top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Plant Microbiome and Sustainable Agriculture : Functional Annotation and Future Challenges / / edited by Ajar Nath Yadav, Ali Asghar Rastegari, Neelam Yadav, Divjot Kour
Advances in Plant Microbiome and Sustainable Agriculture : Functional Annotation and Future Challenges / / edited by Ajar Nath Yadav, Ali Asghar Rastegari, Neelam Yadav, Divjot Kour
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXII, 278 p. 31 illus., 29 illus. in color.)
Disciplina 306.4409113
Collana Microorganisms for Sustainability
Soggetto topico Agriculture
Microbial ecology
Microbial genetics
Microbial genomics
Plant breeding
Genètica vegetal
Genètica microbiana
Agricultura sostenible
Microbial Ecology
Microbial Genetics and Genomics
Plant Breeding/Biotechnology
Soggetto genere / forma Llibres electrònics
ISBN 981-15-3204-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Phosphorus Solubilization and Mobilization: Mechanisms, Current Developments and Future Challenge -- Chapter 2. Potassium Solubilization and Mobilization: Functional Impact on Plant Growth for Sustainable Agriculture -- Chapter 3. Zinc Solubilization and Mobilization: A Promising Approach for Cereals Biofortification -- Chapter 4. Microbial ACC-deaminase attributes: perspectives and applications in stress agriculture -- Chapter 5. Plant Microbiomes with Phytohormones Attribute for Plant Growth and Adaptation under the Stress Conditions -- Chapter 6. Mechanisms of Plant Growth Promotion and Functional Annotation in Mitigation of Abiotic Stress -- Chapter 7. Microbiomes Associated with Plant Growing Under the Hypersaline Habitats and Mitigation of Salt Stress -- Chapter 8. Alleviation of Cold Stress by Psychrotrophic Microbes -- Chapter 9. Microbes-Mediated Mitigation of Drought Stress in Plants: Recent Trends and Future Challenges -- Chapter 10. Microbial Consortium with Multifunctional Plant Growth Promoting Attributes: Future Perspective in Agriculture -- Chapter 11. Cyanobacteria as Biofertilizers: Current Research, Commercial Aspects, and Future Challenges.
Record Nr. UNINA-9910416102803321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biostimulants : exploring sources and applications / / edited by Naleeni Ramawat, Vijay Bhardwaj
Biostimulants : exploring sources and applications / / edited by Naleeni Ramawat, Vijay Bhardwaj
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (297 p.)
Disciplina 306.4409113
Collana Plant Life and Environment Dynamics
Soggetto topico Plant biotechnology
Biotecnologia vegetal
Creixement (Plantes)
Soggetto genere / forma Llibres electrònics
ISBN 981-16-7080-3
981-16-7079-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743224903321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biotechnology and Omics Approaches for Bioenergy Crops / / edited by Muhammad Aasim [and five others]
Biotechnology and Omics Approaches for Bioenergy Crops / / edited by Muhammad Aasim [and five others]
Edizione [First edition.]
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (298 pages)
Disciplina 306.4409113
Soggetto topico Plant biotechnology
ISBN 981-9949-54-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Bioenergy Crops in the Perspective of Climate Change -- 1.1 Introduction -- 1.2 Fossil Fuels and Global Climate Change -- 1.3 Mitigating Climate Change via Bioenergy Crops -- 1.4 Positive Impacts of Bioenergy Crops on Environment -- 1.5 Land-Use Change and Bioenergy Crops -- 1.6 Potential Bioenergy Crops -- 1.6.1 Maize -- 1.6.2 Sweet Sorghum -- 1.6.3 Sugarcane -- 1.6.4 Hemp -- 1.6.5 Jerusalem Artichoke -- 1.6.6 Switchgrass -- 1.6.7 Cardoon -- 1.7 Bioenergy Crops and Marginal Lands -- 1.8 Future of Bioenergy Crops -- 1.9 Conclusion -- References -- 2: Major and Potential Biofuel Crops -- 2.1 Introduction -- 2.1.1 Maize (Zea mays L.) -- 2.1.2 Sugarcane (Saccharum officinarum L.) -- 2.1.3 Sweet Sorghum (Sorghum bicolor L.) -- 2.1.4 Sugar Beet (Beta vulgaris) -- 2.1.5 Soybean (Glycine max L.) -- 2.1.6 Rapeseed (Brassica napus) -- 2.1.7 Palm Oil (Elaeis guineensis) -- 2.1.8 Jatropha (Jatropha curcas L.) -- 2.2 Potential and Promising Biofuel Crops -- 2.2.1 Tobacco (Nicotiana tabacum) -- 2.2.2 Cotton (Gossypium hirsutum) -- 2.2.3 Cassava (Manihot esculenta) -- 2.2.4 Sweet Potato (Ipomoea batatas L.) -- References -- 3: Biotechnological Approaches for the Production of Bioenergy -- 3.1 Introduction -- 3.2 Types of Bioenergy -- 3.2.1 Bioethanol -- 3.2.2 Biodiesel -- 3.2.3 Biohydrogen -- 3.3 Biotechnological Approaches for Biofuel Production -- 3.3.1 Isolation of Enzymes from Microbial Sources -- 3.3.1.1 Amylase and Cellulase Enzymes -- Sources -- Identification and Isolation of Enzymes from Microbial (Bacterial and Fungal) Sources -- Identification of Bacteria and Fungi Producing Amylase and Cellulase -- PCR Amplification of Specific Genes -- Functional Gene Microarray -- Metagenomic Analysis -- Proteomic Analysis.
Enzyme Screening -- Enzyme Production -- Cell Disruption -- Enzyme Purification -- Enzyme Characterization -- 3.3.2 Microbial Fermentation and Enzyme Hydrolysis for the Production of Bioenergy -- 3.3.2.1 Bioethanol -- First- and Second-Generation Bioethanol Production -- Feedstock Preparation for Bioethanol Production -- Grinding and Milling of Feedstock -- Pretreatment -- Hydrolysis and Fermentation -- Separation and Dehydration -- 3.3.2.2 Third Generation Bioethanol Production -- 3.3.2.3 Biodiesel -- 3.3.2.4 Feedstock Preparation -- 3.3.2.5 Transesterification -- 3.3.2.6 Separation -- 3.3.2.7 Washing and Drying -- 3.3.2.8 Storage and Distribution -- 3.3.2.9 Biohydrogen -- Dark Fermentation -- Photo Fermentation -- Algal Hydrogen Production -- Biophotolysis -- 3.4 Genetic Engineering and Bioenergy Production -- 3.4.1 Plant Biomass Yield Improvement -- 3.4.2 Improving the Conversion of Plant Biomass into Biofuels -- 3.4.3 Reduced Environmental Impact -- 3.4.4 Sustainable Production -- 3.4.5 Genetic Engineering and Production of Bioethanol -- 3.4.5.1 Metabolic Engineering -- 3.4.5.2 Genome Shuffling -- 3.4.5.3 CRISPR-Cas9-Based Genome Editing -- 3.4.5.4 Gene Cloning -- 3.4.5.5 Genetic Engineering and Biodiesel Production -- 3.4.5.6 Metabolic Engineering -- 3.4.5.7 Gene Overexpression -- 3.4.5.8 CRISPR-Cas9-Based Genome Editing -- 3.4.6 Genetic Engineering and Production of Biohydrogen -- 3.4.7 Genetic Engineering and Ethical Considerations in Bioenergy Production -- 3.4.7.1 Genetic Engineering and Ecosystem Safety -- 3.4.7.2 Genetic Engineering and Ethical Concerns in Bioenergy Production -- 3.4.7.3 Public Acceptance for Genetically Engineered Biofuels -- 3.5 Biorefineries and Production of Bioenergy -- 3.5.1 Importance of Biorefineries in the Production of Biofuels -- 3.5.1.1 Feedstock Preparation/Pretreatment.
3.5.1.2 Biomass Conversion/Hydrolysis -- 3.5.1.3 Byproduct Recovery -- 3.6 Environmental and Economic Considerations of Bioenergy Fuels -- 3.6.1 Important Environmental Considerations of Biofuel Production (Jeswani et al. 2020) -- 3.6.1.1 Land Usage -- 3.6.1.2 Less Pollutant -- 3.6.1.3 Water Usage for the Production of Biofuel Crops -- 3.6.1.4 Soil Degradation -- 3.6.2 Economic Considerations -- 3.6.2.1 Cost of Production -- 3.6.2.2 Energy Security -- 3.6.3 Economic Viability of Biofuel Production from Biotechnology -- 3.6.3.1 Feedstock Costs and Biotechnology -- 3.6.3.2 Processing Costs of Feedstocks -- 3.6.3.3 Market Demand and Public Interest -- 3.7 Future Prospects -- References -- 4: Integrated OMIC Approaches for Bioenergy Crops -- 4.1 Introduction -- 4.2 Overview of OMIC Approaches -- 4.3 Integrated OMIC Approaches -- 4.4 Challenges and Future Directions -- 4.5 Conclusion -- References -- 5: Genomics of Bioenergy Crops -- 5.1 Introduction -- 5.2 Applications of Genomics in the Development of Energy Crops -- 5.3 Evolutionary Relationships in Higher Plants and Their Genomes -- 5.4 Genome Sequencing -- 5.5 Analysis of Genetic Variation -- 5.5.1 Target Traits for Bioenergy Plant Improvement -- 5.6 Model Bioenery Crops -- 5.7 Genomics of Specific Bioenergy Species -- 5.8 Sorghum -- 5.9 Sugarcane -- 5.10 Maize -- 5.11 Poplar -- 5.12 Eucalyptus -- References -- 6: Omics Approaches for Sorghum: Paving the Way to a Resilient and Sustainable Bioenergy Future -- 6.1 Introduction -- 6.2 Abiotic Stresses -- 6.3 Genomic Advances for Abiotic Stress Tolerance -- 6.3.1 Molecular Marker Resources -- 6.3.2 Identification of Loci Governing Abiotic Stress Through QTL Mapping -- 6.3.3 Genome-Wide Association Studies (GWAS) -- 6.3.4 Genomic Selection for Abiotic Stress in Sorghum -- 6.4 Advances in Transcriptomics.
6.5 Proteomics -- 6.6 Metabolomics -- 6.7 Integration of Omics Technologies -- 6.8 Conclusions -- References -- 7: Exploring Omics Approaches to Enhance Stress Tolerance in Soybean for Sustainable Bioenergy Production -- 7.1 Introduction -- 7.2 Impact of Abiotic and Biotic Stressors on Soybean -- 7.3 Omics Approaches in the Technological Era -- 7.3.1 Genomic Advances for Abiotic Stress Tolerance in Soybean -- 7.3.2 QTL Mapping for Abiotic Stress Tolerance in Soybean -- 7.3.2.1 Genome-Wide Association Studies (GWAS) in Soybean -- 7.4 Proteomics in Soybean -- 7.5 Omics Approaches for Biotic Stresses -- 7.5.1 Soybean Genomics -- 7.5.1.1 Breeding for Biotic Challenges in Soybeans with the Help of QTL and Meta-QTL -- 7.5.1.2 Exploring Biotic Stress Resistance Through Genome-Wide Association Mapping -- 7.5.2 Transcriptomics of Soybean -- 7.5.2.1 Northern Blot Study of Soybean to Assess Biotic Stress -- 7.5.2.2 Microarray İnvestigation of Soybean Biotic Stress Tolerance -- 7.5.2.3 Assessment of RNA-Seq Data for Soybean Biotic Stress Responses -- 7.5.2.4 MicroRNAs' Role in Soybean Biotic Stress Challenges -- 7.6 Soybean Phenomics -- 7.7 Soybean Proteomics -- 7.8 Conclusion -- References -- 8: Advanced and Sustainable Approaches in Sugarcane Crop Improvements with Reference to Environmental Stresses -- 8.1 Introduction -- 8.2 Markers-Assisted Breeding (MAB) in Sugarcane -- 8.2.1 Application of MMs in Sugarcane Research -- 8.2.2 Molecular Markers (MMs) Related to Sugarcane Biotic Stresses -- 8.2.3 Molecular Markers (MMs) Related to Sugarcane Abiotic Stresses -- 8.3 Sugarcane Genetic Transformation -- 8.3.1 Transformation Approaches -- 8.3.2 Genome Editing (GE) -- 8.3.3 Transformation Approaches in Sugarcane Against Biotic Stresses -- 8.3.4 Transformational Strategies for Abiotic Stresses.
8.4 Application of Omics Approaches in Sugarcane Crop Improvements -- 8.4.1 Sugarcane Genomics -- 8.4.2 Sugarcane Transcriptomics -- 8.4.3 Sugarcane Proteomics -- 8.4.4 Sugarcane Metabolomics -- 8.5 Conclusion -- References -- 9: Role of Endophytes in the Regulation of Metabolome in Bioenergy Crops -- 9.1 Introduction -- 9.2 Overview of the Chapter -- 9.3 Types of Endophytes and Their Distribution in Bioenergy Crops -- 9.4 Endophyte-Plant Interactions and Their Impact on the Metabolome -- 9.5 Endophyte-Mediated Regulation of Bioenergy Crop Growth and Development -- 9.6 Conclusion -- 9.7 Future Perspective -- References -- 10: Cotton Stalks: Potential Biofuel Recourses for Sustainable Environment -- 10.1 Introduction -- 10.2 Cotton Crop Stalk as Sustainable Biofuel Resources -- 10.3 Biofuels from Cotton Stalks -- 10.3.1 How to Generate Biofuel from Cotton Stalks -- 10.3.1.1 Pyrolysis -- 10.3.1.2 Fermentation -- 10.3.1.3 Gasification -- 10.3.1.4 Hydrolysis -- 10.3.2 Biofuel Generation from Cotton Stalks -- 10.3.2.1 Bio-Oil -- 10.3.2.2 Syngas -- 10.3.2.3 Ethanol -- 10.3.2.4 Biogas -- 10.4 Value Addition Through Biofuel Production by Using Cotton Stalks After Crop Harvest -- 10.5 Biofuel and the Cotton Stalk Economics Potential -- 10.6 Conclusion -- References -- 11: Harmful Insects in Some Biofuel Plants and Their Biology -- 11.1 Introduction -- 11.2 Canola (Brassica napus L.) Harmful Insects -- 11.2.1 Cabbage-Stem Flea Beetle (Psylliodes chrysocephala L.) -- 11.2.2 Diamondback Moth (Plutella xylostella L.) -- 11.2.3 Winter Stem Weevil [(Ceutorhynchus picitarsis (G.)] -- 11.2.4 Cabbage Seed Pod Weevil (Ceutorhynchus pleurostigma M.) -- 11.2.5 Red Turnip Beetle [(Entomoscelis adonidis (Paal)] -- 11.2.6 Cabbage Bug (Eurydema ornatum L.) -- 11.2.7 Cabbage Aphid [Brevicoryne brassicae (L.)].
11.3 Safflower (Carthamus tinctorius L.) Harmful Insects.
Record Nr. UNINA-9910767549303321
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Boundary plasma physics : an accessible guide to transport, detachment, and divertor design / / Fulvio Militello
Boundary plasma physics : an accessible guide to transport, detachment, and divertor design / / Fulvio Militello
Autore Militello Fulvio
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (534 pages)
Disciplina 306.4409113
Collana Springer Series on Atomic, Optical, and Plasma Physics
Soggetto topico Plasma (Ionized gases)
ISBN 9783031173394
9783031173387
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Essential Elements of Fusion Physics -- 1.2 The Plasma Exhaust Problem -- 1.3 Boundary Physics at a Glance -- 1.4 Goals and Synopsis -- References -- 2 Plasma Equations -- 2.1 Forces and Dynamics -- 2.2 Kinetic Description -- 2.2.1 Liouville Equation and Probability Distributions -- 2.2.2 Boltzmann and Vlasov Equation -- 2.3 A Basic Discussion of Plasma Collision Operators -- 2.3.1 From Collisions to Collision Operators -- 2.3.2 Boltzmann's H-Theorem, or a Short History of Irreversibility -- 2.3.3 Simplifying Things: The BGK Operator -- 2.4 Fluid Description -- 2.4.1 Density Equation -- 2.4.2 Momentum Equation -- 2.4.3 Energy Equation -- 2.5 Implication of Non-relativistic Dynamics -- 2.6 Closures, Orderings and Reduced Models -- 2.6.1 Braginskii Equations -- 2.6.2 MHD -- 2.6.3 Drift-Ordered Equations -- 2.6.4 Geometry in Reduced 2D Systems -- References -- Further Reading -- 3 Sheath Physics -- 3.1 The Langmuir (or Debye) Sheath -- 3.2 Debye Shielding -- 3.3 A Quick Review of Wall Models -- 3.4 Wall with Perpendicular Magnetic Field or Non MagnetisedPlasma -- 3.4.1 Fluid Sheath Model and Existence Conditions -- 3.4.2 Particle Fluxes and Electrical Phenomena in the Sheath -- 3.4.3 Collisional Presheath -- 3.4.4 Kinetic Treatment of the Sheath -- 3.4.5 Bohm Criterion for Plasmas with Multiple Ions -- 3.4.6 Sheath Energy Transmission: Formerly (and Wrongly) Known as Heat Transmission -- 3.5 Wall with Inclined Magnetic Fields and Magnetic Pre-sheath -- 3.5.1 Bohm Criterion for Shallow Angles and Magnetic Pre-sheath -- 3.5.2 Electric Potential and Dependence on the Incidence Angle -- 3.5.3 Effect of Fluid Drifts -- 3.5.4 Very Shallow Angles and Role of Collisions -- References -- Further Reading -- 4 Atomic, Molecular and Plasma-Surface Physics.
4.1 A Few Useful Concepts and Reaction Terminology -- 4.2 Basic Model with Atomic Hydrogen -- 4.2.1 Electron-Neutrals Interactions -- 4.2.2 Ion-Neutral Interactions -- 4.2.3 Other Interactions Between the Electrons,Ions, and Atoms -- 4.3 Molecular Interactions -- 4.4 Impurities -- 4.5 Plasma-Surface Interactions -- 4.5.1 Reflection, Trapping and Desorption -- 4.5.2 Wall Recycling -- 4.5.3 Sputtering -- 4.5.4 Electron Emission -- References -- Further Reading -- 5 Basic Exhaust Concepts -- 5.1 Magnetic Geometry and Its Connection with the BoundaryPlasma -- 5.2 Protecting the Plasma Facing Structures -- 5.3 Elementary Estimates of Scrape-Off Layer Width -- 5.4 Simple Geometrical Effects-Flux Expansion and Tile Tilting -- 5.4.1 Poloidal and Toroidal Flux Expansion -- 5.4.2 Target Tilting -- 5.4.3 Total Flux Expansion and Magnetic Projection of the Areas -- 5.4.4 Further Observations on the Geometrical Effects -- 5.5 Divertor Regimes: The Two Point Model -- 5.5.1 Derivation of the Two Point Model -- 5.5.2 General Solutions of the Two Point Model -- 5.5.3 Collisionality and Its Role in the Two Point Model -- 5.5.4 Applications of the Two Point Model: Divertor Regimes -- 5.5.5 Extended Two Point Model -- 5.6 Flux Formulation and Parallel Profiles in the Boundary Plasma -- 5.6.1 Neutrals and Particle Sources -- 5.6.2 Particle Flux -- 5.6.3 Energy Flux and Temperature Profile -- 5.6.4 Target Conditions -- 5.6.5 Upstream Conditions -- 5.6.6 Mach Number, Velocity and Density Profiles -- 5.6.7 Electric Potential -- 5.7 Divertor Asymmetry in Low to Intermediate Collisionality -- References -- Further Reading -- 6 Radiation and Detachment -- 6.1 Plasma/Neutral Processes at Large Collisionality and Low Temperature -- 6.1.1 Model Equations for High Collisionality Cold Plasmas -- 6.1.2 A Closer Look at the Energy Transfer Mechanisms in a Cold Pure Plasmas.
6.2 Impurity Radiation and Associated Models -- 6.3 Divertor Asymmetry at High Collisionality or Radiation -- 6.4 Detachment -- 6.4.1 Particle Flux Balance -- 6.4.2 Routes to Detachment: A Qualitative Discussion -- 6.4.3 Role of Pressure Losses and Recombination -- 6.4.4 Partial Detachment and Detachment Onset -- 6.4.5 Deep Detachment: Detachment Window and Stability -- 6.5 MARFEs and Stable X-Point Radiation -- References -- 7 Filamentary Transport -- 7.1 Basic Filament Physics and Observations -- 7.1.1 Filament Propagation -- 7.2 Filaments at the Outer Midplane -- 7.2.1 Filament Generation -- 7.2.2 Filament Interactions (or Lack Thereof) -- 7.2.3 Parallel Dynamics of the Upstream Filaments -- 7.2.4 Filaments at the X-Point -- 7.2.5 Response of Filaments to Different SOL Conditions -- 7.3 Filaments in the Divertor Region -- 7.4 The Nature of Boundary Turbulence -- 7.4.1 Important Statistical Concepts and Tools -- 7.4.2 Randomness and Structure in Temporal Fluctuations -- 7.4.3 Diffusion and Spatial Fluctuations -- 7.5 Statistical Models of Filamentary Transport and UpstreamProfiles -- 7.5.1 Profiles, Background and Fluctuations -- 7.5.2 Phenomenology of the Upstream Profiles -- 7.5.3 Statistical Framework -- 7.6 Heat Fluxes at the Divertor Target: Wagner-Eich Function -- References -- Further Reading -- 8 Conventional and Alternative Divertors -- 8.1 Single Null Divertor: The ITER Solution -- 8.2 Alternative Divertor Designs -- 8.2.1 Why They Are Needed -- 8.2.2 Beneficial Features in Divertor Design -- 8.3 The X-Divertor -- 8.4 The Super-X Divertor -- 8.5 Double Null Divertor -- 8.6 The Snowflake Divertor and X-Point Target Divertor -- 8.7 Liquid Metals as Plasma Facing Components -- 8.8 What Will the Future Bring? -- References -- Further Reading -- Appendix A -- A.1 Of Vectors and Tensors -- A.2 Viscous Forces in all Their Glory -- References.
Index.
Record Nr. UNISA-996503464503316
Militello Fulvio  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Boundary plasma physics : an accessible guide to transport, detachment, and divertor design / / Fulvio Militello
Boundary plasma physics : an accessible guide to transport, detachment, and divertor design / / Fulvio Militello
Autore Militello Fulvio
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (534 pages)
Disciplina 306.4409113
Collana Springer Series on Atomic, Optical, and Plasma Physics
Soggetto topico Plasma (Ionized gases)
ISBN 9783031173394
9783031173387
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Essential Elements of Fusion Physics -- 1.2 The Plasma Exhaust Problem -- 1.3 Boundary Physics at a Glance -- 1.4 Goals and Synopsis -- References -- 2 Plasma Equations -- 2.1 Forces and Dynamics -- 2.2 Kinetic Description -- 2.2.1 Liouville Equation and Probability Distributions -- 2.2.2 Boltzmann and Vlasov Equation -- 2.3 A Basic Discussion of Plasma Collision Operators -- 2.3.1 From Collisions to Collision Operators -- 2.3.2 Boltzmann's H-Theorem, or a Short History of Irreversibility -- 2.3.3 Simplifying Things: The BGK Operator -- 2.4 Fluid Description -- 2.4.1 Density Equation -- 2.4.2 Momentum Equation -- 2.4.3 Energy Equation -- 2.5 Implication of Non-relativistic Dynamics -- 2.6 Closures, Orderings and Reduced Models -- 2.6.1 Braginskii Equations -- 2.6.2 MHD -- 2.6.3 Drift-Ordered Equations -- 2.6.4 Geometry in Reduced 2D Systems -- References -- Further Reading -- 3 Sheath Physics -- 3.1 The Langmuir (or Debye) Sheath -- 3.2 Debye Shielding -- 3.3 A Quick Review of Wall Models -- 3.4 Wall with Perpendicular Magnetic Field or Non MagnetisedPlasma -- 3.4.1 Fluid Sheath Model and Existence Conditions -- 3.4.2 Particle Fluxes and Electrical Phenomena in the Sheath -- 3.4.3 Collisional Presheath -- 3.4.4 Kinetic Treatment of the Sheath -- 3.4.5 Bohm Criterion for Plasmas with Multiple Ions -- 3.4.6 Sheath Energy Transmission: Formerly (and Wrongly) Known as Heat Transmission -- 3.5 Wall with Inclined Magnetic Fields and Magnetic Pre-sheath -- 3.5.1 Bohm Criterion for Shallow Angles and Magnetic Pre-sheath -- 3.5.2 Electric Potential and Dependence on the Incidence Angle -- 3.5.3 Effect of Fluid Drifts -- 3.5.4 Very Shallow Angles and Role of Collisions -- References -- Further Reading -- 4 Atomic, Molecular and Plasma-Surface Physics.
4.1 A Few Useful Concepts and Reaction Terminology -- 4.2 Basic Model with Atomic Hydrogen -- 4.2.1 Electron-Neutrals Interactions -- 4.2.2 Ion-Neutral Interactions -- 4.2.3 Other Interactions Between the Electrons,Ions, and Atoms -- 4.3 Molecular Interactions -- 4.4 Impurities -- 4.5 Plasma-Surface Interactions -- 4.5.1 Reflection, Trapping and Desorption -- 4.5.2 Wall Recycling -- 4.5.3 Sputtering -- 4.5.4 Electron Emission -- References -- Further Reading -- 5 Basic Exhaust Concepts -- 5.1 Magnetic Geometry and Its Connection with the BoundaryPlasma -- 5.2 Protecting the Plasma Facing Structures -- 5.3 Elementary Estimates of Scrape-Off Layer Width -- 5.4 Simple Geometrical Effects-Flux Expansion and Tile Tilting -- 5.4.1 Poloidal and Toroidal Flux Expansion -- 5.4.2 Target Tilting -- 5.4.3 Total Flux Expansion and Magnetic Projection of the Areas -- 5.4.4 Further Observations on the Geometrical Effects -- 5.5 Divertor Regimes: The Two Point Model -- 5.5.1 Derivation of the Two Point Model -- 5.5.2 General Solutions of the Two Point Model -- 5.5.3 Collisionality and Its Role in the Two Point Model -- 5.5.4 Applications of the Two Point Model: Divertor Regimes -- 5.5.5 Extended Two Point Model -- 5.6 Flux Formulation and Parallel Profiles in the Boundary Plasma -- 5.6.1 Neutrals and Particle Sources -- 5.6.2 Particle Flux -- 5.6.3 Energy Flux and Temperature Profile -- 5.6.4 Target Conditions -- 5.6.5 Upstream Conditions -- 5.6.6 Mach Number, Velocity and Density Profiles -- 5.6.7 Electric Potential -- 5.7 Divertor Asymmetry in Low to Intermediate Collisionality -- References -- Further Reading -- 6 Radiation and Detachment -- 6.1 Plasma/Neutral Processes at Large Collisionality and Low Temperature -- 6.1.1 Model Equations for High Collisionality Cold Plasmas -- 6.1.2 A Closer Look at the Energy Transfer Mechanisms in a Cold Pure Plasmas.
6.2 Impurity Radiation and Associated Models -- 6.3 Divertor Asymmetry at High Collisionality or Radiation -- 6.4 Detachment -- 6.4.1 Particle Flux Balance -- 6.4.2 Routes to Detachment: A Qualitative Discussion -- 6.4.3 Role of Pressure Losses and Recombination -- 6.4.4 Partial Detachment and Detachment Onset -- 6.4.5 Deep Detachment: Detachment Window and Stability -- 6.5 MARFEs and Stable X-Point Radiation -- References -- 7 Filamentary Transport -- 7.1 Basic Filament Physics and Observations -- 7.1.1 Filament Propagation -- 7.2 Filaments at the Outer Midplane -- 7.2.1 Filament Generation -- 7.2.2 Filament Interactions (or Lack Thereof) -- 7.2.3 Parallel Dynamics of the Upstream Filaments -- 7.2.4 Filaments at the X-Point -- 7.2.5 Response of Filaments to Different SOL Conditions -- 7.3 Filaments in the Divertor Region -- 7.4 The Nature of Boundary Turbulence -- 7.4.1 Important Statistical Concepts and Tools -- 7.4.2 Randomness and Structure in Temporal Fluctuations -- 7.4.3 Diffusion and Spatial Fluctuations -- 7.5 Statistical Models of Filamentary Transport and UpstreamProfiles -- 7.5.1 Profiles, Background and Fluctuations -- 7.5.2 Phenomenology of the Upstream Profiles -- 7.5.3 Statistical Framework -- 7.6 Heat Fluxes at the Divertor Target: Wagner-Eich Function -- References -- Further Reading -- 8 Conventional and Alternative Divertors -- 8.1 Single Null Divertor: The ITER Solution -- 8.2 Alternative Divertor Designs -- 8.2.1 Why They Are Needed -- 8.2.2 Beneficial Features in Divertor Design -- 8.3 The X-Divertor -- 8.4 The Super-X Divertor -- 8.5 Double Null Divertor -- 8.6 The Snowflake Divertor and X-Point Target Divertor -- 8.7 Liquid Metals as Plasma Facing Components -- 8.8 What Will the Future Bring? -- References -- Further Reading -- Appendix A -- A.1 Of Vectors and Tensors -- A.2 Viscous Forces in all Their Glory -- References.
Index.
Record Nr. UNINA-9910634046603321
Militello Fulvio  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Commercial scale tissue culture for horticulture and plantation crops / / edited by Shubhpriya Gupta, Preeti Chaturvedi
Commercial scale tissue culture for horticulture and plantation crops / / edited by Shubhpriya Gupta, Preeti Chaturvedi
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (338 pages)
Disciplina 306.4409113
Soggetto topico Plant tissue culture
ISBN 981-19-0055-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910578687303321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elements of classical plasticity theory / / Andreas Öchsner
Elements of classical plasticity theory / / Andreas Öchsner
Autore Öchsner Andreas
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (116 pages)
Disciplina 306.4409113
Soggetto topico Plasticity
ISBN 9783031142017
9783031142000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Symbols and Abbreviations -- Latin Symbols (Capital Letters) -- Latin Symbols (Small Letters) -- Greek Symbols (Capital Letters) -- Greek Symbols (Small Letters) -- Mathematical Symbols -- Special Matrices -- Indices, Superscripted -- Indices, Subscripted -- Abbreviations -- 1 Introduction -- 1.1 Uniaxial Tensile Testing -- 1.2 Continuum Mechanical Modelling -- References -- 2 Theory of One-Dimensional Plasticity -- 2.1 Initial Remarks -- 2.2 Yield Condition -- 2.3 Flow Rule -- 2.4 Hardening Rule -- 2.4.1 Isotropic Hardening -- 2.4.2 Kinematic Hardening -- 2.4.3 Combined Hardening -- 2.5 Elasto-plastic Modulus -- 2.6 Consideration of Unloading, Reversed Loading and Cyclic Loading -- References -- 3 Theory of Three-Dimensional Plasticity -- 3.1 Comments on the Stress Matrix -- 3.2 Graphical Representation of Yield Conditions -- 3.3 Yield Conditions -- 3.3.1 Mises Yield Condition -- 3.3.2 Tresca Yield Condition -- 3.3.3 Drucker-Prager Yield Condition -- 3.3.4 Sayir Yield Condition -- 3.4 Flow Rule -- 3.5 Hardening Rule -- 3.5.1 Isotropic Hardening -- 3.5.2 Kinematic Hardening -- References -- 4 Elasto-plastic Finite Element Simulations -- 4.1 Approach for One-Dimensional Problems -- 4.1.1 Integration of the Material Equations -- 4.1.2 Derivation of the Fully Implicit Backward-Euler Algorithm for Isotropic Hardening -- 4.1.3 Derivation of the Fully Implicit Backward-Euler Algorithm for Kinematic Hardening -- 4.1.4 Derivation of the Fully Implicit Backward-Euler Algorithm for Combined Hardening -- 4.1.5 Derivation of the Semi-implicit Backward-Euler Algorithm for Isotropic Hardening -- 4.1.6 Sample Problems and Supplementary Problems -- 4.2 Approach for Three-Dimensinal Problems -- 4.2.1 Differentiation of the Yield Conditions -- 4.2.2 Derivation of the Fully Implicit Backward Euler Algorithm for Isotropic Hardening.
References -- Index.
Record Nr. UNINA-9910624301603321
Öchsner Andreas  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elements of classical plasticity theory / / Andreas Öchsner
Elements of classical plasticity theory / / Andreas Öchsner
Autore Öchsner Andreas
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (116 pages)
Disciplina 306.4409113
Soggetto topico Plasticity
ISBN 9783031142017
9783031142000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Symbols and Abbreviations -- Latin Symbols (Capital Letters) -- Latin Symbols (Small Letters) -- Greek Symbols (Capital Letters) -- Greek Symbols (Small Letters) -- Mathematical Symbols -- Special Matrices -- Indices, Superscripted -- Indices, Subscripted -- Abbreviations -- 1 Introduction -- 1.1 Uniaxial Tensile Testing -- 1.2 Continuum Mechanical Modelling -- References -- 2 Theory of One-Dimensional Plasticity -- 2.1 Initial Remarks -- 2.2 Yield Condition -- 2.3 Flow Rule -- 2.4 Hardening Rule -- 2.4.1 Isotropic Hardening -- 2.4.2 Kinematic Hardening -- 2.4.3 Combined Hardening -- 2.5 Elasto-plastic Modulus -- 2.6 Consideration of Unloading, Reversed Loading and Cyclic Loading -- References -- 3 Theory of Three-Dimensional Plasticity -- 3.1 Comments on the Stress Matrix -- 3.2 Graphical Representation of Yield Conditions -- 3.3 Yield Conditions -- 3.3.1 Mises Yield Condition -- 3.3.2 Tresca Yield Condition -- 3.3.3 Drucker-Prager Yield Condition -- 3.3.4 Sayir Yield Condition -- 3.4 Flow Rule -- 3.5 Hardening Rule -- 3.5.1 Isotropic Hardening -- 3.5.2 Kinematic Hardening -- References -- 4 Elasto-plastic Finite Element Simulations -- 4.1 Approach for One-Dimensional Problems -- 4.1.1 Integration of the Material Equations -- 4.1.2 Derivation of the Fully Implicit Backward-Euler Algorithm for Isotropic Hardening -- 4.1.3 Derivation of the Fully Implicit Backward-Euler Algorithm for Kinematic Hardening -- 4.1.4 Derivation of the Fully Implicit Backward-Euler Algorithm for Combined Hardening -- 4.1.5 Derivation of the Semi-implicit Backward-Euler Algorithm for Isotropic Hardening -- 4.1.6 Sample Problems and Supplementary Problems -- 4.2 Approach for Three-Dimensinal Problems -- 4.2.1 Differentiation of the Yield Conditions -- 4.2.2 Derivation of the Fully Implicit Backward Euler Algorithm for Isotropic Hardening.
References -- Index.
Record Nr. UNISA-996499863403316
Öchsner Andreas  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Gene Editing in Plants : CRISPR-Cas and Its Applications / / edited by Ashwani Kumar, Sudipti Arora, Shinjiro Ogita, Yuan-Yeu Yau, Krishnendu Mukherjee
Gene Editing in Plants : CRISPR-Cas and Its Applications / / edited by Ashwani Kumar, Sudipti Arora, Shinjiro Ogita, Yuan-Yeu Yau, Krishnendu Mukherjee
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (871 pages)
Disciplina 306.4409113
Soggetto topico Plant genetics
Agricultural genome mapping
Botany
Plant Genetics
Agricultural Genetics
Plant Science
ISBN 981-9985-29-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1-CRISPR-Cas: A History of Discovery and Innovation -- Chapter 2-Plant recombinant gene technology for pest control in XXI century: from simple transgenesis to CRISPR/Cas -- Chpater 3-Different classes of CRISPR-Cas systems -- Chapter 4-Strategies to control multidrug-resistant (MDR) bacterial infections using CRISPR-Cas technology -- Chapter 5-Redesigning Saccharomyces cerevisiae Meyen ex E.C. Hansen Using CRISPR to combat Industrial Needs -- Chapter 6 - CRISPRi Mediated Gene Silencing in Biofilm Cycle and Quorum Sensing -- Chapter 7- A new era of CRISPR technology to improve climate resilience in rice -- Chapter 8- Deciphering the role of CRISPR/Cas9 in the amelioration of abiotic and biotic stress conditions -- chapter 9-Detailed insight into various classes of CRISPR/Cas system to develop the future crops -- Chapter 10-Role of CRISPR-Cas and its application in mitigating plant stress -- Chapter 11-Application of CRISPR for plant-mediated resistance -- Chapter 12-Nutrient Biofortification in Crop Plants by the Crispr/Cas9 Technology: A Potential Approach for Sustainable Food Security -- Chapter 13 -CRISPR-Cas and its Applications in Food production -- Chapter 14 - Application of genome editing: CRISPR Cas in crop improvement -- Chapter 15-Development of a CRISPR-Cas9-based multiplex genome editing vector and stay-green lettuce -- Chapter 16-Potato Genome Editing: Recent Challenges and a Practical Procedure -- Chapter 17-CRISPR GENE Editing for Secondary Metabolite Production: A Review -- Chapter 18-CRISPR-CAS Systems for Enhancing Photosynthesis : Climate Resilience And Food Production -- Chapter 19 - Combined use of unidirectional site-specific recombination system and CRISPR-Cas systems for plant genome editing -- Chapter 20- Advances in delivery of CRISPR-Cas reagents for precise genome editing in plants -- chapter 21-Perspectives and overview of CRISPR/CAS Technology in Plant Pathogenesis -- Chapter 22- Clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) [CRISPR-Cas] – an emering technique in plant disease detection and management -- Chapter 23-Application of genome editing for improving nematode resistance in plants: How far we progressed? -- Chapter 24-CRISPR-based Genetic Control Strategies for Insect Pests to Mitigate Classical Insecticidal Approaches -- Chapter 25-CRISPR-Based Approach: A Way Forward to Sustainable Development Goals (SDGs) -- Chapter 26-CRISPR/Cas Technology: A Climate Saviour or a Genetic Pandora's Box? -- Chapter 27-An Analysis of Global Policies and Regulation on Genome Editing in Plants -- Chapter 28-CRISPR/Cas Mediated multiplex gene editing in Tomato (Solanum lycopersicum L.) -- Chapter 29-CRISPR-Cas System and its Role in Quorum Sensing Processes of Bacteria and Fungi -- Chapter 30- Genome editing tool CRISPR-Cas: Legal and Ethical Considerations for Life Science.
Record Nr. UNINA-9910845087903321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant secondary metabolites : physico-chemical properties and therapeutic applications / / edite by Anil Kumar Sharma, Ajay Sharma
Plant secondary metabolites : physico-chemical properties and therapeutic applications / / edite by Anil Kumar Sharma, Ajay Sharma
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (479 pages)
Disciplina 306.4409113
Soggetto topico Plant metabolites - Biotechnology
ISBN 981-16-4778-X
981-16-4779-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- 1: Plant Secondary Metabolites: An Introduction of Their Chemistry and Biological Significance with Physicochemical Aspect -- 1.1 Introduction -- 1.2 Phenolics and Polyphenolics -- 1.2.1 Flavonoids -- 1.2.2 Non-flavonoids -- 1.3 Nitrogen-Containing Compounds -- 1.3.1 Alkaloids -- 1.3.1.1 True Alkaloids -- 1.3.1.2 Protoalkaloids -- 1.3.1.3 Pseudoalkaoids -- 1.3.1.4 Polyamines Alkaloids -- 1.3.1.5 Peptide and Cyclopeptide Alkaloids -- 1.3.2 Cyanogenic Glycosides -- 1.3.3 Glucosinolates -- 1.3.4 Nonprotein Amino Acid -- 1.4 Terpenes/Terpenoids -- 1.4.1 Hemiterpenoids -- 1.4.2 Monoterpenoids -- 1.4.3 Sesquiterpenoids -- 1.4.4 Diterpenoids -- 1.4.5 Sesterterpenoids -- 1.4.6 Triterpenoids -- 1.4.7 Sesquarterpenoids -- 1.4.8 Tetraterpenoids -- 1.4.9 Polyterpenoids -- 1.4.10 Irregular Terpenoids -- 1.5 Sulfur-Containing Compounds -- 1.5.1 Phytochelatins -- 1.5.2 Glucosinolate -- 1.5.3 Phytoalexins -- 1.5.4 Defensins -- 1.5.5 Thionins -- 1.6 Physiochemical Aspect of Plant Secondary Metabolites (PSMs) -- 1.7 Biological Activities of Plant Secondary Metabolites (PSMs) -- 1.7.1 Antioxidant Effects -- 1.7.2 Antimicrobial Effects -- 1.7.3 Anticancer Effects -- 1.7.4 Antidiabetic Effects -- 1.7.5 Anti-inflammatory Effect -- 1.7.6 Antidepressant -- 1.8 Conclusion -- References -- Chapter 2: Natural Sources of Plant Secondary Metabolites and the Role of Plant Polyphenols in the Green Photosynthesis of Met... -- 2.1 Plant Secondary Metabolites: From Plants to Industrial Products -- 2.2 Plant Polyphenols -- 2.2.1 Flavonoids -- 2.2.2 Lignans -- 2.2.3 Stilbenes -- 2.2.4 Phenolic Acid -- 2.3 Phytosynthesis of Metallic Nanoparticles -- 2.4 Polyphenols in Nanoparticle Phytosynthesis -- 2.4.1 Nanoparticle Synthesis Methods -- 2.4.2 Characterization and Properties -- 2.4.3 Flavonoids in Nanoparticle Phytosynthesis.
2.4.3.1 Platycladi cacumen Extract in Silver Nanoparticle Synthesis -- 2.4.3.2 Selaginella bryopteris (L.) Baker (1884) Extract in Silver Nanoparticle Synthesis -- 2.4.3.3 Salvia officinalis L. Extract in Silver Nanoparticle Synthesis -- 2.4.3.4 Chenopodium murale L. Leaf Extract in Silver Nanoparticle Synthesis -- 2.4.4 Phenolic Acids in Nanoparticle Phytosynthesis -- 2.4.4.1 Camellia sinensis (L.) Kuntze Extract in Silver Nanoparticle Synthesis -- 2.4.4.2 Parkia speciosa Hassk. Extract in Silver Nanoparticle Synthesis -- 2.4.5 Lignans in Nanoparticle Phytosynthesis -- 2.4.5.1 Forsythia suspensa (Thunberg) Vahl Fruit Extract in Silver Nanoparticle Synthesis -- 2.4.5.2 Sesamum indicum L. Extract in Silver Nanoparticle Synthesis -- 2.4.5.3 Streblus asper Lour. Extract in Silver Nanoparticle Synthesis -- 2.4.6 Stilbenes in Nanoparticle Phytosynthesis -- 2.5 Concluding Remarks and Perspectives -- References -- 3: Plant Secondary Metabolite Determination Through Analytical Chromatographic Techniques: Recent Trends and Advancement -- 3.1 Introduction -- 3.1.1 High-Pressure Thin-Layer Chromatography (HPTLC) -- 3.1.2 High-Pressure Liquid Chromatography -- 3.1.3 GC-MS -- 3.2 Conclusion -- References -- 4: Role of Plant Secondary Metabolites as Anticancer and Chemopreventive Agents -- 4.1 Introduction -- 4.2 Side Effects Associated with Cancer Treatment Regimes -- 4.3 Plant Secondary Metabolites as Anticancer Agents -- 4.3.1 Terpenoids or Terpenes -- 4.3.1.1 Monoterpenoids -- 4.3.1.2 Sesquiterpenoid -- 4.3.1.3 Diterpenoids -- 4.3.1.4 Triterpenoids -- 4.3.1.5 Tetraterpenoids -- 4.3.2 Polyphenols -- 4.3.2.1 Curcumin -- 4.3.2.2 Quercetin -- 4.3.2.3 Resveratrol -- 4.3.2.4 Flavonoids -- 4.3.3 Nitrogen-Containing Compounds -- 4.3.3.1 Alkaloids -- Indole Alkaloids -- Isoquinoline Alkaloids -- Phenanthroindolizidine Alkaloids -- Indoquinoline Alkaloids.
Benzophenanthridine Alkaloids -- 4.3.3.2 Glucosinolates -- 4.4 Conclusion -- References -- 5: Plant Secondary Metabolites: Natural Compounds as Cosmetic Ingredients and Their Potential Activity in Skin Cancer -- 5.1 Introduction -- 5.2 Skin Cancer Therapy -- 5.2.1 Basal Cell Carcinoma -- 5.2.2 Squamous Cell Carcinoma -- 5.2.3 Melanoma -- 5.3 Phytochemicals -- 5.3.1 Polyphenolic Compounds -- 5.3.1.1 Quercetin -- 5.3.1.2 Apigenin -- 5.3.1.3 Silymarin and Silybin -- 5.3.1.4 Diosmin -- 5.3.1.5 Fisetin -- 5.3.1.6 Luteolin -- 5.3.1.7 Catechins -- 5.3.1.8 Curcumin -- 5.3.1.9 Resveratrol -- 5.3.2 Polysaccharides -- 5.3.3 Volatile Oils -- 5.3.3.1 Terpin-4-Ol -- 5.3.3.2 Geraniol -- 5.3.3.3 α-Pinene -- 5.3.3.4 α-Santalol -- 5.3.3.5 Eugenol -- 5.3.3.6 Boswellic Acids -- 5.3.4 Alkaloids -- 5.3.4.1 Berberine -- 5.3.4.2 Paclitaxel -- 5.3.4.3 Glycoalkaloids Isolated from Solanaceae -- 5.3.5 Proanthocyanidins -- 5.3.6 Caffeic Acid Phenethyl Ester -- 5.3.7 Allyl Sulfides -- 5.3.8 Capsaicin -- 5.4 Conclusions -- References -- 6: Natural Remedies for a Healthy Heart: The Evidence-Based Beneficial Effects of Polyphenols -- 6.1 Background -- 6.2 Structure and Bioavailability of Vegetal Secondary Metabolites -- 6.2.1 Terpenes -- 6.2.2 Nitrogen and Sulfur-Containing Compounds -- 6.2.3 Phenolic Compounds -- 6.2.4 Polyphenols Bioavailability -- 6.3 The General Mechanism Responsible for the Beneficial Effects of Polyphenols in CVD -- 6.4 Beneficial Actions of Polyphenols Concerning Redox Homeostasis -- 6.4.1 Direct Antioxidant Action -- 6.4.2 Indirect Action Supporting Antioxidant Systems -- 6.4.3 Indirect Action Inhibiting Oxidative Stress-Enhancing Systems -- 6.4.4 Reports Regarding Antioxidant Effects in Human Studies -- 6.5 Protective Effects Involving Lipid Metabolism -- 6.5.1 Preclinical Reports -- 6.5.2 Clinical Evidence.
6.6 Polyphenols and Platelet Function: Experimental and Preclinical Results -- 6.6.1 Antiplatelet Effects in Clinical Settings -- 6.7 Polyphenols and Inflammation -- 6.7.1 Experimental Studies Supporting the Effect of Polyphenols on Inflammatory Pathways -- 6.7.2 Anti-inflammatory Effects of Polyphenols in Preclinical and Clinical Settings -- 6.8 Conclusions -- References -- 7: Kauranes as Anti-inflammatory and Immunomodulatory Agents: An Overview of In Vitro and In Vivo Effects -- 7.1 Introduction -- 7.2 Chemistry of Kauranes -- 7.3 Anti-inflammatory Activity of Kauranes on Cells of the Immune System -- 7.3.1 Anti-inflammatory Effects on Neutrophils -- 7.3.2 Anti-inflammatory Effects on Monocytes and Macrophages -- 7.3.2.1 Effect of Kauranes on Monocytes and Peripheral Macrophages -- 7.3.2.2 Effects on Macrophages of the Central Nervous System (Microglia) -- 7.3.3 Anti-inflammatory Effects on Dendritic Cells -- 7.3.4 Anti-inflammatory Effects on CD4+ Helper T-Cell Activation and Differentiation -- 7.4 Other Anti-inflammatory Effects Associated with Kauranes -- 7.5 In Vivo Effects in Animal Models -- 7.5.1 Effects of Kauranes in Animal Models of Acute Inflammation -- 7.5.2 Effects of Kauranes in Animal Models of Rheumatoid Arthritis -- 7.5.3 Effects of Kauranes in Animal Models of SLE -- 7.5.4 Effects of Kauranes in Animal Models of IBD -- 7.5.5 Effects of Kauranes in Animal Models of Lung Conditions -- 7.5.6 Effects of Kauranes in Animal Models of Acute Liver Injury, Hepatotoxicity, and Liver Fibrosis -- 7.5.6.1 Acute Liver Injury -- 7.5.6.2 Hepatotoxicity -- 7.5.6.3 Liver Fibrosis -- 7.5.7 Effects of Kauranes in Animal Models of Neurological Diseases -- 7.5.7.1 Alzheimer´s Disease -- 7.5.7.2 Parkinson´s Disease -- 7.5.7.3 Multiple Sclerosis -- 7.5.7.4 Guillain-Barré Syndrome -- 7.5.8 Effects of Kauranes in Animal Models of Diabetes.
7.5.9 Effects of Kauranes in Other Animal Models of Inflammation In Vivo -- 7.6 Future Perspectives -- 7.7 Conclusions -- References -- 8: Role of Plant Secondary Metabolites in Metabolic Disorders -- 8.1 Introduction -- 8.1.1 Physiology of Metabolism -- 8.1.2 Cell: The Metabolic Processing Center -- 8.2 Introduction to Metabolic Disorders -- 8.3 Association of Significant Dietary Habits with Metabolic Syndrome -- 8.4 Causes of Metabolic Disorders -- 8.5 Role of Polyphenols in Health -- 8.6 Polyphenols and Their Role in the Human Body -- 8.7 Metabolic Syndrome and Oxidative Stress -- 8.8 Phytotherapeutic and Metabolic Disorders -- 8.9 Role of Secondary Metabolites in Type 1 and Type 2 Diabetes Mellitus -- 8.10 Plant Metabolism and Secondary Metabolites -- 8.11 Importance and Main Role of Secondary Metabolites -- 8.12 Antioxidant Potential of Plant Phenols -- 8.13 Classification of Secondary Metabolites -- 8.14 Role of Secondary Metabolites in Thyroid Disease -- 8.15 Plant Polyphenols and Hepatitis -- 8.16 Secondary Metabolites in the Prevention of Hepatorenal Toxicity -- 8.17 Secondary Metabolites in Tuberculosis and Their Potency Against Tuberculosis -- 8.17.1 First Line Drugs -- 8.17.1.1 Isoniazid -- 8.17.1.2 Rifampicin -- 8.17.1.3 Ethambutol -- 8.17.1.4 Pyrazinamide -- 8.17.1.5 Streptomycin -- 8.17.2 Second-Line Medications -- 8.17.2.1 Fluoroquinolone -- 8.17.2.2 Aminoglycosides (Kanamycin, Amikacin, and Capreomycin) -- 8.17.2.3 Ethionamide and Prothionamide Ethionamide -- 8.17.2.4 P-Aminosalicylic Acid -- 8.17.2.5 Cycloserine -- 8.18 Therapeutic Use of Phytopolyphenols -- References -- 9: Metal Complexes of Plant Secondary Metabolites with Therapeutic Potential -- 9.1 Introduction -- 9.2 Classification -- 9.2.1 Terpenes -- 9.2.2 Nitrogen-Containing Compounds -- 9.2.3 Phenolics -- 9.2.4 Sulfur-Containing Compounds -- 9.3 Antioxidant Activity.
9.4 Cytotoxic Activity for Cancer Therapy.
Record Nr. UNINA-9910743239203321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui