top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
ARCH models for financial applications / Evdokia Xekalaki, Stavros Degiannakis
ARCH models for financial applications / Evdokia Xekalaki, Stavros Degiannakis
Autore XEKALAKI, Evdokia
Pubbl/distr/stampa Chichester : Wiley, 2010
Descrizione fisica XX, 538 p. ; 24 cm + 1 cd-rom
Disciplina 332.01519536
Altri autori (Persone) DEGIANNAKIS, Stavros
Soggetto topico Finanza - modelli econometrici
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990005556040203316
XEKALAKI, Evdokia  
Chichester : Wiley, 2010
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
ARCH models for financial applications [[electronic resource] /] / Evdokia Xekalaki, Stavros Degiannakis
ARCH models for financial applications [[electronic resource] /] / Evdokia Xekalaki, Stavros Degiannakis
Autore Xekalaki Evdokia
Pubbl/distr/stampa Chichester ; ; Hoboken, : John Wiley & Sons, 2010
Descrizione fisica 1 online resource (560 p.)
Disciplina 332.015195
332.01519536
Altri autori (Persone) DegiannakisStavros
Soggetto topico Finance - Mathematical models
Autoregression (Statistics)
ISBN 1-282-54774-7
9786612547744
0-470-68801-7
0-470-68802-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ARCH Models for Financial Applications; Contents; Preface; Notation; 1 What is an ARCH process?; 1.1 Introduction; 1.2 The autoregressive conditionally heteroscedastic process; 1.3 The leverage effect; 1.4 The non-trading period effect; 1.5 The non-synchronous trading effect; 1.6 The relationship between conditional variance and conditional mean; 1.6.1 The ARCH in mean model; 1.6.2 Volatility and serial correlation; 2 ARCH volatility specifications; 2.1 Model specifications; 2.2 Methods of estimation; 2.2.1 Maximum likelihood estimation; 2.2.2 Numerical estimation algorithms
2.2.3 Quasi-maximum likelihood estimation2.2.4 Other estimation methods; 2.3 Estimating the GARCH model with EViews 6: an empirical example; 2.4 Asymmetric conditional volatility specifications; 2.5 Simulating ARCH models using EViews; 2.6 Estimating asymmetric ARCH models with G@RCH 4.2 OxMetrics: an empirical example; 2.7 Misspecification tests; 2.7.1 The Box-Pierce and Ljung-Box Q statistics; 2.7.2 Tse's residual based diagnostic test for conditional heteroscedasticity; 2.7.3 Engle's Lagrange multiplier test; 2.7.4 Engle and Ng's sign bias tests
2.7.5 The Breusch-Pagan, Godfrey, Glejser, Harvey and White tests2.7.6 The Wald, likelihood ratio and Lagrange multiplier tests; 2.8 Other ARCH volatility specifications; 2.8.1 Regime-switching ARCH models; 2.8.2 Extended ARCH models; 2.9 Other methods of volatility modelling; 2.10 Interpretation of the ARCH process; Appendix; 3 Fractionally integrated ARCH models; 3.1 Fractionally integrated ARCH model specifications; 3.2 Estimating fractionally integrated ARCH models using G@RCH 4.2 OxMetrics: an empirical example
3.3 A more detailed investigation of the normality of the standardized residuals: goodness-of-fit tests3.3.1 EDF tests; 3.3.2 Chi-square tests; 3.3.3 QQ plots; 3.3.4 Goodness-of-fit tests using EViews and G@RCH; Appendix; 4 Volatility forecasting: an empirical example using EViews 6; 4.1 One-step-ahead volatility forecasting; 4.2 Ten-step-ahead volatility forecasting; Appendix; 5 Other distributional assumptions; 5.1 Non-normally distributed standardized innovations
5.2 Estimating ARCH models with non-normally distributed standardized innovations using G@RCH 4.2 OxMetrics: an empirical example5.3 Estimating ARCH models with non-normally distributed standardized innovations using EViews 6: an empirical example; 5.4 Estimating ARCH models with non-normally distributed standardized innovations using EViews 6: the logl object; Appendix; 6 Volatility forecasting: an empirical example using G@RCH Ox; Appendix; 7 Intraday realized volatility models; 7.1 Realized volatility; 7.2 Intraday volatility models
7.3 Intraday realized volatility andARFIMAXmodels in G@RCH 4.2 OxMetrics: an empirical example
Record Nr. UNINA-9910140611403321
Xekalaki Evdokia  
Chichester ; ; Hoboken, : John Wiley & Sons, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
ARCH models for financial applications / / Evdokia Xekalaki, Stavros Degiannakis
ARCH models for financial applications / / Evdokia Xekalaki, Stavros Degiannakis
Autore Xekalaki Evdokia
Edizione [1st ed.]
Pubbl/distr/stampa Chichester ; ; Hoboken, : John Wiley & Sons, 2010
Descrizione fisica 1 online resource (560 p.)
Disciplina 332.015195
332.01519536
Altri autori (Persone) DegiannakisStavros
Soggetto topico Finance - Mathematical models
Autoregression (Statistics)
ISBN 1-282-54774-7
9786612547744
0-470-68801-7
0-470-68802-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ARCH Models for Financial Applications; Contents; Preface; Notation; 1 What is an ARCH process?; 1.1 Introduction; 1.2 The autoregressive conditionally heteroscedastic process; 1.3 The leverage effect; 1.4 The non-trading period effect; 1.5 The non-synchronous trading effect; 1.6 The relationship between conditional variance and conditional mean; 1.6.1 The ARCH in mean model; 1.6.2 Volatility and serial correlation; 2 ARCH volatility specifications; 2.1 Model specifications; 2.2 Methods of estimation; 2.2.1 Maximum likelihood estimation; 2.2.2 Numerical estimation algorithms
2.2.3 Quasi-maximum likelihood estimation2.2.4 Other estimation methods; 2.3 Estimating the GARCH model with EViews 6: an empirical example; 2.4 Asymmetric conditional volatility specifications; 2.5 Simulating ARCH models using EViews; 2.6 Estimating asymmetric ARCH models with G@RCH 4.2 OxMetrics: an empirical example; 2.7 Misspecification tests; 2.7.1 The Box-Pierce and Ljung-Box Q statistics; 2.7.2 Tse's residual based diagnostic test for conditional heteroscedasticity; 2.7.3 Engle's Lagrange multiplier test; 2.7.4 Engle and Ng's sign bias tests
2.7.5 The Breusch-Pagan, Godfrey, Glejser, Harvey and White tests2.7.6 The Wald, likelihood ratio and Lagrange multiplier tests; 2.8 Other ARCH volatility specifications; 2.8.1 Regime-switching ARCH models; 2.8.2 Extended ARCH models; 2.9 Other methods of volatility modelling; 2.10 Interpretation of the ARCH process; Appendix; 3 Fractionally integrated ARCH models; 3.1 Fractionally integrated ARCH model specifications; 3.2 Estimating fractionally integrated ARCH models using G@RCH 4.2 OxMetrics: an empirical example
3.3 A more detailed investigation of the normality of the standardized residuals: goodness-of-fit tests3.3.1 EDF tests; 3.3.2 Chi-square tests; 3.3.3 QQ plots; 3.3.4 Goodness-of-fit tests using EViews and G@RCH; Appendix; 4 Volatility forecasting: an empirical example using EViews 6; 4.1 One-step-ahead volatility forecasting; 4.2 Ten-step-ahead volatility forecasting; Appendix; 5 Other distributional assumptions; 5.1 Non-normally distributed standardized innovations
5.2 Estimating ARCH models with non-normally distributed standardized innovations using G@RCH 4.2 OxMetrics: an empirical example5.3 Estimating ARCH models with non-normally distributed standardized innovations using EViews 6: an empirical example; 5.4 Estimating ARCH models with non-normally distributed standardized innovations using EViews 6: the logl object; Appendix; 6 Volatility forecasting: an empirical example using G@RCH Ox; Appendix; 7 Intraday realized volatility models; 7.1 Realized volatility; 7.2 Intraday volatility models
7.3 Intraday realized volatility andARFIMAXmodels in G@RCH 4.2 OxMetrics: an empirical example
Record Nr. UNINA-9910814422003321
Xekalaki Evdokia  
Chichester ; ; Hoboken, : John Wiley & Sons, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui