Mathematical asset management / / Thomas Hoglund
| Mathematical asset management / / Thomas Hoglund |
| Autore | Hoglund Thomas |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2008 |
| Descrizione fisica | 1 online resource (234 p.) |
| Disciplina | 332.601/5195 |
| Soggetto topico |
Derivative securities - Mathematical models
Risk management - Mathematical models Investment analysis - Mathematical models |
| ISBN |
9786611374167
9781281374165 1281374164 9780470293560 047029356X 9780470293553 0470293551 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Mathematical Asset Management; CONTENTS; Preface; 1 Interest Rate; 1.1 Flat Rate; 1.1.1 Compound Interest; 1.1.2 Present Value; 1.1.3 Cash Streams; 1.1.4 Effective Rate; 1.1.5 Bonds; 1.1.6 The Effective Rate as a Measure of Valuation; 1.2 Dependence on the Maturity Date; 1.2.1 Zero-Coupon Bonds; 1.2.2 Arbitrage-Free Cash Streams; 1.2.3 The Arbitrage Theorem; 1.2.4 The Movements of the Interest Rate Curve; 1.2.5 Sensitivity to Change of Rates; 1.2.6 Immunization; 1.3 Notes; 2 Further Financial Instruments; 2.1 Stocks; 2.1.1 Earnings, Interest Rate, and Stock Price; 2.2 Forwards; 2.3 Options
2.3.1 European Options2.3.2 American Options; 2.3.3 Option Strategies; 2.4 Further Exercises; 2.5 Notes; 3 Trading Strategies; 3.1 Trading Strategies; 3.1.1 Model Assumptions; 3.1.2 Interest Rate; 3.1.3 Exotic Options; 3.2 An Asymptotic Result; 3.2.1 The Model of Cox, Ross, and Rubinstein; 3.2.2 An Asymptotic Result; 3.3 Implementing Trading Strategies; 3.3.1 Portfolio Insurance; 4 Stochastic Properties of Stock Prices; 4.1 Growth; 4.1.1 The Distribution of the Growth; 4.1.2 Drift and Volatility; 4.1.3 The Stability of the Volatility Estimator; 4.2 Return; 4.3 Covariation 4.3.1 The Asymptotic Distribution of the Estimated Covariance Matrix5 Trading Strategies with Clock Time Horizon; 5.1 Clock Time Horizon; 5.2 Black-Scholes Pricing Formulas; 5.2.1 Sensitivity to Perturbations; 5.2.2 Hedging a Written Call; 5.2.3 Three Options Strategies Again; 5.3 The Black-Scholes Equation; 5.4 Trading Strategies for Several Assets; 5.4.1 An Unsymmetrical Formulation; 5.4.2 A Symmetrical Formulation; 5.4.3 Examples; 5.5 Notes; 6 Diversification; 6.1 Risk and Diversification; 6.1.1 The Minimum-Variance Portfolio; 6.1.2 Stability of the Estimates of the Weights 6.2 Growth Portfolios6.2.1 The Auxiliary Portfolio; 6.2.2 Maximal Drift; 6.2.3 Constraint on Portfolio Volatility; 6.2.4 Constraints on Total Stock Weight; 6.2.5 Constraints on Total Stock Weight and Volatility; 6.2.6 The Efficient Frontier; 6.2.7 Summary; 6.3 Rebalancing; 6.3.1 The Portfolio as a Function of the Stocks; 6.3.2 Empirical Verification; 6.4 Optimal Portfolios with Positive Weights; 6.5 Notes; 7 Covariation with the Market; 7.1 Beta; 7.1.1 The Market; 7.1.2 Beta Value; 7.2 Portfolios Related to the Market; 7.2.1 The Beta Portfolio; 7.2.2 Stability of the Estimates of the Weights 7.2.3 Market Neutral Portfolios7.3 Capital Asset Pricing Model; 7.3.1 The CAPM Identity; 7.3.2 Consequences of CAPM; 7.3.3 The Market Portfolio; 7.4 Notes; 8 Performance and Risk measures; 8.1 Performance Measures; 8.2 Risk Measures; 8.2.1 Value at Risk; 8.2.2 Downside Risk; 8.3 Risk Adjustment; 9 Simple Covariation; 9.1 Equal Correlations; 9.1.1 Matrix Calculations; 9.1.2 Optimal Portfolios; 9.1.3 Comparison with the General Model; 9.1.4 Positive Weights; 9.2 Multiplicative Correlations; 9.2.1 Uniqueness of the Parameters; 9.2.2 Matrix Calculations; 9.2.3 Parameter Estimation 9.2.4 Optimal Portfolios |
| Record Nr. | UNINA-9911019955403321 |
Hoglund Thomas
|
||
| Hoboken, N.J., : Wiley-Interscience, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical asset management [[electronic resource] /] / Thomas Höglund
| Mathematical asset management [[electronic resource] /] / Thomas Höglund |
| Autore | Höglund Thomas |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2008 |
| Descrizione fisica | 1 online resource (234 p.) |
| Disciplina |
332.601/5195
332.6015195 |
| Soggetto topico |
Derivative securities - Mathematical models
Risk management - Mathematical models Investment analysis - Mathematical models |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-37416-4
9786611374167 0-470-29356-X 0-470-29355-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Mathematical Asset Management; CONTENTS; Preface; 1 Interest Rate; 1.1 Flat Rate; 1.1.1 Compound Interest; 1.1.2 Present Value; 1.1.3 Cash Streams; 1.1.4 Effective Rate; 1.1.5 Bonds; 1.1.6 The Effective Rate as a Measure of Valuation; 1.2 Dependence on the Maturity Date; 1.2.1 Zero-Coupon Bonds; 1.2.2 Arbitrage-Free Cash Streams; 1.2.3 The Arbitrage Theorem; 1.2.4 The Movements of the Interest Rate Curve; 1.2.5 Sensitivity to Change of Rates; 1.2.6 Immunization; 1.3 Notes; 2 Further Financial Instruments; 2.1 Stocks; 2.1.1 Earnings, Interest Rate, and Stock Price; 2.2 Forwards; 2.3 Options
2.3.1 European Options2.3.2 American Options; 2.3.3 Option Strategies; 2.4 Further Exercises; 2.5 Notes; 3 Trading Strategies; 3.1 Trading Strategies; 3.1.1 Model Assumptions; 3.1.2 Interest Rate; 3.1.3 Exotic Options; 3.2 An Asymptotic Result; 3.2.1 The Model of Cox, Ross, and Rubinstein; 3.2.2 An Asymptotic Result; 3.3 Implementing Trading Strategies; 3.3.1 Portfolio Insurance; 4 Stochastic Properties of Stock Prices; 4.1 Growth; 4.1.1 The Distribution of the Growth; 4.1.2 Drift and Volatility; 4.1.3 The Stability of the Volatility Estimator; 4.2 Return; 4.3 Covariation 4.3.1 The Asymptotic Distribution of the Estimated Covariance Matrix5 Trading Strategies with Clock Time Horizon; 5.1 Clock Time Horizon; 5.2 Black-Scholes Pricing Formulas; 5.2.1 Sensitivity to Perturbations; 5.2.2 Hedging a Written Call; 5.2.3 Three Options Strategies Again; 5.3 The Black-Scholes Equation; 5.4 Trading Strategies for Several Assets; 5.4.1 An Unsymmetrical Formulation; 5.4.2 A Symmetrical Formulation; 5.4.3 Examples; 5.5 Notes; 6 Diversification; 6.1 Risk and Diversification; 6.1.1 The Minimum-Variance Portfolio; 6.1.2 Stability of the Estimates of the Weights 6.2 Growth Portfolios6.2.1 The Auxiliary Portfolio; 6.2.2 Maximal Drift; 6.2.3 Constraint on Portfolio Volatility; 6.2.4 Constraints on Total Stock Weight; 6.2.5 Constraints on Total Stock Weight and Volatility; 6.2.6 The Efficient Frontier; 6.2.7 Summary; 6.3 Rebalancing; 6.3.1 The Portfolio as a Function of the Stocks; 6.3.2 Empirical Verification; 6.4 Optimal Portfolios with Positive Weights; 6.5 Notes; 7 Covariation with the Market; 7.1 Beta; 7.1.1 The Market; 7.1.2 Beta Value; 7.2 Portfolios Related to the Market; 7.2.1 The Beta Portfolio; 7.2.2 Stability of the Estimates of the Weights 7.2.3 Market Neutral Portfolios7.3 Capital Asset Pricing Model; 7.3.1 The CAPM Identity; 7.3.2 Consequences of CAPM; 7.3.3 The Market Portfolio; 7.4 Notes; 8 Performance and Risk measures; 8.1 Performance Measures; 8.2 Risk Measures; 8.2.1 Value at Risk; 8.2.2 Downside Risk; 8.3 Risk Adjustment; 9 Simple Covariation; 9.1 Equal Correlations; 9.1.1 Matrix Calculations; 9.1.2 Optimal Portfolios; 9.1.3 Comparison with the General Model; 9.1.4 Positive Weights; 9.2 Multiplicative Correlations; 9.2.1 Uniqueness of the Parameters; 9.2.2 Matrix Calculations; 9.2.3 Parameter Estimation 9.2.4 Optimal Portfolios |
| Record Nr. | UNINA-9910145424103321 |
Höglund Thomas
|
||
| Hoboken, N.J., : Wiley-Interscience, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mathematical finance : theory, modeling, implementation / / Christian Fries
| Mathematical finance : theory, modeling, implementation / / Christian Fries |
| Autore | Fries Christian <1970-> |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2007 |
| Descrizione fisica | 1 online resource (544 p.) |
| Disciplina | 332.601/5195 |
| Soggetto topico |
Derivative securities - Prices - Mathematical models
Securities - Mathematical models Investments - Mathematical models |
| ISBN |
9786610974344
9781280974342 1280974346 9780470179789 0470179783 9780470179772 0470179775 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Mathematical Finance: Theory, Modeling, Implementation; Contents; 1 Introduction; 1.1 Theory, Modeling, and Implementation; 1.2 Interest Rate Models and Interest Rate Derivatives; 1.3 About This Book; 1.3.1 How to Read This Book; 1.3.2 Abridged Versions; 1.3.3 Special Sections; 1.3.4 Notation; 1.3.5 Feedback; 1.3.6 Resources; I Foundations; 2 Foundations; 2.1 Probability Theory; 2.2 Stochastic Processes; 2.3 Filtration; 2.4 Brownian Motion; 2.5 Wiener Measure, Canonical Setup; 2.6 Itô Calculus; 2.6.1 Itô Integral; 2.6.2 Itô Process; 2.6.3 Itô Lemma and Product Rule
2.7 Brownian Motion with Instantaneous Correlation2.8 Martingales; 2.8.1 Martingale Representation Theorem; 2.9 Change of Measure; 2.10 Stochastic Integration; 2.11 Partial Differential Equations (PDEs); 2.11.1 Feynman-Kač Theorem; 2.12 List of Symbols; 3 Replication; 3.1 Replication Strategies; 3.1.1 Introduction; 3.1.2 Replication in a Discrete Model; 3.2 Foundations: Equivalent Martingale Measure; 3.2.1 Challenge and Solution Outline; 3.2.2 Steps toward the Universal Pricing Theorem; 3.3 Excursus: Relative Prices and Risk-Neutral Measures; 3.3.1 Why relative prices? 3.3.2 Risk-Neutral MeasureII First Applications; 4 Pricing of a European Stock Option under the Black-Scholes Model; 5 Excursus: The Density of the Underlying of a European Call Option; 6 Excursus: Interpolation of European Option Prices; 6.1 No-Arbitrage Conditions for Interpolated Prices; 6.2 Arbitrage Violations through Interpolation; 6.2.1 Example 1 : Interpolation of Four Prices; 6.2.2 Example 2: Interpolation of Two Prices; 6.3 Arbitrage- Free Interpolation of European Option Prices; 7 Hedging in Continuous and Discrete Time and the Greeks; 7.1 Introduction 7.2 Deriving the Replications Strategy from Pricing Theory7.2.1 Deriving the Replication Strategy under the Assumption of a Locally Riskless Product; 7.2.2 Black-Scholes Differential Equation; 7.2.3 Derivative V(t) as a Function of Its Underlyings S i(t); 7.2.4 Example: Replication Portfolio and PDE under a Black-Scholes Model; 7.3 Greeks; 7.3.1 Greeks of a European Call-Option under the Black-Scholes Model; 7.4 Hedging in Discrete Time: Delta and Delta-Gamma Hedging; 7.4.1 Delta Hedging; 7.4.2 Error Propagation; 7.4.3 Delta-Gamma Hedging; 7.4.4 Vega Hedging 7.5 Hedging in Discrete Time: Minimizing the Residual Error (Bouchaud-Sornette Method)7.5.1 Minimizing the Residual Error at Maturity T; 7.5.2 Minimizing the Residual Error in Each Time Step; III Interest Rate Structures, Interest Rate Products, and Analytic Pricing Formulas; Motivation and Overview; 8 Interest Rate Structures; 8.1 Introduction; 8.1.1 Fixing Times and Tenor Times; 8.2 Definitions; 8.3 Interest Rate Curve Bootstrapping; 8.4 Interpolation of Interest Rate Curves; 8.5 Implementation; 9 Simple Interest Rate Products; 9.1 Interest Rate Products Part 1: Products without Optionality 9.1.1 Fix, Floating, and Swap |
| Record Nr. | UNINA-9911019439303321 |
Fries Christian <1970->
|
||
| Hoboken, N.J., : Wiley-Interscience, c2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multi-moment asset allocation and pricing models [[electronic resource] /] / edited by Emmanuel Jurczenko and Bertrand Maillet
| Multi-moment asset allocation and pricing models [[electronic resource] /] / edited by Emmanuel Jurczenko and Bertrand Maillet |
| Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, Inc., c2006 |
| Descrizione fisica | 1 online resource (259 p.) |
| Disciplina |
332.601/5195
332.6015195 |
| Altri autori (Persone) |
JurczenkoEmmanuel
MailletBertrand |
| Collana | Wiley finance series |
| Soggetto topico |
Investments - Mathematical models
Asset allocation - Mathematical models Capital assets pricing model |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-20183-7
1-280-64915-1 9786610649150 0-470-05799-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Theoretical foundations of asset allocations and pricing models with higher-order moments / Emmanuel Jurczenko and Bertrand Maillet -- On certain geometric aspects of portfolio optimisation with higher moments -- / Gustavo M. de Athayde and Renato G. Flôres Jr. -- Hedge funds portfolio selection with higher-order moments : a nonparametric mean-variance-skewness-Kurtosis efficient frontier / Emmanuel Jurczenko, Bertrand Maillet and Paul Merlin -- Higher order moments and beyond / Luisa Tibiletti -- Gram-Charlier expansions and portfolio selection in non-Gaussian universes / François Desmoulins-Lebeault -- The four-moment capital asset pricing model : between asset pricing and asset allocation / Emmanuel Jurczenko and Bertrand Maillet -- Multi-moment method for portfolio management : generalized capital asset pricing model in homogeneous and heterogeneous markets / Yannick Malevergne and Didier Sornette -- Modeling the dynamics of conditional dependency between financial series / Eric Jondeau and Michael Rockinger -- A test of the homogeneity of asset pricing models / Giovanni Barone-Adesi, Patrick Gagliardini and Giovanni Urga. |
| Record Nr. | UNINA-9910143676503321 |
| Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, Inc., c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multi-moment asset allocation and pricing models [[electronic resource] /] / edited by Emmanuel Jurczenko and Bertrand Maillet
| Multi-moment asset allocation and pricing models [[electronic resource] /] / edited by Emmanuel Jurczenko and Bertrand Maillet |
| Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, Inc., c2006 |
| Descrizione fisica | 1 online resource (259 p.) |
| Disciplina |
332.601/5195
332.6015195 |
| Altri autori (Persone) |
JurczenkoEmmanuel
MailletBertrand |
| Collana | Wiley finance series |
| Soggetto topico |
Investments - Mathematical models
Asset allocation - Mathematical models Capital assets pricing model |
| ISBN |
1-119-20183-7
1-280-64915-1 9786610649150 0-470-05799-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Theoretical foundations of asset allocations and pricing models with higher-order moments / Emmanuel Jurczenko and Bertrand Maillet -- On certain geometric aspects of portfolio optimisation with higher moments -- / Gustavo M. de Athayde and Renato G. Flôres Jr. -- Hedge funds portfolio selection with higher-order moments : a nonparametric mean-variance-skewness-Kurtosis efficient frontier / Emmanuel Jurczenko, Bertrand Maillet and Paul Merlin -- Higher order moments and beyond / Luisa Tibiletti -- Gram-Charlier expansions and portfolio selection in non-Gaussian universes / François Desmoulins-Lebeault -- The four-moment capital asset pricing model : between asset pricing and asset allocation / Emmanuel Jurczenko and Bertrand Maillet -- Multi-moment method for portfolio management : generalized capital asset pricing model in homogeneous and heterogeneous markets / Yannick Malevergne and Didier Sornette -- Modeling the dynamics of conditional dependency between financial series / Eric Jondeau and Michael Rockinger -- A test of the homogeneity of asset pricing models / Giovanni Barone-Adesi, Patrick Gagliardini and Giovanni Urga. |
| Record Nr. | UNINA-9910830524803321 |
| Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, Inc., c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multi-moment asset allocation and pricing models / / edited by Emmanuel Jurczenko and Bertrand Maillet
| Multi-moment asset allocation and pricing models / / edited by Emmanuel Jurczenko and Bertrand Maillet |
| Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, Inc., c2006 |
| Descrizione fisica | 1 online resource (259 p.) |
| Disciplina | 332.601/5195 |
| Altri autori (Persone) |
JurczenkoEmmanuel
MailletBertrand |
| Collana | Wiley finance series |
| Soggetto topico |
Investments - Mathematical models
Asset allocation - Mathematical models Capital assets pricing model |
| ISBN |
9786610649150
9781119201830 1119201837 9781280649158 1280649151 9780470057995 0470057998 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Theoretical foundations of asset allocations and pricing models with higher-order moments / Emmanuel Jurczenko and Bertrand Maillet -- On certain geometric aspects of portfolio optimisation with higher moments -- / Gustavo M. de Athayde and Renato G. Flores Jr. -- Hedge funds portfolio selection with higher-order moments : a nonparametric mean-variance-skewness-Kurtosis efficient frontier / Emmanuel Jurczenko, Bertrand Maillet and Paul Merlin -- Higher order moments and beyond / Luisa Tibiletti -- Gram-Charlier expansions and portfolio selection in non-Gaussian universes / Francois Desmoulins-Lebeault -- The four-moment capital asset pricing model : between asset pricing and asset allocation / Emmanuel Jurczenko and Bertrand Maillet -- Multi-moment method for portfolio management : generalized capital asset pricing model in homogeneous and heterogeneous markets / Yannick Malevergne and Didier Sornette -- Modeling the dynamics of conditional dependency between financial series / Eric Jondeau and Michael Rockinger -- A test of the homogeneity of asset pricing models / Giovanni Barone-Adesi, Patrick Gagliardini and Giovanni Urga. |
| Record Nr. | UNINA-9911019862903321 |
| Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, Inc., c2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||