Health informatics on FHIR : how HL7's API is transforming healthcare / / Mark L. Braunstein
| Health informatics on FHIR : how HL7's API is transforming healthcare / / Mark L. Braunstein |
| Autore | Braunstein Mark L. |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (481 pages) |
| Disciplina | 362.110285 |
| Collana | Health Informatics |
| Soggetto topico |
Health services administration - United States - Data processing
Medical informatics |
| ISBN |
9783030915636
9783030915629 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Foreword -- Preface -- Acknowledgments -- About This Book -- References -- Contents -- Part I: Perspective -- Chapter 1: A Brief History and Overview of Health Informatics -- 1.1 Introduction -- 1.2 Early Electronic Records and Clinical Decision Support -- 1.3 Health Information Exchange -- 1.4 The Interoperability Challenge -- 1.5 Exciting, Transformational Times -- 1.6 A Pivotal Point -- References -- Chapter 2: The US Health Care System -- 2.1 Introduction -- 2.2 High Costs, Mediocre Results -- 2.3 The Uninsured Can Raise Costs -- 2.4 The Payment Model -- 2.5 Alternate Payment Models -- 2.6 Wasteful Spending -- 2.7 Chronic Disease Drives Most Costs -- 2.8 Alternate Care Models: Health Maintenance Organizations (HMOs) -- 2.9 Alternate Care Models: The Patient Centered Medical Home (PCMH) -- 2.10 Alternate Payment Models: Accountable Care Organizations (ACOs) -- 2.11 The Role of Health Informatics in Value-Based Care -- 2.12 A Learning Health System -- 2.13 Informatics for a Learning Health System -- 2.14 Recap -- References -- Chapter 3: Health Informatics in the Real World -- 3.1 Introduction -- 3.2 Hospital EHR Adoption and Functionality Challenges -- 3.3 Similar Provider EHR Challenges -- 3.4 The HITECH Program -- 3.5 Health IT Certification -- 3.6 Meaningful Use -- 3.7 Physician EHR Satisfaction -- 3.8 EHR Challenges -- 3.9 A Universal Health App Platform -- 3.10 Innovative EHR Functionality -- 3.11 Recap -- References -- Part II: Beyond Direct Patient Care -- Chapter 4: The Empowered Patient -- 4.1 Introduction -- 4.2 Personal Health Records -- 4.3 A Personally Controlled Health Record (PCHR) -- 4.4 PHR Challenges -- 4.5 Bridge Patient Portal -- 4.6 Apple's FHIR-Based Health App -- 4.7 Blue Button -- 4.8 OpenNotes® -- 4.9 Telecare -- 4.10 India on FHIR -- 4.11 MIDATA -- 4.12 eMediplan and HCI -- 4.13 Recap.
References -- Chapter 5: Health Information Exchange -- 5.1 Introduction -- 5.2 The Interoperability Challenge -- 5.2.1 Transport Interoperability -- 5.2.2 Structured Interoperability -- 5.2.3 Semantic Interoperability -- 5.3 The HL7 Clinical Information Modeling Initiative -- 5.4 PenRad Applicadia Video -- 5.5 Semantic Interoperability Through Machine Learning -- 5.6 Interoperability and Meaningful Use -- 5.7 HIPAA -- 5.8 Privacy -- 5.9 Security -- 5.10 Trust -- 5.11 Blockchain in Health Care -- 5.12 Health Information Exchange: Direct -- 5.13 Health Information Exchange: HL7 Messaging -- 5.14 Health Information Exchange: Semantic Interoperability -- 5.15 The Federated Model -- 5.16 The OneFlorida Clinical Research Consortium -- 5.17 CommonWell Health Alliance® -- 5.18 Data Lockers -- 5.19 The Future of Health Information Exchange -- 5.20 Diameter Health Fusion -- 5.21 InterSystems HealthShare -- 5.22 InteropEHRate -- 5.22.1 Interoperate Health Care Professional App -- 5.23 Final Thoughts -- References -- Chapter 6: FHIR Applications in Payment -- 6.1 Interoperability in the Payer Space -- 6.2 The Da Vinci Project -- 6.3 Humana -- 6.4 1upHealth -- 6.5 Gainwell Technologies -- 6.6 Surescripts® -- 6.7 Final Reflections -- 6.8 Recap -- References -- Part III: Interoperability Essentials -- Chapter 7: Data and Interoperability Standards -- 7.1 Introduction -- 7.2 Why Standards? -- 7.3 Standards Structure and Purpose Evolution -- 7.4 Standards Technology Evolution -- 7.5 The Key Data Standards -- 7.6 International Classification of Diseases -- 7.7 Current Procedural Terminology (CPT®) -- 7.8 Logical Observation Identifiers Names and Codes (LOINC®) -- 7.9 National Drug Codes (NDC) -- 7.10 RxNorm -- 7.11 SNOMED Clinical Terms (SNOMED CT) -- 7.12 Recap -- References -- Chapter 8: Pre-FHIR Interoperability and Decision Support Standards -- 8.1 Introduction. 8.2 HL7 Evolution -- 8.3 HL7 V2 Versus V3 -- 8.4 Reference Information Model (RIM) -- 8.5 RIM and FHIR -- 8.6 Clinical Document Architecture Uses RIM -- 8.7 C-CDA Templates -- 8.8 Clinical Decision Support (CDS) -- 8.9 Dr. Homer Warner's HELP System -- 8.10 MYCIN -- 8.11 Internist -- 8.12 Arden: A Standard for Medical Logic -- 8.13 Arden Explained -- 8.14 ArdenSuite -- 8.14.1 Fuzzy Arden Syntax -- 8.15 Other Tools for CDS Authoring and Dissemination -- 8.15.1 Infobuttons -- 8.15.2 MAGICapp -- 8.15.3 Zynx Health -- 8.16 Recap -- References -- Chapter 9: FHIR -- 9.1 The Origins of FHIR -- 9.2 Grahame's FHIR Philosophy -- 9.3 FHIR Modules -- 9.4 FHIR Resources -- 9.5 FHIR Resource Representations -- 9.6 FHIR Resource Examples -- 9.7 FHIR Resource Activity -- 9.8 FHIR Extensions -- 9.9 FHIR Resource IDs -- 9.10 FHIR Enabling Existing Systems -- 9.11 FHIR API -- 9.12 FHIR Profiles and Implementation Guides -- 9.13 FHIRPath -- 9.14 Public FHIR Servers -- 9.15 FHIR Development Platforms and Tools -- 9.15.1 Health Samurai -- 9.15.2 Georgia Tech Health Data Analytics Platform (HDAP) -- 9.15.3 Android FHIR SDK -- 9.16 FHIR Tools from the Land Down under -- 9.16.1 Australia's My Health Record -- 9.16.2 Insurance Information APIs -- 9.16.3 CDA Document APIs -- 9.16.4 Personal Health Summary APIs -- 9.16.5 Alcidion Miya Precision -- 9.16.6 Case Based Learning: CBL on FHIR -- 9.17 FHIR Accelerators -- 9.17.1 The Gravity Project -- 9.17.2 Vulcan -- 9.18 Other FHIR Resources -- 9.19 FHIR Genomics -- 9.20 Recap -- References -- Chapter 10: SMART on FHIR -- 10.1 A Grand Challenge -- 10.2 SMART Evolution -- 10.3 SMART Technology Stack -- 10.4 Developer Support -- 10.5 OAuth2 -- 10.6 Scopes and Permissions -- 10.7 OpenID Connect -- 10.8 SMART App User and Access Authorization -- 10.9 SMART Backend Services -- 10.10 CDS Hooks -- 10.11 FHIR Bulk Data Access (Flat FHIR). 10.12 SMART Health Cards -- 10.13 SMART Markers -- 10.14 Sync for Science -- 10.15 A Healthcare System Develops SMART Apps -- 10.16 Graphite Health -- 10.17 Recap -- References -- Part IV: New Frontiers -- Chapter 11: mHealth -- 11.1 Patient Roles in Chronic Disease -- 11.2 Does mHealth Produce Positive Results? -- 11.3 mHealth Data Quality -- 11.4 The US Food and Drug Administration (FDA) -- 11.5 AliveCor® -- 11.6 Device and App Interoperability -- 11.7 Commercial mHealth Data Integrators -- 11.8 Open mHealth -- 11.9 Open mHealth Tools -- 11.10 Open mHealth to FHIR -- 11.11 Recap -- References -- Chapter 12: Public and Population Health -- 12.1 Introduction -- 12.2 The Roots of Public Health -- 12.3 Public Health Today -- 12.4 FHIR Genomics Reporting for Newborn Screening -- 12.5 The VCF File Format -- 12.6 CDC's Computable Clinical Guidelines -- 12.7 Opioid Appropriate Prescribing Use Case -- 12.8 WHO SMART Guidelines -- 12.9 Electronic Case Reporting -- 12.10 eCR Now -- 12.11 The Future of Public Health -- 12.12 Population Health -- 12.13 popHealth® -- 12.14 Health Sciences SC Bulk FHIR for Population Health -- 12.15 RIMIDI -- 12.16 Recap -- References -- Chapter 13: FHIR Applications Showcase -- 13.1 Increased Scope and Sophistication of FHIR Activity -- 13.2 DICOM on FHIR -- 13.3 The EU's InteropEHRate Andaman7 Patient App -- 13.4 The Sovereignty Network's Cure8 Patient FHIR App -- 13.5 mCODE™ and CodeX: A FHIR Standard for Cancer Care -- 13.6 MedWise®/Tabula Rasa HealthCare -- 13.7 Evidence Based Medicine -- 13.8 Evidence Based Medicine on FHIR -- 13.9 Recap -- References -- Postscript -- Useful Web Tools and Resources -- Glossary of Terms and Acronyms -- Index. |
| Record Nr. | UNINA-9910544874203321 |
Braunstein Mark L.
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Smart Hospitals : 5G, 6G and Moving Beyond Connectivity
| Smart Hospitals : 5G, 6G and Moving Beyond Connectivity |
| Autore | Kumar Arun |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (275 pages) |
| Disciplina | 362.110285 |
| Altri autori (Persone) |
GuptaManoj
SharmaSanjeev SharmaEr. Himanshu AurangzebKhursheed |
| Soggetto topico |
Internet of things
Medical technology |
| ISBN |
9781394275472
1394275471 9781394275458 1394275455 9781394275465 1394275463 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Chapter 1 Smart Hospitals: Integrating Connectivity and Intelligence -- 1.1 Introduction -- 1.1.1 Exploring the Concept of Smart Hospitals -- 1.1.2 Working of Smart Hospitals -- 1.2 Implementation of Smart Hospitals -- 1.2.1 Benefits of Smart Hospitals -- 1.2.1.1 Benefits of Implementing IoT in Healthcare -- 1.2.1.2 Benefits of Adopting 5G in Healthcare -- 1.2.2 Challenges of Smart Hospitals -- 1.2.3 Opportunities -- 1.3 Literature Review -- 1.4 Conclusion -- References -- Chapter 2 Evolution of 5G and 6G Cellular Systems -- 2.1 Introduction -- 2.2 Objectives of the Study -- 2.3 Scope and Significance -- 2.4 Basics of Cellular Technology -- 2.4.1 Overview of 1G to 4G -- 2.4.2 Key Features and Advancements -- 2.5 5G Technology -- 2.5.1 Introduction to 5G -- 2.5.2 Key Features and Components -- 2.5.3 Deployment Challenges -- 2.5.4 Use Cases and Applications -- 2.6 Towards 6G -- 2.6.1 Definition and Concept of 6G -- 2.6.2 Envisioned Applications and Use Cases -- 2.6.3 Key Technology Requirements -- 2.7 Technologies Enabling 6G -- 2.7.1 Artificial Intelligence and Machine Learning -- 2.7.2 Terahertz Communication -- 2.7.3 Quantum Communication -- 2.8 Challenges in 6G Developments -- 2.8.1 Technical Challenges -- 2.8.2 Regularity and Standardization Challenges -- 2.8.3 Security and Privacy Concerns -- 2.9 Future Prospects and Industry Impacts -- 2.9.1 Anticipated Benefits of 6G -- 2.9.2 Potential Disruptions in Industries -- 2.9.3 Economic and Social Implications -- 2.10 Comparative Analysis: 5G Versus 6G -- 2.10.1 Speed and Latency -- 2.10.2 Network Capacity -- 2.10.3 Energy Efficiency -- 2.10.4 User Experience -- 2.11 Main Contribution of 5G and 6G Evolution -- 2.12 Limitations of 5G and 6G Cellular System -- 2.12.1 Limitations of 5G.
2.12.2 Potential Limitations of 6G (Anticipated) -- 2.13 Conclusion -- 2.13.1 Summary of Findings -- 2.13.2 Future Research Directions -- References -- Chapter 3 A Review on Augmented Reality and Virtual Reality Technologies in the Field of Healthcare -- Abbreviation -- 3.1 Introduction -- 3.2 Augmented Reality in Healthcare -- 3.2.1 Surgical Guidance -- 3.2.2 Enhancement of Decision-Making -- 3.2.3 Improved Collaboration and Training -- 3.2.4 Medical Diagnosis and Visualization -- 3.2.5 Remote Assistance and Collaboration -- 3.3 Virtual Reality in Healthcare -- 3.3.1 Medical Training and Education -- 3.3.2 Exposure Therapy -- 3.3.3 Painless Treatment -- 3.3.4 Physical Rehabilitation -- 3.4 Advantages of AR and VR in the Healthcare -- 3.4.1 Possible Remedies for Bridging the Gap -- 3.5 Challenges and Future Scope -- 3.6 Conclusion -- References -- Chapter 4 Compressed Sensing Reconstruction Algorithms for Medical Images - A Comparison -- 4.1 Introduction -- 4.2 Concept of Compressed Sensing Theory -- 4.3 Comprehensive Sensing Reconstruction Algorithms -- 4.4 Results and Discussion -- 4.5 Contribution of the Work -- 4.6 Limitations -- 4.7 Conclusion -- References -- Chapter 5 Internet of Medical Things (IoMT) -- 5.1 Introduction: Internet of Medical Things -- 5.1.1 Defining the IoMT -- 5.1.2 Development and Growth of IoMT Technologies -- 5.1.2.1 Early Beginnings of IoMT -- 5.1.2.2 Advancements in Sensor Technologies -- 5.1.2.3 Connectivity Solutions for IoMT -- 5.1.2.4 Data Analytics and AI in IoMT -- 5.2 Wearable Devices and Sensors for IoMT -- 5.2.1 Types of Wearable Devices -- 5.2.1.1 Smartwatches -- 5.2.1.2 Wristbands -- 5.2.1.3 Neckbands -- 5.2.1.4 Belts -- 5.2.1.5 Smart Clothing -- 5.2.1.6 Smart Rings -- 5.2.1.7 Smart Glasses -- 5.2.1.8 Smart Patches -- 5.2.1.9 Smart Earbuds -- 5.3 Challenges Faced in Customizing Wearable Devices. 5.4 Real-World Examples of IoMT Implementation -- 5.4.1 Remote Patient Monitoring (RPM) -- 5.4.2 Wearable Devices for Chronic Disease Management -- 5.4.3 Smart Hospitals and Healthcare Facilities -- 5.4.4 Telemedicine and Virtual Care -- 5.4.5 Clinical Trials and Research -- 5.5 Conclusions -- References -- Chapter 6 The Impact of 5G and 6G on Healthcare -- 6.1 Introduction: The Evolution of Wireless Connectivity: A Journey from 4G to 6G -- 6.1.1 4G Technology: The Foundation of Mobile Broadband -- 6.1.2 5G Technology: Unleashing the Power of Connectivity -- 6.1.3 6G Technology: Envisioning the Future Frontier -- 6.1.4 Revolutionizing Healthcare: Significance of 4G, 5G, and the Anticipated Impact of 6G -- 6.2 Telemedicine and Remote Patient Monitoring -- 6.3 IoT in Healthcare and Advanced Medical Imaging -- 6.4 Anticipated Impact of 6G in Healthcare -- 6.5 Current State of Healthcare Connectivity -- 6.5.1 Traditional Communication Methods -- 6.5.2 Electronic Health Records (EHR) and Health Information Exchange (HIE) -- 6.5.3 Telemedicine and Video Conferencing -- 6.5.4 Mobile Health (mHealth) Apps and Wearables -- 6.5.5 Unified Communication Platforms -- 6.5.6 Challenges and Future Trends -- 6.6 Limitations and Hurdles in Current Healthcare Communication Systems -- 6.6.1 Interoperability Issues -- 6.6.2 Security and Privacy Concerns -- 6.6.3 Fragmented Communication Channels -- 6.6.4 Resistance to Technology Adoption -- 6.6.5 Limited Patient Engagement -- 6.6.6 Inadequate Infrastructure and Connectivity -- 6.7 Impact of 5G on Healthcare -- 6.7.1 Enhanced Telemedicine and Remote Care -- 6.7.2 Precision Medicine and Personalized Care -- 6.8 The 6G Horizon: Unveiling the Potential Frontiers of Advanced Connectivity -- 6.9 Terahertz-Frequency Communication -- 6.10 Ultra-Reliable, Low-Latency Communication (URLLC) -- 6.11 Holographic Communication. 6.12 Advanced Artificial Intelligence Integration -- 6.13 Massive Device Connectivity -- 6.14 Environmental and Energy Efficiency -- 6.15 Designing an Antenna for Healthcare Applications -- 6.16 Conclusion -- References -- Chapter 7 Design and Fabrication of Vehicle Automation Systems -- Nomenclatures -- 7.1 Introduction -- 7.2 Related Work -- 7.2.1 Innovation in Autonomous Vehicles -- 7.3 Design of the Project -- 7.3.1 Arduino Uno -- 7.3.2 Ultrasonic Sensor -- 7.3.3 Motor Driver Shield -- 7.3.4 Servo Motor -- 7.3.5 Battery -- 7.3.6 Switch -- 7.3.7 DC Motors -- 7.4 Fabrication -- 7.4.1 Algorithm -- 7.5 Conclusion -- 7.5.1 Implementation -- 7.6 Future Scope -- References -- Chapter 8 Design and Optimization of Antennas with Improved ON-OFF Body Performance for Biomedical Applications -- 8.1 Introduction -- 8.2 Literature Review -- 8.3 Antenna Design -- 8.3.1 Antenna Without Phantom Model -- 8.3.1.1 Parametric Analysis -- 8.3.1.2 Stack Diagram -- 8.3.1.3 Results Scattering Parameters (S-Parameters) -- 8.3.1.4 Voltage Standing Wave Ratio (VSWR) -- 8.3.1.5 Radiation Pattern -- 8.3.2 Antenna with Implantable Phantom Model -- 8.3.2.1 Parametric List of the Phantom Model -- 8.3.2.2 Results S-Parameters -- 8.3.2.3 VSWR -- 8.3.2.4 Radiation Pattern -- 8.3.2.5 Specific Absorption Rate (SAR) -- 8.3.3 Antenna with a Wearable Phantom Model -- 8.3.3.1 Results S-Parameters -- 8.3.3.2 VSWR -- 8.3.3.3 Radiation Pattern -- 8.3.3.4 SAR -- 8.3.4 Antenna Placed 10mm Away from the Phantom Model -- 8.3.4.1 Result S-Parameters -- 8.3.4.2 VSWR -- 8.3.4.3 Radiation Pattern -- 8.3.4.4 SAR -- 8.3.5 Antenna Placed 15mm Away from Phantom Model -- 8.3.5.1 Results S-Parameters -- 8.3.5.2 VSWR -- 8.3.5.3 Radiation Pattern -- 8.3.5.4 SAR -- 8.4 Comparison Results -- 8.4.1 S-Parameters -- 8.4.2 Gain -- 8.4.3 SAR -- 8.5 Limitations -- 8.6 Conclusion -- References. Chapter 9 Beyond 5G-Based Smart Hospitals: Integrating Connectivity and Intelligence -- 9.1 Introduction -- 9.2 Related Works -- 9.3 Methodology -- 9.4 6G-Enabled SHS Applications and Challenges -- 9.4.1 Applications -- 9.4.1.1 In-Body, On-Body, Off-Body Communications -- 9.4.1.2 Intelligent Nanoscale Inner Body Communications -- 9.4.1.3 Human Bond Communications -- 9.4.1.4 Visible Light Communication -- 9.4.2 Research Challenges -- 9.4.2.1 Security and Privacy -- 9.4.2.2 Data Sharing -- 9.4.2.3 Voluminous Data -- 9.4.2.4 High Power Consumption -- 9.4.2.5 Lack of Standardization -- 9.4.2.6 Computationally Expensive -- 9.4.2.7 Ownership of Data and Ethical Considerations -- 9.5 Future Research Directions and Recommendations -- 9.5.1 Future Directions -- 9.5.2 Recommendations -- 9.6 Conclusions -- References -- Chapter 10 Patient Monitoring Using 5G, with MIMO-NOMA for mm-Wave Communications in Heterogeneous Networks -- 10.1 Introduction -- 10.2 Related Works -- 10.3 NOMA Architecture -- 10.4 Power Allocation to the 5G-Enabled NOMA Users and Hospital -- 10.5 NOMA-MIMO System -- 10.6 Results and Discussion -- 10.6.1 BER Analysis of Number of Users -- 10.6.2 Outage Probability Using NOMA Power Allocation -- 10.6.3 Power Consumption Between NOMA and OMA Users -- 10.7 Conclusion and Future Scope -- References -- Chapter 11 A Review on the Internet of Medical Things -- 11.1 Introduction -- 11.1.1 Definition -- 11.2 Architecture of IoMT -- 11.2.1 The Role of IoMT in Healthcare -- 11.2.1.1 Data-Driven Decisions -- 11.2.1.2 Smart Medical Devices -- 11.2.1.3 Efficient Processes -- 11.2.1.4 Global Assistance -- 11.2.2 Types of IoMT Devices -- 11.2.2.1 On-Body Segment -- 11.2.2.2 In-Home Segment -- 11.2.2.3 Community Segment -- 11.2.2.4 In-Hospital Segment -- 11.3 IoMT - Applications, Benefits and Challenges -- 11.3.1 Applications of IoMT. 11.3.1.1 The Sensor Patch Detects Blood Leakage During Hemodialysis. |
| Record Nr. | UNINA-9911019923303321 |
Kumar Arun
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||