21st Century Challenges in Chemical Crystallography I : History and Technical Developments / / edited by D. Michael P. Mingos, Paul R. Raithby
| 21st Century Challenges in Chemical Crystallography I : History and Technical Developments / / edited by D. Michael P. Mingos, Paul R. Raithby |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (IX, 278 p. 69 illus., 46 illus. in color.) |
| Disciplina |
016.54532
548.3 |
| Collana | Structure and Bonding |
| Soggetto topico |
Analytical chemistry
Crystallography Chemistry, Physical and theoretical Chemistry, Organic Analytical Chemistry Crystallography and Scattering Methods Theoretical Chemistry Organic Chemistry |
| ISBN | 3-030-64743-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | The Early History of X-ray Crystallography -- Recent developments in refinement and analysis of X-ray crystal structures -- Leading edge chemical crystallography service provision and its impact on crystallographic data science in the 21st century -- Crystallographic analysis of crystals under high pressure conditions -- Watching Photochemistry Happen: Recent Developments in Dynamic Single-crystal X-ray Diffraction Studies -- Time Resolved Single Crystal X-ray Crystallography. . |
| Record Nr. | UNINA-9910433260303321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
21st Century Challenges in Chemical Crystallography II : Structural Correlations and Data Interpretation / / edited by D. Michael P. Mingos, Paul R. Raithby
| 21st Century Challenges in Chemical Crystallography II : Structural Correlations and Data Interpretation / / edited by D. Michael P. Mingos, Paul R. Raithby |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (IX, 231 p. 109 illus., 70 illus. in color.) |
| Disciplina |
016.54532
548.3 |
| Collana | Structure and Bonding |
| Soggetto topico |
Analytical chemistry
Crystallography Chemistry, Physical and theoretical Chemistry, Organic Analytical Chemistry Crystallography and Scattering Methods Theoretical Chemistry Organic Chemistry |
| ISBN | 3-030-64747-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Historical Development of Historical Correlations -- The advent of Quantum Crystallography: Form and Structure Factors from Quantum Mechanics for Advanced Refinement and Wavefunction Fitting -- Experimental charge densities from multipole modelling – moving into the 21st century -- Computational Studies of the Solid-State Molecular Organometallic (SMOM) Chemistry of rhodium Alkane Complexes. . |
| Record Nr. | UNINA-9910433260203321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Anomalous relaxation in colloidal systems / / Avinash Kumar
| Anomalous relaxation in colloidal systems / / Avinash Kumar |
| Autore | Avināśa Kumāra |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (135 pages) |
| Disciplina | 016.54532 |
| Collana | Springer Theses |
| Soggetto topico | Colloids - Freezing |
| ISBN |
9783031132803
9783031132797 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Supervisor's Foreword -- Acknowledgments -- Contents -- Parts of This Thesis Have Been Published in the Following Journal Articles -- 1 Introduction -- 1.1 History of the Mpemba Effect -- 1.2 Explanations for the Mpemba Effect -- 1.3 Mpemba Effect in Other Systems -- 1.3.1 Experiments -- 1.3.2 Numerical Studies -- 1.4 Mpemba Effect in Colloidal Systems -- 1.5 Particle Manipulation Techniques -- 1.5.1 Passive Trapping -- Optical Tweezers -- Magnetic Tweezers -- Holographic Tweezers -- 1.5.2 Active Trapping -- Electrokinetic Traps -- Hydrodynamic Traps -- Acoustic Traps -- Thermal Traps -- 1.6 Combining Feedback Traps and Optical Tweezers -- 1.7 Overview of the Thesis -- References -- 2 Particle Dynamics -- 2.1 The Langevin Equation -- 2.1.1 A Free Particle -- 2.1.2 A Trapped Particle -- 2.2 Fokker-Planck Equation -- 2.2.1 Adjoint of the Fokker-Planck Operator -- 2.2.2 Eigenfunctions and Eigenvalues of the Fokker-Planck Operator -- 2.2.3 Fokker-Planck Equation with no Drift -- 2.3 Heat Equation -- 2.4 Supplementary Information -- 2.4.1 A Similarity Transformation of the Fokker-Planck Operator -- References -- 3 Optical Feedback Traps -- 3.1 Principles of Optical Tweezers -- 3.2 Optical Tweezers Setup -- 3.2.1 Faraday Isolator -- 3.2.2 Acousto-Optic Deflector -- 3.2.3 Detection Scheme -- 3.2.4 Control and Data Acquisition -- 3.3 Sample Preparation -- 3.4 Calibration -- 3.4.1 Position Calibration -- 3.4.2 Trap-Stiffness Calibration -- 3.5 Virtual Harmonic Potential -- 3.6 Isotropic Traps -- 3.7 Virtual Double-Well Potential -- 3.8 Discussion -- References -- 4 Mpemba Effect -- 4.1 Definition of the Mpemba Effect -- 4.2 Energy Landscape for the Mpemba Effect -- 4.2.1 Choice of Potential Energy Landscape -- 4.3 Imposing an Instantaneous Quench via Initial Conditions -- 4.4 Measuring the Distance to Equilibrium -- 4.4.1 L1 distance Distance.
4.4.2 Kullback-Leibler (KL) Divergence -- 4.5 Observation of the Mpemba Effect in Asymmetric Domains -- 4.6 Analysis Based on Eigenfunction Expansion -- 4.6.1 Calculation of the a2 Coefficient -- 4.6.2 Relationship Between D and the a2 Coefficient -- 4.7 Strong Mpemba Effect -- 4.8 Geometric Interpretation of the Mpemba Effect -- 4.8.1 Thermalization in a Double-Well Potential with Metastability -- 4.8.2 Metastable Mpemba Effect -- 4.8.3 Metastable Mpemba Effect in Terms of Extractable Work -- 4.9 Discussion -- 4.10 Supplementary Information -- 4.10.1 Infinite Potential vs. Finite Potential -- 4.10.2 Calculation of Equilibration Time -- 4.10.3 Equilibration Time Versus the a2 Coefficient -- 4.10.4 Barrier Height vs. Discontinuity in Local Equilibrium -- References -- 5 Inverse Mpemba Effect -- 5.1 Energy Landscape for the Inverse Mpemba Effect -- 5.2 Inverse Mpemba Effect in an Asymmetric Potential -- 5.3 Analysis Based on Eigenfunction Expansion -- 5.4 Discussion -- References -- 6 Higher-Order Mpemba Effect -- 6.1 Experiment -- 6.2 Eigenfunction Analysis -- 6.3 Mpemba Effect in a Potential with One Local Minimum -- 6.4 Discussion -- Reference -- 7 Conclusions -- 7.1 Summary of the Results Obtained -- 7.2 Final Remarks -- References. |
| Record Nr. | UNISA-996495162103316 |
Avināśa Kumāra
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Anomalous relaxation in colloidal systems / / Avinash Kumar
| Anomalous relaxation in colloidal systems / / Avinash Kumar |
| Autore | Avināśa Kumāra |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (135 pages) |
| Disciplina | 016.54532 |
| Collana | Springer Theses |
| Soggetto topico | Colloids - Freezing |
| ISBN |
9783031132803
9783031132797 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Supervisor's Foreword -- Acknowledgments -- Contents -- Parts of This Thesis Have Been Published in the Following Journal Articles -- 1 Introduction -- 1.1 History of the Mpemba Effect -- 1.2 Explanations for the Mpemba Effect -- 1.3 Mpemba Effect in Other Systems -- 1.3.1 Experiments -- 1.3.2 Numerical Studies -- 1.4 Mpemba Effect in Colloidal Systems -- 1.5 Particle Manipulation Techniques -- 1.5.1 Passive Trapping -- Optical Tweezers -- Magnetic Tweezers -- Holographic Tweezers -- 1.5.2 Active Trapping -- Electrokinetic Traps -- Hydrodynamic Traps -- Acoustic Traps -- Thermal Traps -- 1.6 Combining Feedback Traps and Optical Tweezers -- 1.7 Overview of the Thesis -- References -- 2 Particle Dynamics -- 2.1 The Langevin Equation -- 2.1.1 A Free Particle -- 2.1.2 A Trapped Particle -- 2.2 Fokker-Planck Equation -- 2.2.1 Adjoint of the Fokker-Planck Operator -- 2.2.2 Eigenfunctions and Eigenvalues of the Fokker-Planck Operator -- 2.2.3 Fokker-Planck Equation with no Drift -- 2.3 Heat Equation -- 2.4 Supplementary Information -- 2.4.1 A Similarity Transformation of the Fokker-Planck Operator -- References -- 3 Optical Feedback Traps -- 3.1 Principles of Optical Tweezers -- 3.2 Optical Tweezers Setup -- 3.2.1 Faraday Isolator -- 3.2.2 Acousto-Optic Deflector -- 3.2.3 Detection Scheme -- 3.2.4 Control and Data Acquisition -- 3.3 Sample Preparation -- 3.4 Calibration -- 3.4.1 Position Calibration -- 3.4.2 Trap-Stiffness Calibration -- 3.5 Virtual Harmonic Potential -- 3.6 Isotropic Traps -- 3.7 Virtual Double-Well Potential -- 3.8 Discussion -- References -- 4 Mpemba Effect -- 4.1 Definition of the Mpemba Effect -- 4.2 Energy Landscape for the Mpemba Effect -- 4.2.1 Choice of Potential Energy Landscape -- 4.3 Imposing an Instantaneous Quench via Initial Conditions -- 4.4 Measuring the Distance to Equilibrium -- 4.4.1 L1 distance Distance.
4.4.2 Kullback-Leibler (KL) Divergence -- 4.5 Observation of the Mpemba Effect in Asymmetric Domains -- 4.6 Analysis Based on Eigenfunction Expansion -- 4.6.1 Calculation of the a2 Coefficient -- 4.6.2 Relationship Between D and the a2 Coefficient -- 4.7 Strong Mpemba Effect -- 4.8 Geometric Interpretation of the Mpemba Effect -- 4.8.1 Thermalization in a Double-Well Potential with Metastability -- 4.8.2 Metastable Mpemba Effect -- 4.8.3 Metastable Mpemba Effect in Terms of Extractable Work -- 4.9 Discussion -- 4.10 Supplementary Information -- 4.10.1 Infinite Potential vs. Finite Potential -- 4.10.2 Calculation of Equilibration Time -- 4.10.3 Equilibration Time Versus the a2 Coefficient -- 4.10.4 Barrier Height vs. Discontinuity in Local Equilibrium -- References -- 5 Inverse Mpemba Effect -- 5.1 Energy Landscape for the Inverse Mpemba Effect -- 5.2 Inverse Mpemba Effect in an Asymmetric Potential -- 5.3 Analysis Based on Eigenfunction Expansion -- 5.4 Discussion -- References -- 6 Higher-Order Mpemba Effect -- 6.1 Experiment -- 6.2 Eigenfunction Analysis -- 6.3 Mpemba Effect in a Potential with One Local Minimum -- 6.4 Discussion -- Reference -- 7 Conclusions -- 7.1 Summary of the Results Obtained -- 7.2 Final Remarks -- References. |
| Record Nr. | UNINA-9910620200903321 |
Avināśa Kumāra
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||