top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Arabic and Chinese Handwriting Recognition : SACH 2006 summit, College Park, MD, USA, September 27-28, 2006 : selected papers / David Doermann, Stefan Jaeger (eds.)
Arabic and Chinese Handwriting Recognition : SACH 2006 summit, College Park, MD, USA, September 27-28, 2006 : selected papers / David Doermann, Stefan Jaeger (eds.)
Autore SACH 2006 Summit : <2006
Pubbl/distr/stampa Berlin [etc.] : Springer, copyr. 2008
Descrizione fisica VIII, 277 p. : ill. ; 24 cm
Disciplina 006.425
Collana Lecture notes in computer science
Soggetto topico Riconoscimento delle forme - Congressi - College Park - 2006
Elaborazione dei dati - Congressi - College Park - 2006
ISBN 978-3-540-78198-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-990003106880203316
SACH 2006 Summit : <2006  
Berlin [etc.] : Springer, copyr. 2008
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Chinese handwriting recognition : an algorithmic perspective / / Tonghua Su
Chinese handwriting recognition : an algorithmic perspective / / Tonghua Su
Autore Su Tonghua
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Berlin ; ; Heidelberg, : Springer-Verlag, 2013
Descrizione fisica 1 online resource (xi, 124 pages) : illustrations (some color)
Disciplina 006.425
Collana SpringerBriefs in electrical and computer engineering
Soggetto topico Computer vision
Optical pattern recognition
ISBN 1-299-19758-2
3-642-31812-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- HIT-MW Database -- Integrated Segmentation-Recognition Strategy -- Segmentation-free Strategy: Basic Algorithms -- Segmentation-free Strategy: Advanced Algorithms.
Record Nr. UNINA-9910437772103321
Su Tonghua  
Berlin ; ; Heidelberg, : Springer-Verlag, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frontiers in Handwriting Recognition : 18th International Conference, ICFHR 2022, Hyderabad, India, December 4–7, 2022, Proceedings / / edited by Utkarsh Porwal, Alicia Fornés, Faisal Shafait
Frontiers in Handwriting Recognition : 18th International Conference, ICFHR 2022, Hyderabad, India, December 4–7, 2022, Proceedings / / edited by Utkarsh Porwal, Alicia Fornés, Faisal Shafait
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (567 pages)
Disciplina 006.424
006.425
Collana Lecture Notes in Computer Science
Soggetto topico Pattern recognition systems
Database management
Information storage and retrieval systems
Machine learning
Natural language processing (Computer science)
Social sciences - Data processing
Automated Pattern Recognition
Database Management
Information Storage and Retrieval
Machine Learning
Natural Language Processing (NLP)
Computer Application in Social and Behavioral Sciences
ISBN 9783031216480
3031216482
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Historical Document Processing -- A Few Shot Multi-Representation Approach for N-gram Spotting in Historical Manuscripts -- Text Edges Guided Network for Historical Document Super Resolution -- CurT: End-to-End Text Line Detection in Historical Documents with Transformers -- Date Recognition in Historical Parish Records -- Improving Isolated Glyph Classification Task for Palm leaf Manuscripts -- Signature Verification and Writer Identification -- Impact of Type of Convolution Operation on Performance of Convolutional Neural Networks for Online Signature Verification -- COMPOSV++: Light Weight Online Signature Verification Framework through Compound Feature Extraction and Few-shot Learning -- Finger-Touch Direction Feature Using a Frequency Distribution in the Writer Verification Base on Finger-Writing of a Simple Symbol -- Self-Supervised Vision Transformers with Data Augmentation Strategies using Morphological Operations for Writer Retrieval -- EAU-Net: A New Edge-Attention based U-Net for Nationality Identification -- Progressive Multitask Learning Network for Online Chinese Signature Segmentation and Recognition -- Symbol and Graphics Recognition -- Musigraph: Optical Music Recognition through Object Detection and Graph Neural Network -- Combining CNN and Transformer as Encoder to Improve End-to-end Handwritten Mathematical Expression Recognition Accuracy -- A Vision Transformer based Scene Text Recognizer with Multi-Grained Encoding and Decoding -- Spatial Attention and Syntax Rule Enhanced Tree Decoder for Offline Handwritten Mathematical Expression Recognition -- Handwriting Recognition and Understanding -- FPRNet: End-to-end Full-page Recognition Model for Handwritten Chinese Essay -- Active Transfer Learning for Handwriting Recognition -- Recognition-free Question Answering on Handwritten Document Collections -- Handwriting recognition and automatic scoring for descriptive answers in Japanese language tests -- A Weighted Combination of Semantic and Syntactic Word Image Representations -- Combining Self-Training and Minimal Annotations for Handwritten Word Recognition -- Script-Level Word Sample Augmentation for Few-shot Handwritten Text Recognition -- Towards understanding and improving handwriting with AI -- ChaCo: Character Contrastive Learning for Handwritten Text Recognition -- Enhancing Indic Handwritten Text Recognition using Global Semantic Information -- Yi Characters Online Handwriting Recognition Models Based on Recurrent Neural Network: RnnNet-Yi and ParallelRnnNet-Yi -- Self-Attention Networks for Non-Recurrent Handwritten Text Recognition -- An Efficient Prototype-based Model for Handwritten Text Recognition with Multi-Loss Fusion -- Handwriting Datasets and Synthetic Handwriting Generation -- Urdu Handwritten Ligature Generation using Generative Adversarial Networks (GANs) -- SCUT-CAB: A New Benchmark Dataset of Ancient Chinese Books with Complex Layouts for Document Layout Analysis -- A Benchmark Gurmukhi Handwritten Character Dataset: Acquisition, Compilation, and Recognition -- Synthetic Data Generation for Semantic Segmentation of Lecture Videos -- Generating synthetic styled Chu Nom characters -- UOHTD: Urdu Offline Handwritten Text Dataset -- Document Analysis and Processing -- DAZeTD: Deep Analysis of Zones in Torn Documents -- CNN-based Ruled Line Removal in Handwritten Documents -- Complex Table Structure Recognition in the Wild using Transformer and Identity Matrix-based Augmentation.
Record Nr. UNINA-9910632468703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multimodal Interactive handwritten text transcription [[electronic resource] /] / Verónica Romero, Alejandra Héctor Toselli, Enrique Vidal
Multimodal Interactive handwritten text transcription [[electronic resource] /] / Verónica Romero, Alejandra Héctor Toselli, Enrique Vidal
Autore Romer Verónica
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific Pub, c2012
Descrizione fisica 1 online resource (180 p.)
Disciplina 006.425
Altri autori (Persone) ToselliAlejandro Héctor
VidalEnrique
Collana Series in machine perception and artificial intelligence
Soggetto topico Writing - Data processing
Multimodal user interfaces (Computer systems)
Human-computer interaction
Soggetto genere / forma Electronic books.
ISBN 1-283-59373-4
9786613906182
981-4390-34-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Preliminaries; 1.1 Introduction; 1.2 State of the Art; 1.2.1 Optical Character Recognition; 1.2.2 Handwritten Text Recognition; 1.3 Formal Background; 1.3.1 Hidden Markov Models; Continuous HMM; Basic algorithms for HMMs; The Decoding Problem and the Viterbi Algorithm; The Learning Problem and the Baum-Welch Algorithm; 1.3.2 Language models: N-grams; n-grams modelled by a stochastic finite state automaton; 1.3.3 Interactive Pattern Recognition; 1.3.4 Word-graphs; 1.4 Assessing Computer Assisted Transcription of Handwritten Text Images; 2. Corpora; 2.1 Introduction
2.2 CS2.3 ODEC; 2.4 IAMDB; 2.5 UNIPEN; 3. Handwritten Text Recognition; 3.1 Introduction; 3.2 Off-line Handwritten Text Recognition; 3.2.1 Preprocessing; 3.2.2 Feature Extraction; 3.2.3 Recognition; 3.2.4 Experimental Framework; 3.2.5 Meta-parameter Adjustment Experiments; 3.2.6 Discussion of Results; 3.3 On-line Handwritten Text Recognition; 3.3.1 Preprocessing; 3.3.2 Feature Extraction; 3.3.3 Recognition; 3.3.4 Experimental Framework; 3.3.5 Results; 3.4 Summary and Conclusions; 4. Computer Assisted Transcription of Handwritten Text Images; 4.1 Introduction; 4.2 Formal Framework
4.3 Adapting the Language Model4.4 Searching; 4.4.1 Direct Viterbi-based Approach; 4.4.2 Word-graph based Approach; 4.4.2.1 Error-correction parsing; 4.5 Increasing Interaction Ergonomy; 4.5.1 Language Modelling and Search; 4.6 Interacting at the Character Level; 4.6.1 Language Modelling and Search; 4.7 Experimental Framework; 4.7.1 Assessment Measures; 4.7.2 Parameters and Meta-Parameters; 4.8 Results; Direct Viterbi-based approach; Word-graph based approach; Using Pointer Actions in the CATTI interaction process (PA- CATTI); CATTI at the character level; 4.9 Conclusions and Future Work
5. Multimodal Computer Assisted Transcription of Handwritten Text Images5.1 Introduction; 5.2 Formal Framework; 5.3 Adapting the Language Model; 5.4 Searching; 5.5 Experimental Framework; 5.5.1 Corpora; 5.5.2 Assessment Measures; 5.6 Results; 5.7 Conclusions; 6. A Web-based Demonstrator of Interactive Multimodal Transcription; 6.1 Introduction; 6.2 User Interaction Protocol; 6.3 System Description; 6.3.1 Application Programming Interface; 6.3.2 MM-CATTI Server; 6.3.3 Web Interface; 6.3.4 Electronic Pen or Touchscreen Interaction; 6.3.5 Keyboard and Mouse Interaction; 6.4 Evaluation
6.4.1 Assessment Measures6.4.2 Corpus; 6.4.3 Participants; 6.4.4 Apparatus; 6.4.5 Procedure; 6.4.6 Design; 6.5 Results and Discussion; 6.5.1 Quantitative Analysis; 6.5.1.1 Analysis of Time; 6.5.1.2 Analysis of rWER; 6.5.1.3 Analysis of WSR; 6.5.2 Qualitative Analysis; 6.5.3 Correlation Analysis; 6.5.3.1 Correlation between trials; 6.5.3.2 Correlation between metrics; 6.5.4 Limitations of the Study; 6.6 Conclusions; 7. Conclusions and Outlook; 7.1 Conclusions; 7.2 Outlook; Acknowledgements; Appendix A Symbols and Acronyms; A.1 Symbols; A.2 Acronyms; Bibliography; Index
Record Nr. UNINA-9910465481503321
Romer Verónica  
Singapore ; ; Hackensack, NJ, : World Scientific Pub, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multimodal Interactive handwritten text transcription [[electronic resource] /] / Verónica Romero, Alejandra Héctor Toselli, Enrique Vidal
Multimodal Interactive handwritten text transcription [[electronic resource] /] / Verónica Romero, Alejandra Héctor Toselli, Enrique Vidal
Autore Romer Verónica
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific Pub, c2012
Descrizione fisica 1 online resource (180 p.)
Disciplina 006.425
Altri autori (Persone) ToselliAlejandro Héctor
VidalEnrique
Collana Series in machine perception and artificial intelligence
Soggetto topico Writing - Data processing
Multimodal user interfaces (Computer systems)
Human-computer interaction
ISBN 1-283-59373-4
9786613906182
981-4390-34-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Preliminaries; 1.1 Introduction; 1.2 State of the Art; 1.2.1 Optical Character Recognition; 1.2.2 Handwritten Text Recognition; 1.3 Formal Background; 1.3.1 Hidden Markov Models; Continuous HMM; Basic algorithms for HMMs; The Decoding Problem and the Viterbi Algorithm; The Learning Problem and the Baum-Welch Algorithm; 1.3.2 Language models: N-grams; n-grams modelled by a stochastic finite state automaton; 1.3.3 Interactive Pattern Recognition; 1.3.4 Word-graphs; 1.4 Assessing Computer Assisted Transcription of Handwritten Text Images; 2. Corpora; 2.1 Introduction
2.2 CS2.3 ODEC; 2.4 IAMDB; 2.5 UNIPEN; 3. Handwritten Text Recognition; 3.1 Introduction; 3.2 Off-line Handwritten Text Recognition; 3.2.1 Preprocessing; 3.2.2 Feature Extraction; 3.2.3 Recognition; 3.2.4 Experimental Framework; 3.2.5 Meta-parameter Adjustment Experiments; 3.2.6 Discussion of Results; 3.3 On-line Handwritten Text Recognition; 3.3.1 Preprocessing; 3.3.2 Feature Extraction; 3.3.3 Recognition; 3.3.4 Experimental Framework; 3.3.5 Results; 3.4 Summary and Conclusions; 4. Computer Assisted Transcription of Handwritten Text Images; 4.1 Introduction; 4.2 Formal Framework
4.3 Adapting the Language Model4.4 Searching; 4.4.1 Direct Viterbi-based Approach; 4.4.2 Word-graph based Approach; 4.4.2.1 Error-correction parsing; 4.5 Increasing Interaction Ergonomy; 4.5.1 Language Modelling and Search; 4.6 Interacting at the Character Level; 4.6.1 Language Modelling and Search; 4.7 Experimental Framework; 4.7.1 Assessment Measures; 4.7.2 Parameters and Meta-Parameters; 4.8 Results; Direct Viterbi-based approach; Word-graph based approach; Using Pointer Actions in the CATTI interaction process (PA- CATTI); CATTI at the character level; 4.9 Conclusions and Future Work
5. Multimodal Computer Assisted Transcription of Handwritten Text Images5.1 Introduction; 5.2 Formal Framework; 5.3 Adapting the Language Model; 5.4 Searching; 5.5 Experimental Framework; 5.5.1 Corpora; 5.5.2 Assessment Measures; 5.6 Results; 5.7 Conclusions; 6. A Web-based Demonstrator of Interactive Multimodal Transcription; 6.1 Introduction; 6.2 User Interaction Protocol; 6.3 System Description; 6.3.1 Application Programming Interface; 6.3.2 MM-CATTI Server; 6.3.3 Web Interface; 6.3.4 Electronic Pen or Touchscreen Interaction; 6.3.5 Keyboard and Mouse Interaction; 6.4 Evaluation
6.4.1 Assessment Measures6.4.2 Corpus; 6.4.3 Participants; 6.4.4 Apparatus; 6.4.5 Procedure; 6.4.6 Design; 6.5 Results and Discussion; 6.5.1 Quantitative Analysis; 6.5.1.1 Analysis of Time; 6.5.1.2 Analysis of rWER; 6.5.1.3 Analysis of WSR; 6.5.2 Qualitative Analysis; 6.5.3 Correlation Analysis; 6.5.3.1 Correlation between trials; 6.5.3.2 Correlation between metrics; 6.5.4 Limitations of the Study; 6.6 Conclusions; 7. Conclusions and Outlook; 7.1 Conclusions; 7.2 Outlook; Acknowledgements; Appendix A Symbols and Acronyms; A.1 Symbols; A.2 Acronyms; Bibliography; Index
Record Nr. UNINA-9910792084103321
Romer Verónica  
Singapore ; ; Hackensack, NJ, : World Scientific Pub, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui