua Ephraim) |
Soggetto topico |
Environmental sciences - Mathematical models
Environmental sciences - Data processing |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-24992-8
9786613249920 0-12-391887-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Environmental Data Analysis with MatLab; Copyright; Dedication; Preface; Advice on scripting for beginners; Contents; Chapter 1: Data analysis with MatLab; 1.1. Why MatLab?; 1.2. Getting started with MatLab; 1.3. Getting organized; 1.4. Navigating folders; 1.5. Simple arithmetic and algebra; 1.6. Vectors and matrices; 1.7. Multiplication of vectors of matrices; 1.8. Element access; 1.9. To loop or not to loop; 1.10. The matrix inverse; 1.11. Loading data from a file; 1.12. Plotting data; 1.13. Saving data to a file; 1.14. Some advice on writing scripts; Problems
Chapter 2: A first look at data2.1. Look at your data!; 2.2. More on MatLab graphics; 2.3. Rate information; 2.4. Scatter plots and their limitations; Problems; Chapter 3: Probability and what it has to do with data analysis; 3.1. Random variables; 3.2. Mean, median, and mode; 3.3. Variance; 3.4. Two important probability density functions; 3.5. Functions of a random variable; 3.6. Joint probabilities; 3.7. Bayesian inference; 3.8. Joint probability density functions; 3.9. Covariance; 3.10. Multivariate distributions; 3.11. The multivariate Normal distributions 3.12. Linear functions of multivariate dataProblems; Chapter 4: The power of linear models; 4.1. Quantitative models, data, and model parameters; 4.2. The simplest of quantitative models; 4.3. Curve fitting; 4.4. Mixtures; 4.5. Weighted averages; 4.6. Examining error; 4.7. Least squares; 4.8. Examples; 4.9. Covariance and the behavior of error; Problems; Chapter 5: Quantifying preconceptions; 5.1. When least square fails; 5.2. Prior information; 5.3. Bayesian inference; 5.4. The product of Normal probability density distributions; 5.5. Generalized least squares 5.6. The role of the covariance of the data5.7. Smoothness as prior information; 5.8. Sparse matrices; 5.9. Reorganizing grids of model parameters; Problems; Chapter 6: Detecting periodicities; 6.1. Describing sinusoidal oscillations; 6.2. Models composed only of sinusoidal functions; 6.3. Going complex; 6.4. Lessons learned from the integral transform; 6.5. Normal curve; 6.6. Spikes; 6.7. Area under a function; 6.8. Time-delayed function; 6.9. Derivative of a function; 6.10. Integral of a function; 6.11. Convolution; 6.12. Nontransient signals; Problems Chapter 7: The past influences the present7.1. Behavior sensitive to past conditions; 7.2. Filtering as convolution; 7.3. Solving problems with filters; 7.4. Predicting the future; 7.5. A parallel between filters and polynomials; 7.6. Filter cascades and inverse filters; 7.7. Making use of what you know; Problems; Chapter 8: Patterns suggested by data; 8.1. Samples as mixtures; 8.2. Determining the minimum number of factors; 8.3. Application to the Atlantic Rocks dataset; 8.4. Spiky factors; 8.5. Time-Variable functions; Problems; Chapter 9: Detecting correlations among data 9.1. Correlation is covariance |
Record Nr. | UNINA-9910456680203321 |
Menke William | ||
Amsterdam ; ; Boston, : Elsevier, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Environmental data analysis with MatLab [[electronic resource] /] / William Menke, Joshua Menke |
Autore | Menke William |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier, c2012 |
Descrizione fisica | 1 online resource (282 p.) |
Disciplina | 363.7001/5118 |
Altri autori (Persone) | MenkeJoshua E <1976-> (Joshua Ephraim) |
Soggetto topico |
Environmental sciences - Mathematical models
Environmental sciences - Data processing |
ISBN |
1-283-24992-8
9786613249920 0-12-391887-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Environmental Data Analysis with MatLab; Copyright; Dedication; Preface; Advice on scripting for beginners; Contents; Chapter 1: Data analysis with MatLab; 1.1. Why MatLab?; 1.2. Getting started with MatLab; 1.3. Getting organized; 1.4. Navigating folders; 1.5. Simple arithmetic and algebra; 1.6. Vectors and matrices; 1.7. Multiplication of vectors of matrices; 1.8. Element access; 1.9. To loop or not to loop; 1.10. The matrix inverse; 1.11. Loading data from a file; 1.12. Plotting data; 1.13. Saving data to a file; 1.14. Some advice on writing scripts; Problems
Chapter 2: A first look at data2.1. Look at your data!; 2.2. More on MatLab graphics; 2.3. Rate information; 2.4. Scatter plots and their limitations; Problems; Chapter 3: Probability and what it has to do with data analysis; 3.1. Random variables; 3.2. Mean, median, and mode; 3.3. Variance; 3.4. Two important probability density functions; 3.5. Functions of a random variable; 3.6. Joint probabilities; 3.7. Bayesian inference; 3.8. Joint probability density functions; 3.9. Covariance; 3.10. Multivariate distributions; 3.11. The multivariate Normal distributions 3.12. Linear functions of multivariate dataProblems; Chapter 4: The power of linear models; 4.1. Quantitative models, data, and model parameters; 4.2. The simplest of quantitative models; 4.3. Curve fitting; 4.4. Mixtures; 4.5. Weighted averages; 4.6. Examining error; 4.7. Least squares; 4.8. Examples; 4.9. Covariance and the behavior of error; Problems; Chapter 5: Quantifying preconceptions; 5.1. When least square fails; 5.2. Prior information; 5.3. Bayesian inference; 5.4. The product of Normal probability density distributions; 5.5. Generalized least squares 5.6. The role of the covariance of the data5.7. Smoothness as prior information; 5.8. Sparse matrices; 5.9. Reorganizing grids of model parameters; Problems; Chapter 6: Detecting periodicities; 6.1. Describing sinusoidal oscillations; 6.2. Models composed only of sinusoidal functions; 6.3. Going complex; 6.4. Lessons learned from the integral transform; 6.5. Normal curve; 6.6. Spikes; 6.7. Area under a function; 6.8. Time-delayed function; 6.9. Derivative of a function; 6.10. Integral of a function; 6.11. Convolution; 6.12. Nontransient signals; Problems Chapter 7: The past influences the present7.1. Behavior sensitive to past conditions; 7.2. Filtering as convolution; 7.3. Solving problems with filters; 7.4. Predicting the future; 7.5. A parallel between filters and polynomials; 7.6. Filter cascades and inverse filters; 7.7. Making use of what you know; Problems; Chapter 8: Patterns suggested by data; 8.1. Samples as mixtures; 8.2. Determining the minimum number of factors; 8.3. Application to the Atlantic Rocks dataset; 8.4. Spiky factors; 8.5. Time-Variable functions; Problems; Chapter 9: Detecting correlations among data 9.1. Correlation is covariance |
Record Nr. | UNINA-9910781791903321 |
Menke William | ||
Amsterdam ; ; Boston, : Elsevier, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Environmental data analysis with MatLab / / William Menke, Joshua Menke |
Autore | Menke William |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier, c2012 |
Descrizione fisica | 1 online resource (282 p.) |
Disciplina |
363.7001/5118
363.70015118 |
Altri autori (Persone) | MenkeJoshua E <1976-> (Joshua Ephraim) |
Soggetto topico |
Environmental sciences - Mathematical models
Environmental sciences - Data processing |
ISBN |
9786613249920
9781283249928 1283249928 9780123918871 0123918871 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Environmental Data Analysis with MatLab; Copyright; Dedication; Preface; Advice on scripting for beginners; Contents; Chapter 1: Data analysis with MatLab; 1.1. Why MatLab?; 1.2. Getting started with MatLab; 1.3. Getting organized; 1.4. Navigating folders; 1.5. Simple arithmetic and algebra; 1.6. Vectors and matrices; 1.7. Multiplication of vectors of matrices; 1.8. Element access; 1.9. To loop or not to loop; 1.10. The matrix inverse; 1.11. Loading data from a file; 1.12. Plotting data; 1.13. Saving data to a file; 1.14. Some advice on writing scripts; Problems
Chapter 2: A first look at data2.1. Look at your data!; 2.2. More on MatLab graphics; 2.3. Rate information; 2.4. Scatter plots and their limitations; Problems; Chapter 3: Probability and what it has to do with data analysis; 3.1. Random variables; 3.2. Mean, median, and mode; 3.3. Variance; 3.4. Two important probability density functions; 3.5. Functions of a random variable; 3.6. Joint probabilities; 3.7. Bayesian inference; 3.8. Joint probability density functions; 3.9. Covariance; 3.10. Multivariate distributions; 3.11. The multivariate Normal distributions 3.12. Linear functions of multivariate dataProblems; Chapter 4: The power of linear models; 4.1. Quantitative models, data, and model parameters; 4.2. The simplest of quantitative models; 4.3. Curve fitting; 4.4. Mixtures; 4.5. Weighted averages; 4.6. Examining error; 4.7. Least squares; 4.8. Examples; 4.9. Covariance and the behavior of error; Problems; Chapter 5: Quantifying preconceptions; 5.1. When least square fails; 5.2. Prior information; 5.3. Bayesian inference; 5.4. The product of Normal probability density distributions; 5.5. Generalized least squares 5.6. The role of the covariance of the data5.7. Smoothness as prior information; 5.8. Sparse matrices; 5.9. Reorganizing grids of model parameters; Problems; Chapter 6: Detecting periodicities; 6.1. Describing sinusoidal oscillations; 6.2. Models composed only of sinusoidal functions; 6.3. Going complex; 6.4. Lessons learned from the integral transform; 6.5. Normal curve; 6.6. Spikes; 6.7. Area under a function; 6.8. Time-delayed function; 6.9. Derivative of a function; 6.10. Integral of a function; 6.11. Convolution; 6.12. Nontransient signals; Problems Chapter 7: The past influences the present7.1. Behavior sensitive to past conditions; 7.2. Filtering as convolution; 7.3. Solving problems with filters; 7.4. Predicting the future; 7.5. A parallel between filters and polynomials; 7.6. Filter cascades and inverse filters; 7.7. Making use of what you know; Problems; Chapter 8: Patterns suggested by data; 8.1. Samples as mixtures; 8.2. Determining the minimum number of factors; 8.3. Application to the Atlantic Rocks dataset; 8.4. Spiky factors; 8.5. Time-Variable functions; Problems; Chapter 9: Detecting correlations among data 9.1. Correlation is covariance |
Record Nr. | UNINA-9910826804703321 |
Menke William | ||
Amsterdam ; ; Boston, : Elsevier, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|