Advances in Plant Microbiome and Sustainable Agriculture : Functional Annotation and Future Challenges / / edited by Ajar Nath Yadav, Ali Asghar Rastegari, Neelam Yadav, Divjot Kour |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XXII, 278 p. 31 illus., 29 illus. in color.) |
Disciplina | 306.4409113 |
Collana | Microorganisms for Sustainability |
Soggetto topico |
Agriculture
Microbial ecology Microbial genetics Microbial genomics Plant breeding Genètica vegetal Genètica microbiana Agricultura sostenible Microbial Ecology Microbial Genetics and Genomics Plant Breeding/Biotechnology |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-15-3204-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Phosphorus Solubilization and Mobilization: Mechanisms, Current Developments and Future Challenge -- Chapter 2. Potassium Solubilization and Mobilization: Functional Impact on Plant Growth for Sustainable Agriculture -- Chapter 3. Zinc Solubilization and Mobilization: A Promising Approach for Cereals Biofortification -- Chapter 4. Microbial ACC-deaminase attributes: perspectives and applications in stress agriculture -- Chapter 5. Plant Microbiomes with Phytohormones Attribute for Plant Growth and Adaptation under the Stress Conditions -- Chapter 6. Mechanisms of Plant Growth Promotion and Functional Annotation in Mitigation of Abiotic Stress -- Chapter 7. Microbiomes Associated with Plant Growing Under the Hypersaline Habitats and Mitigation of Salt Stress -- Chapter 8. Alleviation of Cold Stress by Psychrotrophic Microbes -- Chapter 9. Microbes-Mediated Mitigation of Drought Stress in Plants: Recent Trends and Future Challenges -- Chapter 10. Microbial Consortium with Multifunctional Plant Growth Promoting Attributes: Future Perspective in Agriculture -- Chapter 11. Cyanobacteria as Biofertilizers: Current Research, Commercial Aspects, and Future Challenges. |
Record Nr. | UNINA-9910416102803321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biostimulants : exploring sources and applications / / edited by Naleeni Ramawat, Vijay Bhardwaj |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina | 306.4409113 |
Collana | Plant Life and Environment Dynamics |
Soggetto topico |
Plant biotechnology
Biotecnologia vegetal Creixement (Plantes) |
Soggetto genere / forma | Llibres electrònics |
ISBN |
981-16-7080-3
981-16-7079-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910743224903321 |
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biotechnology and Omics Approaches for Bioenergy Crops / / edited by Muhammad Aasim [and five others] |
Edizione | [First edition.] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (298 pages) |
Disciplina | 306.4409113 |
Soggetto topico | Plant biotechnology |
ISBN | 981-9949-54-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Bioenergy Crops in the Perspective of Climate Change -- 1.1 Introduction -- 1.2 Fossil Fuels and Global Climate Change -- 1.3 Mitigating Climate Change via Bioenergy Crops -- 1.4 Positive Impacts of Bioenergy Crops on Environment -- 1.5 Land-Use Change and Bioenergy Crops -- 1.6 Potential Bioenergy Crops -- 1.6.1 Maize -- 1.6.2 Sweet Sorghum -- 1.6.3 Sugarcane -- 1.6.4 Hemp -- 1.6.5 Jerusalem Artichoke -- 1.6.6 Switchgrass -- 1.6.7 Cardoon -- 1.7 Bioenergy Crops and Marginal Lands -- 1.8 Future of Bioenergy Crops -- 1.9 Conclusion -- References -- 2: Major and Potential Biofuel Crops -- 2.1 Introduction -- 2.1.1 Maize (Zea mays L.) -- 2.1.2 Sugarcane (Saccharum officinarum L.) -- 2.1.3 Sweet Sorghum (Sorghum bicolor L.) -- 2.1.4 Sugar Beet (Beta vulgaris) -- 2.1.5 Soybean (Glycine max L.) -- 2.1.6 Rapeseed (Brassica napus) -- 2.1.7 Palm Oil (Elaeis guineensis) -- 2.1.8 Jatropha (Jatropha curcas L.) -- 2.2 Potential and Promising Biofuel Crops -- 2.2.1 Tobacco (Nicotiana tabacum) -- 2.2.2 Cotton (Gossypium hirsutum) -- 2.2.3 Cassava (Manihot esculenta) -- 2.2.4 Sweet Potato (Ipomoea batatas L.) -- References -- 3: Biotechnological Approaches for the Production of Bioenergy -- 3.1 Introduction -- 3.2 Types of Bioenergy -- 3.2.1 Bioethanol -- 3.2.2 Biodiesel -- 3.2.3 Biohydrogen -- 3.3 Biotechnological Approaches for Biofuel Production -- 3.3.1 Isolation of Enzymes from Microbial Sources -- 3.3.1.1 Amylase and Cellulase Enzymes -- Sources -- Identification and Isolation of Enzymes from Microbial (Bacterial and Fungal) Sources -- Identification of Bacteria and Fungi Producing Amylase and Cellulase -- PCR Amplification of Specific Genes -- Functional Gene Microarray -- Metagenomic Analysis -- Proteomic Analysis.
Enzyme Screening -- Enzyme Production -- Cell Disruption -- Enzyme Purification -- Enzyme Characterization -- 3.3.2 Microbial Fermentation and Enzyme Hydrolysis for the Production of Bioenergy -- 3.3.2.1 Bioethanol -- First- and Second-Generation Bioethanol Production -- Feedstock Preparation for Bioethanol Production -- Grinding and Milling of Feedstock -- Pretreatment -- Hydrolysis and Fermentation -- Separation and Dehydration -- 3.3.2.2 Third Generation Bioethanol Production -- 3.3.2.3 Biodiesel -- 3.3.2.4 Feedstock Preparation -- 3.3.2.5 Transesterification -- 3.3.2.6 Separation -- 3.3.2.7 Washing and Drying -- 3.3.2.8 Storage and Distribution -- 3.3.2.9 Biohydrogen -- Dark Fermentation -- Photo Fermentation -- Algal Hydrogen Production -- Biophotolysis -- 3.4 Genetic Engineering and Bioenergy Production -- 3.4.1 Plant Biomass Yield Improvement -- 3.4.2 Improving the Conversion of Plant Biomass into Biofuels -- 3.4.3 Reduced Environmental Impact -- 3.4.4 Sustainable Production -- 3.4.5 Genetic Engineering and Production of Bioethanol -- 3.4.5.1 Metabolic Engineering -- 3.4.5.2 Genome Shuffling -- 3.4.5.3 CRISPR-Cas9-Based Genome Editing -- 3.4.5.4 Gene Cloning -- 3.4.5.5 Genetic Engineering and Biodiesel Production -- 3.4.5.6 Metabolic Engineering -- 3.4.5.7 Gene Overexpression -- 3.4.5.8 CRISPR-Cas9-Based Genome Editing -- 3.4.6 Genetic Engineering and Production of Biohydrogen -- 3.4.7 Genetic Engineering and Ethical Considerations in Bioenergy Production -- 3.4.7.1 Genetic Engineering and Ecosystem Safety -- 3.4.7.2 Genetic Engineering and Ethical Concerns in Bioenergy Production -- 3.4.7.3 Public Acceptance for Genetically Engineered Biofuels -- 3.5 Biorefineries and Production of Bioenergy -- 3.5.1 Importance of Biorefineries in the Production of Biofuels -- 3.5.1.1 Feedstock Preparation/Pretreatment. 3.5.1.2 Biomass Conversion/Hydrolysis -- 3.5.1.3 Byproduct Recovery -- 3.6 Environmental and Economic Considerations of Bioenergy Fuels -- 3.6.1 Important Environmental Considerations of Biofuel Production (Jeswani et al. 2020) -- 3.6.1.1 Land Usage -- 3.6.1.2 Less Pollutant -- 3.6.1.3 Water Usage for the Production of Biofuel Crops -- 3.6.1.4 Soil Degradation -- 3.6.2 Economic Considerations -- 3.6.2.1 Cost of Production -- 3.6.2.2 Energy Security -- 3.6.3 Economic Viability of Biofuel Production from Biotechnology -- 3.6.3.1 Feedstock Costs and Biotechnology -- 3.6.3.2 Processing Costs of Feedstocks -- 3.6.3.3 Market Demand and Public Interest -- 3.7 Future Prospects -- References -- 4: Integrated OMIC Approaches for Bioenergy Crops -- 4.1 Introduction -- 4.2 Overview of OMIC Approaches -- 4.3 Integrated OMIC Approaches -- 4.4 Challenges and Future Directions -- 4.5 Conclusion -- References -- 5: Genomics of Bioenergy Crops -- 5.1 Introduction -- 5.2 Applications of Genomics in the Development of Energy Crops -- 5.3 Evolutionary Relationships in Higher Plants and Their Genomes -- 5.4 Genome Sequencing -- 5.5 Analysis of Genetic Variation -- 5.5.1 Target Traits for Bioenergy Plant Improvement -- 5.6 Model Bioenery Crops -- 5.7 Genomics of Specific Bioenergy Species -- 5.8 Sorghum -- 5.9 Sugarcane -- 5.10 Maize -- 5.11 Poplar -- 5.12 Eucalyptus -- References -- 6: Omics Approaches for Sorghum: Paving the Way to a Resilient and Sustainable Bioenergy Future -- 6.1 Introduction -- 6.2 Abiotic Stresses -- 6.3 Genomic Advances for Abiotic Stress Tolerance -- 6.3.1 Molecular Marker Resources -- 6.3.2 Identification of Loci Governing Abiotic Stress Through QTL Mapping -- 6.3.3 Genome-Wide Association Studies (GWAS) -- 6.3.4 Genomic Selection for Abiotic Stress in Sorghum -- 6.4 Advances in Transcriptomics. 6.5 Proteomics -- 6.6 Metabolomics -- 6.7 Integration of Omics Technologies -- 6.8 Conclusions -- References -- 7: Exploring Omics Approaches to Enhance Stress Tolerance in Soybean for Sustainable Bioenergy Production -- 7.1 Introduction -- 7.2 Impact of Abiotic and Biotic Stressors on Soybean -- 7.3 Omics Approaches in the Technological Era -- 7.3.1 Genomic Advances for Abiotic Stress Tolerance in Soybean -- 7.3.2 QTL Mapping for Abiotic Stress Tolerance in Soybean -- 7.3.2.1 Genome-Wide Association Studies (GWAS) in Soybean -- 7.4 Proteomics in Soybean -- 7.5 Omics Approaches for Biotic Stresses -- 7.5.1 Soybean Genomics -- 7.5.1.1 Breeding for Biotic Challenges in Soybeans with the Help of QTL and Meta-QTL -- 7.5.1.2 Exploring Biotic Stress Resistance Through Genome-Wide Association Mapping -- 7.5.2 Transcriptomics of Soybean -- 7.5.2.1 Northern Blot Study of Soybean to Assess Biotic Stress -- 7.5.2.2 Microarray İnvestigation of Soybean Biotic Stress Tolerance -- 7.5.2.3 Assessment of RNA-Seq Data for Soybean Biotic Stress Responses -- 7.5.2.4 MicroRNAs' Role in Soybean Biotic Stress Challenges -- 7.6 Soybean Phenomics -- 7.7 Soybean Proteomics -- 7.8 Conclusion -- References -- 8: Advanced and Sustainable Approaches in Sugarcane Crop Improvements with Reference to Environmental Stresses -- 8.1 Introduction -- 8.2 Markers-Assisted Breeding (MAB) in Sugarcane -- 8.2.1 Application of MMs in Sugarcane Research -- 8.2.2 Molecular Markers (MMs) Related to Sugarcane Biotic Stresses -- 8.2.3 Molecular Markers (MMs) Related to Sugarcane Abiotic Stresses -- 8.3 Sugarcane Genetic Transformation -- 8.3.1 Transformation Approaches -- 8.3.2 Genome Editing (GE) -- 8.3.3 Transformation Approaches in Sugarcane Against Biotic Stresses -- 8.3.4 Transformational Strategies for Abiotic Stresses. 8.4 Application of Omics Approaches in Sugarcane Crop Improvements -- 8.4.1 Sugarcane Genomics -- 8.4.2 Sugarcane Transcriptomics -- 8.4.3 Sugarcane Proteomics -- 8.4.4 Sugarcane Metabolomics -- 8.5 Conclusion -- References -- 9: Role of Endophytes in the Regulation of Metabolome in Bioenergy Crops -- 9.1 Introduction -- 9.2 Overview of the Chapter -- 9.3 Types of Endophytes and Their Distribution in Bioenergy Crops -- 9.4 Endophyte-Plant Interactions and Their Impact on the Metabolome -- 9.5 Endophyte-Mediated Regulation of Bioenergy Crop Growth and Development -- 9.6 Conclusion -- 9.7 Future Perspective -- References -- 10: Cotton Stalks: Potential Biofuel Recourses for Sustainable Environment -- 10.1 Introduction -- 10.2 Cotton Crop Stalk as Sustainable Biofuel Resources -- 10.3 Biofuels from Cotton Stalks -- 10.3.1 How to Generate Biofuel from Cotton Stalks -- 10.3.1.1 Pyrolysis -- 10.3.1.2 Fermentation -- 10.3.1.3 Gasification -- 10.3.1.4 Hydrolysis -- 10.3.2 Biofuel Generation from Cotton Stalks -- 10.3.2.1 Bio-Oil -- 10.3.2.2 Syngas -- 10.3.2.3 Ethanol -- 10.3.2.4 Biogas -- 10.4 Value Addition Through Biofuel Production by Using Cotton Stalks After Crop Harvest -- 10.5 Biofuel and the Cotton Stalk Economics Potential -- 10.6 Conclusion -- References -- 11: Harmful Insects in Some Biofuel Plants and Their Biology -- 11.1 Introduction -- 11.2 Canola (Brassica napus L.) Harmful Insects -- 11.2.1 Cabbage-Stem Flea Beetle (Psylliodes chrysocephala L.) -- 11.2.2 Diamondback Moth (Plutella xylostella L.) -- 11.2.3 Winter Stem Weevil [(Ceutorhynchus picitarsis (G.)] -- 11.2.4 Cabbage Seed Pod Weevil (Ceutorhynchus pleurostigma M.) -- 11.2.5 Red Turnip Beetle [(Entomoscelis adonidis (Paal)] -- 11.2.6 Cabbage Bug (Eurydema ornatum L.) -- 11.2.7 Cabbage Aphid [Brevicoryne brassicae (L.)]. 11.3 Safflower (Carthamus tinctorius L.) Harmful Insects. |
Record Nr. | UNINA-9910767549303321 |
Singapore : , : Springer, , [2023] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Boundary plasma physics : an accessible guide to transport, detachment, and divertor design / / Fulvio Militello |
Autore | Militello Fulvio |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (534 pages) |
Disciplina | 306.4409113 |
Collana | Springer Series on Atomic, Optical, and Plasma Physics |
Soggetto topico | Plasma (Ionized gases) |
ISBN |
9783031173394
9783031173387 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Essential Elements of Fusion Physics -- 1.2 The Plasma Exhaust Problem -- 1.3 Boundary Physics at a Glance -- 1.4 Goals and Synopsis -- References -- 2 Plasma Equations -- 2.1 Forces and Dynamics -- 2.2 Kinetic Description -- 2.2.1 Liouville Equation and Probability Distributions -- 2.2.2 Boltzmann and Vlasov Equation -- 2.3 A Basic Discussion of Plasma Collision Operators -- 2.3.1 From Collisions to Collision Operators -- 2.3.2 Boltzmann's H-Theorem, or a Short History of Irreversibility -- 2.3.3 Simplifying Things: The BGK Operator -- 2.4 Fluid Description -- 2.4.1 Density Equation -- 2.4.2 Momentum Equation -- 2.4.3 Energy Equation -- 2.5 Implication of Non-relativistic Dynamics -- 2.6 Closures, Orderings and Reduced Models -- 2.6.1 Braginskii Equations -- 2.6.2 MHD -- 2.6.3 Drift-Ordered Equations -- 2.6.4 Geometry in Reduced 2D Systems -- References -- Further Reading -- 3 Sheath Physics -- 3.1 The Langmuir (or Debye) Sheath -- 3.2 Debye Shielding -- 3.3 A Quick Review of Wall Models -- 3.4 Wall with Perpendicular Magnetic Field or Non MagnetisedPlasma -- 3.4.1 Fluid Sheath Model and Existence Conditions -- 3.4.2 Particle Fluxes and Electrical Phenomena in the Sheath -- 3.4.3 Collisional Presheath -- 3.4.4 Kinetic Treatment of the Sheath -- 3.4.5 Bohm Criterion for Plasmas with Multiple Ions -- 3.4.6 Sheath Energy Transmission: Formerly (and Wrongly) Known as Heat Transmission -- 3.5 Wall with Inclined Magnetic Fields and Magnetic Pre-sheath -- 3.5.1 Bohm Criterion for Shallow Angles and Magnetic Pre-sheath -- 3.5.2 Electric Potential and Dependence on the Incidence Angle -- 3.5.3 Effect of Fluid Drifts -- 3.5.4 Very Shallow Angles and Role of Collisions -- References -- Further Reading -- 4 Atomic, Molecular and Plasma-Surface Physics.
4.1 A Few Useful Concepts and Reaction Terminology -- 4.2 Basic Model with Atomic Hydrogen -- 4.2.1 Electron-Neutrals Interactions -- 4.2.2 Ion-Neutral Interactions -- 4.2.3 Other Interactions Between the Electrons,Ions, and Atoms -- 4.3 Molecular Interactions -- 4.4 Impurities -- 4.5 Plasma-Surface Interactions -- 4.5.1 Reflection, Trapping and Desorption -- 4.5.2 Wall Recycling -- 4.5.3 Sputtering -- 4.5.4 Electron Emission -- References -- Further Reading -- 5 Basic Exhaust Concepts -- 5.1 Magnetic Geometry and Its Connection with the BoundaryPlasma -- 5.2 Protecting the Plasma Facing Structures -- 5.3 Elementary Estimates of Scrape-Off Layer Width -- 5.4 Simple Geometrical Effects-Flux Expansion and Tile Tilting -- 5.4.1 Poloidal and Toroidal Flux Expansion -- 5.4.2 Target Tilting -- 5.4.3 Total Flux Expansion and Magnetic Projection of the Areas -- 5.4.4 Further Observations on the Geometrical Effects -- 5.5 Divertor Regimes: The Two Point Model -- 5.5.1 Derivation of the Two Point Model -- 5.5.2 General Solutions of the Two Point Model -- 5.5.3 Collisionality and Its Role in the Two Point Model -- 5.5.4 Applications of the Two Point Model: Divertor Regimes -- 5.5.5 Extended Two Point Model -- 5.6 Flux Formulation and Parallel Profiles in the Boundary Plasma -- 5.6.1 Neutrals and Particle Sources -- 5.6.2 Particle Flux -- 5.6.3 Energy Flux and Temperature Profile -- 5.6.4 Target Conditions -- 5.6.5 Upstream Conditions -- 5.6.6 Mach Number, Velocity and Density Profiles -- 5.6.7 Electric Potential -- 5.7 Divertor Asymmetry in Low to Intermediate Collisionality -- References -- Further Reading -- 6 Radiation and Detachment -- 6.1 Plasma/Neutral Processes at Large Collisionality and Low Temperature -- 6.1.1 Model Equations for High Collisionality Cold Plasmas -- 6.1.2 A Closer Look at the Energy Transfer Mechanisms in a Cold Pure Plasmas. 6.2 Impurity Radiation and Associated Models -- 6.3 Divertor Asymmetry at High Collisionality or Radiation -- 6.4 Detachment -- 6.4.1 Particle Flux Balance -- 6.4.2 Routes to Detachment: A Qualitative Discussion -- 6.4.3 Role of Pressure Losses and Recombination -- 6.4.4 Partial Detachment and Detachment Onset -- 6.4.5 Deep Detachment: Detachment Window and Stability -- 6.5 MARFEs and Stable X-Point Radiation -- References -- 7 Filamentary Transport -- 7.1 Basic Filament Physics and Observations -- 7.1.1 Filament Propagation -- 7.2 Filaments at the Outer Midplane -- 7.2.1 Filament Generation -- 7.2.2 Filament Interactions (or Lack Thereof) -- 7.2.3 Parallel Dynamics of the Upstream Filaments -- 7.2.4 Filaments at the X-Point -- 7.2.5 Response of Filaments to Different SOL Conditions -- 7.3 Filaments in the Divertor Region -- 7.4 The Nature of Boundary Turbulence -- 7.4.1 Important Statistical Concepts and Tools -- 7.4.2 Randomness and Structure in Temporal Fluctuations -- 7.4.3 Diffusion and Spatial Fluctuations -- 7.5 Statistical Models of Filamentary Transport and UpstreamProfiles -- 7.5.1 Profiles, Background and Fluctuations -- 7.5.2 Phenomenology of the Upstream Profiles -- 7.5.3 Statistical Framework -- 7.6 Heat Fluxes at the Divertor Target: Wagner-Eich Function -- References -- Further Reading -- 8 Conventional and Alternative Divertors -- 8.1 Single Null Divertor: The ITER Solution -- 8.2 Alternative Divertor Designs -- 8.2.1 Why They Are Needed -- 8.2.2 Beneficial Features in Divertor Design -- 8.3 The X-Divertor -- 8.4 The Super-X Divertor -- 8.5 Double Null Divertor -- 8.6 The Snowflake Divertor and X-Point Target Divertor -- 8.7 Liquid Metals as Plasma Facing Components -- 8.8 What Will the Future Bring? -- References -- Further Reading -- Appendix A -- A.1 Of Vectors and Tensors -- A.2 Viscous Forces in all Their Glory -- References. Index. |
Record Nr. | UNISA-996503464503316 |
Militello Fulvio
![]() |
||
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Boundary plasma physics : an accessible guide to transport, detachment, and divertor design / / Fulvio Militello |
Autore | Militello Fulvio |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (534 pages) |
Disciplina | 306.4409113 |
Collana | Springer Series on Atomic, Optical, and Plasma Physics |
Soggetto topico | Plasma (Ionized gases) |
ISBN |
9783031173394
9783031173387 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Essential Elements of Fusion Physics -- 1.2 The Plasma Exhaust Problem -- 1.3 Boundary Physics at a Glance -- 1.4 Goals and Synopsis -- References -- 2 Plasma Equations -- 2.1 Forces and Dynamics -- 2.2 Kinetic Description -- 2.2.1 Liouville Equation and Probability Distributions -- 2.2.2 Boltzmann and Vlasov Equation -- 2.3 A Basic Discussion of Plasma Collision Operators -- 2.3.1 From Collisions to Collision Operators -- 2.3.2 Boltzmann's H-Theorem, or a Short History of Irreversibility -- 2.3.3 Simplifying Things: The BGK Operator -- 2.4 Fluid Description -- 2.4.1 Density Equation -- 2.4.2 Momentum Equation -- 2.4.3 Energy Equation -- 2.5 Implication of Non-relativistic Dynamics -- 2.6 Closures, Orderings and Reduced Models -- 2.6.1 Braginskii Equations -- 2.6.2 MHD -- 2.6.3 Drift-Ordered Equations -- 2.6.4 Geometry in Reduced 2D Systems -- References -- Further Reading -- 3 Sheath Physics -- 3.1 The Langmuir (or Debye) Sheath -- 3.2 Debye Shielding -- 3.3 A Quick Review of Wall Models -- 3.4 Wall with Perpendicular Magnetic Field or Non MagnetisedPlasma -- 3.4.1 Fluid Sheath Model and Existence Conditions -- 3.4.2 Particle Fluxes and Electrical Phenomena in the Sheath -- 3.4.3 Collisional Presheath -- 3.4.4 Kinetic Treatment of the Sheath -- 3.4.5 Bohm Criterion for Plasmas with Multiple Ions -- 3.4.6 Sheath Energy Transmission: Formerly (and Wrongly) Known as Heat Transmission -- 3.5 Wall with Inclined Magnetic Fields and Magnetic Pre-sheath -- 3.5.1 Bohm Criterion for Shallow Angles and Magnetic Pre-sheath -- 3.5.2 Electric Potential and Dependence on the Incidence Angle -- 3.5.3 Effect of Fluid Drifts -- 3.5.4 Very Shallow Angles and Role of Collisions -- References -- Further Reading -- 4 Atomic, Molecular and Plasma-Surface Physics.
4.1 A Few Useful Concepts and Reaction Terminology -- 4.2 Basic Model with Atomic Hydrogen -- 4.2.1 Electron-Neutrals Interactions -- 4.2.2 Ion-Neutral Interactions -- 4.2.3 Other Interactions Between the Electrons,Ions, and Atoms -- 4.3 Molecular Interactions -- 4.4 Impurities -- 4.5 Plasma-Surface Interactions -- 4.5.1 Reflection, Trapping and Desorption -- 4.5.2 Wall Recycling -- 4.5.3 Sputtering -- 4.5.4 Electron Emission -- References -- Further Reading -- 5 Basic Exhaust Concepts -- 5.1 Magnetic Geometry and Its Connection with the BoundaryPlasma -- 5.2 Protecting the Plasma Facing Structures -- 5.3 Elementary Estimates of Scrape-Off Layer Width -- 5.4 Simple Geometrical Effects-Flux Expansion and Tile Tilting -- 5.4.1 Poloidal and Toroidal Flux Expansion -- 5.4.2 Target Tilting -- 5.4.3 Total Flux Expansion and Magnetic Projection of the Areas -- 5.4.4 Further Observations on the Geometrical Effects -- 5.5 Divertor Regimes: The Two Point Model -- 5.5.1 Derivation of the Two Point Model -- 5.5.2 General Solutions of the Two Point Model -- 5.5.3 Collisionality and Its Role in the Two Point Model -- 5.5.4 Applications of the Two Point Model: Divertor Regimes -- 5.5.5 Extended Two Point Model -- 5.6 Flux Formulation and Parallel Profiles in the Boundary Plasma -- 5.6.1 Neutrals and Particle Sources -- 5.6.2 Particle Flux -- 5.6.3 Energy Flux and Temperature Profile -- 5.6.4 Target Conditions -- 5.6.5 Upstream Conditions -- 5.6.6 Mach Number, Velocity and Density Profiles -- 5.6.7 Electric Potential -- 5.7 Divertor Asymmetry in Low to Intermediate Collisionality -- References -- Further Reading -- 6 Radiation and Detachment -- 6.1 Plasma/Neutral Processes at Large Collisionality and Low Temperature -- 6.1.1 Model Equations for High Collisionality Cold Plasmas -- 6.1.2 A Closer Look at the Energy Transfer Mechanisms in a Cold Pure Plasmas. 6.2 Impurity Radiation and Associated Models -- 6.3 Divertor Asymmetry at High Collisionality or Radiation -- 6.4 Detachment -- 6.4.1 Particle Flux Balance -- 6.4.2 Routes to Detachment: A Qualitative Discussion -- 6.4.3 Role of Pressure Losses and Recombination -- 6.4.4 Partial Detachment and Detachment Onset -- 6.4.5 Deep Detachment: Detachment Window and Stability -- 6.5 MARFEs and Stable X-Point Radiation -- References -- 7 Filamentary Transport -- 7.1 Basic Filament Physics and Observations -- 7.1.1 Filament Propagation -- 7.2 Filaments at the Outer Midplane -- 7.2.1 Filament Generation -- 7.2.2 Filament Interactions (or Lack Thereof) -- 7.2.3 Parallel Dynamics of the Upstream Filaments -- 7.2.4 Filaments at the X-Point -- 7.2.5 Response of Filaments to Different SOL Conditions -- 7.3 Filaments in the Divertor Region -- 7.4 The Nature of Boundary Turbulence -- 7.4.1 Important Statistical Concepts and Tools -- 7.4.2 Randomness and Structure in Temporal Fluctuations -- 7.4.3 Diffusion and Spatial Fluctuations -- 7.5 Statistical Models of Filamentary Transport and UpstreamProfiles -- 7.5.1 Profiles, Background and Fluctuations -- 7.5.2 Phenomenology of the Upstream Profiles -- 7.5.3 Statistical Framework -- 7.6 Heat Fluxes at the Divertor Target: Wagner-Eich Function -- References -- Further Reading -- 8 Conventional and Alternative Divertors -- 8.1 Single Null Divertor: The ITER Solution -- 8.2 Alternative Divertor Designs -- 8.2.1 Why They Are Needed -- 8.2.2 Beneficial Features in Divertor Design -- 8.3 The X-Divertor -- 8.4 The Super-X Divertor -- 8.5 Double Null Divertor -- 8.6 The Snowflake Divertor and X-Point Target Divertor -- 8.7 Liquid Metals as Plasma Facing Components -- 8.8 What Will the Future Bring? -- References -- Further Reading -- Appendix A -- A.1 Of Vectors and Tensors -- A.2 Viscous Forces in all Their Glory -- References. Index. |
Record Nr. | UNINA-9910634046603321 |
Militello Fulvio
![]() |
||
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Commercial scale tissue culture for horticulture and plantation crops / / edited by Shubhpriya Gupta, Preeti Chaturvedi |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (338 pages) |
Disciplina | 306.4409113 |
Soggetto topico | Plant tissue culture |
ISBN | 981-19-0055-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910578687303321 |
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Elements of classical plasticity theory / / Andreas Öchsner |
Autore | Öchsner Andreas |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (116 pages) |
Disciplina | 306.4409113 |
Soggetto topico | Plasticity |
ISBN |
9783031142017
9783031142000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Symbols and Abbreviations -- Latin Symbols (Capital Letters) -- Latin Symbols (Small Letters) -- Greek Symbols (Capital Letters) -- Greek Symbols (Small Letters) -- Mathematical Symbols -- Special Matrices -- Indices, Superscripted -- Indices, Subscripted -- Abbreviations -- 1 Introduction -- 1.1 Uniaxial Tensile Testing -- 1.2 Continuum Mechanical Modelling -- References -- 2 Theory of One-Dimensional Plasticity -- 2.1 Initial Remarks -- 2.2 Yield Condition -- 2.3 Flow Rule -- 2.4 Hardening Rule -- 2.4.1 Isotropic Hardening -- 2.4.2 Kinematic Hardening -- 2.4.3 Combined Hardening -- 2.5 Elasto-plastic Modulus -- 2.6 Consideration of Unloading, Reversed Loading and Cyclic Loading -- References -- 3 Theory of Three-Dimensional Plasticity -- 3.1 Comments on the Stress Matrix -- 3.2 Graphical Representation of Yield Conditions -- 3.3 Yield Conditions -- 3.3.1 Mises Yield Condition -- 3.3.2 Tresca Yield Condition -- 3.3.3 Drucker-Prager Yield Condition -- 3.3.4 Sayir Yield Condition -- 3.4 Flow Rule -- 3.5 Hardening Rule -- 3.5.1 Isotropic Hardening -- 3.5.2 Kinematic Hardening -- References -- 4 Elasto-plastic Finite Element Simulations -- 4.1 Approach for One-Dimensional Problems -- 4.1.1 Integration of the Material Equations -- 4.1.2 Derivation of the Fully Implicit Backward-Euler Algorithm for Isotropic Hardening -- 4.1.3 Derivation of the Fully Implicit Backward-Euler Algorithm for Kinematic Hardening -- 4.1.4 Derivation of the Fully Implicit Backward-Euler Algorithm for Combined Hardening -- 4.1.5 Derivation of the Semi-implicit Backward-Euler Algorithm for Isotropic Hardening -- 4.1.6 Sample Problems and Supplementary Problems -- 4.2 Approach for Three-Dimensinal Problems -- 4.2.1 Differentiation of the Yield Conditions -- 4.2.2 Derivation of the Fully Implicit Backward Euler Algorithm for Isotropic Hardening.
References -- Index. |
Record Nr. | UNINA-9910624301603321 |
Öchsner Andreas
![]() |
||
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Elements of classical plasticity theory / / Andreas Öchsner |
Autore | Öchsner Andreas |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (116 pages) |
Disciplina | 306.4409113 |
Soggetto topico | Plasticity |
ISBN |
9783031142017
9783031142000 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Symbols and Abbreviations -- Latin Symbols (Capital Letters) -- Latin Symbols (Small Letters) -- Greek Symbols (Capital Letters) -- Greek Symbols (Small Letters) -- Mathematical Symbols -- Special Matrices -- Indices, Superscripted -- Indices, Subscripted -- Abbreviations -- 1 Introduction -- 1.1 Uniaxial Tensile Testing -- 1.2 Continuum Mechanical Modelling -- References -- 2 Theory of One-Dimensional Plasticity -- 2.1 Initial Remarks -- 2.2 Yield Condition -- 2.3 Flow Rule -- 2.4 Hardening Rule -- 2.4.1 Isotropic Hardening -- 2.4.2 Kinematic Hardening -- 2.4.3 Combined Hardening -- 2.5 Elasto-plastic Modulus -- 2.6 Consideration of Unloading, Reversed Loading and Cyclic Loading -- References -- 3 Theory of Three-Dimensional Plasticity -- 3.1 Comments on the Stress Matrix -- 3.2 Graphical Representation of Yield Conditions -- 3.3 Yield Conditions -- 3.3.1 Mises Yield Condition -- 3.3.2 Tresca Yield Condition -- 3.3.3 Drucker-Prager Yield Condition -- 3.3.4 Sayir Yield Condition -- 3.4 Flow Rule -- 3.5 Hardening Rule -- 3.5.1 Isotropic Hardening -- 3.5.2 Kinematic Hardening -- References -- 4 Elasto-plastic Finite Element Simulations -- 4.1 Approach for One-Dimensional Problems -- 4.1.1 Integration of the Material Equations -- 4.1.2 Derivation of the Fully Implicit Backward-Euler Algorithm for Isotropic Hardening -- 4.1.3 Derivation of the Fully Implicit Backward-Euler Algorithm for Kinematic Hardening -- 4.1.4 Derivation of the Fully Implicit Backward-Euler Algorithm for Combined Hardening -- 4.1.5 Derivation of the Semi-implicit Backward-Euler Algorithm for Isotropic Hardening -- 4.1.6 Sample Problems and Supplementary Problems -- 4.2 Approach for Three-Dimensinal Problems -- 4.2.1 Differentiation of the Yield Conditions -- 4.2.2 Derivation of the Fully Implicit Backward Euler Algorithm for Isotropic Hardening.
References -- Index. |
Record Nr. | UNISA-996499863403316 |
Öchsner Andreas
![]() |
||
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Gene Editing in Plants : CRISPR-Cas and Its Applications / / edited by Ashwani Kumar, Sudipti Arora, Shinjiro Ogita, Yuan-Yeu Yau, Krishnendu Mukherjee |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (871 pages) |
Disciplina | 306.4409113 |
Soggetto topico |
Plant genetics
Agricultural genome mapping Botany Plant Genetics Agricultural Genetics Plant Science |
ISBN | 981-9985-29-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1-CRISPR-Cas: A History of Discovery and Innovation -- Chapter 2-Plant recombinant gene technology for pest control in XXI century: from simple transgenesis to CRISPR/Cas -- Chpater 3-Different classes of CRISPR-Cas systems -- Chapter 4-Strategies to control multidrug-resistant (MDR) bacterial infections using CRISPR-Cas technology -- Chapter 5-Redesigning Saccharomyces cerevisiae Meyen ex E.C. Hansen Using CRISPR to combat Industrial Needs -- Chapter 6 - CRISPRi Mediated Gene Silencing in Biofilm Cycle and Quorum Sensing -- Chapter 7- A new era of CRISPR technology to improve climate resilience in rice -- Chapter 8- Deciphering the role of CRISPR/Cas9 in the amelioration of abiotic and biotic stress conditions -- chapter 9-Detailed insight into various classes of CRISPR/Cas system to develop the future crops -- Chapter 10-Role of CRISPR-Cas and its application in mitigating plant stress -- Chapter 11-Application of CRISPR for plant-mediated resistance -- Chapter 12-Nutrient Biofortification in Crop Plants by the Crispr/Cas9 Technology: A Potential Approach for Sustainable Food Security -- Chapter 13 -CRISPR-Cas and its Applications in Food production -- Chapter 14 - Application of genome editing: CRISPR Cas in crop improvement -- Chapter 15-Development of a CRISPR-Cas9-based multiplex genome editing vector and stay-green lettuce -- Chapter 16-Potato Genome Editing: Recent Challenges and a Practical Procedure -- Chapter 17-CRISPR GENE Editing for Secondary Metabolite Production: A Review -- Chapter 18-CRISPR-CAS Systems for Enhancing Photosynthesis : Climate Resilience And Food Production -- Chapter 19 - Combined use of unidirectional site-specific recombination system and CRISPR-Cas systems for plant genome editing -- Chapter 20- Advances in delivery of CRISPR-Cas reagents for precise genome editing in plants -- chapter 21-Perspectives and overview of CRISPR/CAS Technology in Plant Pathogenesis -- Chapter 22- Clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) [CRISPR-Cas] – an emering technique in plant disease detection and management -- Chapter 23-Application of genome editing for improving nematode resistance in plants: How far we progressed? -- Chapter 24-CRISPR-based Genetic Control Strategies for Insect Pests to Mitigate Classical Insecticidal Approaches -- Chapter 25-CRISPR-Based Approach: A Way Forward to Sustainable Development Goals (SDGs) -- Chapter 26-CRISPR/Cas Technology: A Climate Saviour or a Genetic Pandora's Box? -- Chapter 27-An Analysis of Global Policies and Regulation on Genome Editing in Plants -- Chapter 28-CRISPR/Cas Mediated multiplex gene editing in Tomato (Solanum lycopersicum L.) -- Chapter 29-CRISPR-Cas System and its Role in Quorum Sensing Processes of Bacteria and Fungi -- Chapter 30- Genome editing tool CRISPR-Cas: Legal and Ethical Considerations for Life Science. |
Record Nr. | UNINA-9910845087903321 |
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Plant secondary metabolites : physico-chemical properties and therapeutic applications / / edite by Anil Kumar Sharma, Ajay Sharma |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (479 pages) |
Disciplina | 306.4409113 |
Soggetto topico | Plant metabolites - Biotechnology |
ISBN |
981-16-4778-X
981-16-4779-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- 1: Plant Secondary Metabolites: An Introduction of Their Chemistry and Biological Significance with Physicochemical Aspect -- 1.1 Introduction -- 1.2 Phenolics and Polyphenolics -- 1.2.1 Flavonoids -- 1.2.2 Non-flavonoids -- 1.3 Nitrogen-Containing Compounds -- 1.3.1 Alkaloids -- 1.3.1.1 True Alkaloids -- 1.3.1.2 Protoalkaloids -- 1.3.1.3 Pseudoalkaoids -- 1.3.1.4 Polyamines Alkaloids -- 1.3.1.5 Peptide and Cyclopeptide Alkaloids -- 1.3.2 Cyanogenic Glycosides -- 1.3.3 Glucosinolates -- 1.3.4 Nonprotein Amino Acid -- 1.4 Terpenes/Terpenoids -- 1.4.1 Hemiterpenoids -- 1.4.2 Monoterpenoids -- 1.4.3 Sesquiterpenoids -- 1.4.4 Diterpenoids -- 1.4.5 Sesterterpenoids -- 1.4.6 Triterpenoids -- 1.4.7 Sesquarterpenoids -- 1.4.8 Tetraterpenoids -- 1.4.9 Polyterpenoids -- 1.4.10 Irregular Terpenoids -- 1.5 Sulfur-Containing Compounds -- 1.5.1 Phytochelatins -- 1.5.2 Glucosinolate -- 1.5.3 Phytoalexins -- 1.5.4 Defensins -- 1.5.5 Thionins -- 1.6 Physiochemical Aspect of Plant Secondary Metabolites (PSMs) -- 1.7 Biological Activities of Plant Secondary Metabolites (PSMs) -- 1.7.1 Antioxidant Effects -- 1.7.2 Antimicrobial Effects -- 1.7.3 Anticancer Effects -- 1.7.4 Antidiabetic Effects -- 1.7.5 Anti-inflammatory Effect -- 1.7.6 Antidepressant -- 1.8 Conclusion -- References -- Chapter 2: Natural Sources of Plant Secondary Metabolites and the Role of Plant Polyphenols in the Green Photosynthesis of Met... -- 2.1 Plant Secondary Metabolites: From Plants to Industrial Products -- 2.2 Plant Polyphenols -- 2.2.1 Flavonoids -- 2.2.2 Lignans -- 2.2.3 Stilbenes -- 2.2.4 Phenolic Acid -- 2.3 Phytosynthesis of Metallic Nanoparticles -- 2.4 Polyphenols in Nanoparticle Phytosynthesis -- 2.4.1 Nanoparticle Synthesis Methods -- 2.4.2 Characterization and Properties -- 2.4.3 Flavonoids in Nanoparticle Phytosynthesis.
2.4.3.1 Platycladi cacumen Extract in Silver Nanoparticle Synthesis -- 2.4.3.2 Selaginella bryopteris (L.) Baker (1884) Extract in Silver Nanoparticle Synthesis -- 2.4.3.3 Salvia officinalis L. Extract in Silver Nanoparticle Synthesis -- 2.4.3.4 Chenopodium murale L. Leaf Extract in Silver Nanoparticle Synthesis -- 2.4.4 Phenolic Acids in Nanoparticle Phytosynthesis -- 2.4.4.1 Camellia sinensis (L.) Kuntze Extract in Silver Nanoparticle Synthesis -- 2.4.4.2 Parkia speciosa Hassk. Extract in Silver Nanoparticle Synthesis -- 2.4.5 Lignans in Nanoparticle Phytosynthesis -- 2.4.5.1 Forsythia suspensa (Thunberg) Vahl Fruit Extract in Silver Nanoparticle Synthesis -- 2.4.5.2 Sesamum indicum L. Extract in Silver Nanoparticle Synthesis -- 2.4.5.3 Streblus asper Lour. Extract in Silver Nanoparticle Synthesis -- 2.4.6 Stilbenes in Nanoparticle Phytosynthesis -- 2.5 Concluding Remarks and Perspectives -- References -- 3: Plant Secondary Metabolite Determination Through Analytical Chromatographic Techniques: Recent Trends and Advancement -- 3.1 Introduction -- 3.1.1 High-Pressure Thin-Layer Chromatography (HPTLC) -- 3.1.2 High-Pressure Liquid Chromatography -- 3.1.3 GC-MS -- 3.2 Conclusion -- References -- 4: Role of Plant Secondary Metabolites as Anticancer and Chemopreventive Agents -- 4.1 Introduction -- 4.2 Side Effects Associated with Cancer Treatment Regimes -- 4.3 Plant Secondary Metabolites as Anticancer Agents -- 4.3.1 Terpenoids or Terpenes -- 4.3.1.1 Monoterpenoids -- 4.3.1.2 Sesquiterpenoid -- 4.3.1.3 Diterpenoids -- 4.3.1.4 Triterpenoids -- 4.3.1.5 Tetraterpenoids -- 4.3.2 Polyphenols -- 4.3.2.1 Curcumin -- 4.3.2.2 Quercetin -- 4.3.2.3 Resveratrol -- 4.3.2.4 Flavonoids -- 4.3.3 Nitrogen-Containing Compounds -- 4.3.3.1 Alkaloids -- Indole Alkaloids -- Isoquinoline Alkaloids -- Phenanthroindolizidine Alkaloids -- Indoquinoline Alkaloids. Benzophenanthridine Alkaloids -- 4.3.3.2 Glucosinolates -- 4.4 Conclusion -- References -- 5: Plant Secondary Metabolites: Natural Compounds as Cosmetic Ingredients and Their Potential Activity in Skin Cancer -- 5.1 Introduction -- 5.2 Skin Cancer Therapy -- 5.2.1 Basal Cell Carcinoma -- 5.2.2 Squamous Cell Carcinoma -- 5.2.3 Melanoma -- 5.3 Phytochemicals -- 5.3.1 Polyphenolic Compounds -- 5.3.1.1 Quercetin -- 5.3.1.2 Apigenin -- 5.3.1.3 Silymarin and Silybin -- 5.3.1.4 Diosmin -- 5.3.1.5 Fisetin -- 5.3.1.6 Luteolin -- 5.3.1.7 Catechins -- 5.3.1.8 Curcumin -- 5.3.1.9 Resveratrol -- 5.3.2 Polysaccharides -- 5.3.3 Volatile Oils -- 5.3.3.1 Terpin-4-Ol -- 5.3.3.2 Geraniol -- 5.3.3.3 α-Pinene -- 5.3.3.4 α-Santalol -- 5.3.3.5 Eugenol -- 5.3.3.6 Boswellic Acids -- 5.3.4 Alkaloids -- 5.3.4.1 Berberine -- 5.3.4.2 Paclitaxel -- 5.3.4.3 Glycoalkaloids Isolated from Solanaceae -- 5.3.5 Proanthocyanidins -- 5.3.6 Caffeic Acid Phenethyl Ester -- 5.3.7 Allyl Sulfides -- 5.3.8 Capsaicin -- 5.4 Conclusions -- References -- 6: Natural Remedies for a Healthy Heart: The Evidence-Based Beneficial Effects of Polyphenols -- 6.1 Background -- 6.2 Structure and Bioavailability of Vegetal Secondary Metabolites -- 6.2.1 Terpenes -- 6.2.2 Nitrogen and Sulfur-Containing Compounds -- 6.2.3 Phenolic Compounds -- 6.2.4 Polyphenols Bioavailability -- 6.3 The General Mechanism Responsible for the Beneficial Effects of Polyphenols in CVD -- 6.4 Beneficial Actions of Polyphenols Concerning Redox Homeostasis -- 6.4.1 Direct Antioxidant Action -- 6.4.2 Indirect Action Supporting Antioxidant Systems -- 6.4.3 Indirect Action Inhibiting Oxidative Stress-Enhancing Systems -- 6.4.4 Reports Regarding Antioxidant Effects in Human Studies -- 6.5 Protective Effects Involving Lipid Metabolism -- 6.5.1 Preclinical Reports -- 6.5.2 Clinical Evidence. 6.6 Polyphenols and Platelet Function: Experimental and Preclinical Results -- 6.6.1 Antiplatelet Effects in Clinical Settings -- 6.7 Polyphenols and Inflammation -- 6.7.1 Experimental Studies Supporting the Effect of Polyphenols on Inflammatory Pathways -- 6.7.2 Anti-inflammatory Effects of Polyphenols in Preclinical and Clinical Settings -- 6.8 Conclusions -- References -- 7: Kauranes as Anti-inflammatory and Immunomodulatory Agents: An Overview of In Vitro and In Vivo Effects -- 7.1 Introduction -- 7.2 Chemistry of Kauranes -- 7.3 Anti-inflammatory Activity of Kauranes on Cells of the Immune System -- 7.3.1 Anti-inflammatory Effects on Neutrophils -- 7.3.2 Anti-inflammatory Effects on Monocytes and Macrophages -- 7.3.2.1 Effect of Kauranes on Monocytes and Peripheral Macrophages -- 7.3.2.2 Effects on Macrophages of the Central Nervous System (Microglia) -- 7.3.3 Anti-inflammatory Effects on Dendritic Cells -- 7.3.4 Anti-inflammatory Effects on CD4+ Helper T-Cell Activation and Differentiation -- 7.4 Other Anti-inflammatory Effects Associated with Kauranes -- 7.5 In Vivo Effects in Animal Models -- 7.5.1 Effects of Kauranes in Animal Models of Acute Inflammation -- 7.5.2 Effects of Kauranes in Animal Models of Rheumatoid Arthritis -- 7.5.3 Effects of Kauranes in Animal Models of SLE -- 7.5.4 Effects of Kauranes in Animal Models of IBD -- 7.5.5 Effects of Kauranes in Animal Models of Lung Conditions -- 7.5.6 Effects of Kauranes in Animal Models of Acute Liver Injury, Hepatotoxicity, and Liver Fibrosis -- 7.5.6.1 Acute Liver Injury -- 7.5.6.2 Hepatotoxicity -- 7.5.6.3 Liver Fibrosis -- 7.5.7 Effects of Kauranes in Animal Models of Neurological Diseases -- 7.5.7.1 Alzheimer´s Disease -- 7.5.7.2 Parkinson´s Disease -- 7.5.7.3 Multiple Sclerosis -- 7.5.7.4 Guillain-Barré Syndrome -- 7.5.8 Effects of Kauranes in Animal Models of Diabetes. 7.5.9 Effects of Kauranes in Other Animal Models of Inflammation In Vivo -- 7.6 Future Perspectives -- 7.7 Conclusions -- References -- 8: Role of Plant Secondary Metabolites in Metabolic Disorders -- 8.1 Introduction -- 8.1.1 Physiology of Metabolism -- 8.1.2 Cell: The Metabolic Processing Center -- 8.2 Introduction to Metabolic Disorders -- 8.3 Association of Significant Dietary Habits with Metabolic Syndrome -- 8.4 Causes of Metabolic Disorders -- 8.5 Role of Polyphenols in Health -- 8.6 Polyphenols and Their Role in the Human Body -- 8.7 Metabolic Syndrome and Oxidative Stress -- 8.8 Phytotherapeutic and Metabolic Disorders -- 8.9 Role of Secondary Metabolites in Type 1 and Type 2 Diabetes Mellitus -- 8.10 Plant Metabolism and Secondary Metabolites -- 8.11 Importance and Main Role of Secondary Metabolites -- 8.12 Antioxidant Potential of Plant Phenols -- 8.13 Classification of Secondary Metabolites -- 8.14 Role of Secondary Metabolites in Thyroid Disease -- 8.15 Plant Polyphenols and Hepatitis -- 8.16 Secondary Metabolites in the Prevention of Hepatorenal Toxicity -- 8.17 Secondary Metabolites in Tuberculosis and Their Potency Against Tuberculosis -- 8.17.1 First Line Drugs -- 8.17.1.1 Isoniazid -- 8.17.1.2 Rifampicin -- 8.17.1.3 Ethambutol -- 8.17.1.4 Pyrazinamide -- 8.17.1.5 Streptomycin -- 8.17.2 Second-Line Medications -- 8.17.2.1 Fluoroquinolone -- 8.17.2.2 Aminoglycosides (Kanamycin, Amikacin, and Capreomycin) -- 8.17.2.3 Ethionamide and Prothionamide Ethionamide -- 8.17.2.4 P-Aminosalicylic Acid -- 8.17.2.5 Cycloserine -- 8.18 Therapeutic Use of Phytopolyphenols -- References -- 9: Metal Complexes of Plant Secondary Metabolites with Therapeutic Potential -- 9.1 Introduction -- 9.2 Classification -- 9.2.1 Terpenes -- 9.2.2 Nitrogen-Containing Compounds -- 9.2.3 Phenolics -- 9.2.4 Sulfur-Containing Compounds -- 9.3 Antioxidant Activity. 9.4 Cytotoxic Activity for Cancer Therapy. |
Record Nr. | UNINA-9910743239203321 |
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|