top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Character recognition systems [[electronic resource] ] : a guide for students and practioners / / Mohamed Cheriet ... [et al.]
Character recognition systems [[electronic resource] ] : a guide for students and practioners / / Mohamed Cheriet ... [et al.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (360 p.)
Disciplina 006.4/24
006.424
Altri autori (Persone) CherietM (Mohamed)
Soggetto topico Optical character recognition devices
Soggetto genere / forma Electronic books.
ISBN 1-281-13472-4
9786611134723
0-470-17653-9
0-470-17652-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CHARACTER RECOGNITION SYSTEMS; CONTENTS; Preface; Acknowledgments; List of Figures; List of Tables; Acronyms; 1 Introduction: Character Recognition, Evolution, and Development; 1.1 Generation and Recognition of Characters; 1.2 History of OCR; 1.3 Development of New Techniques; 1.4 Recent Trends and Movements; 1.5 Organization of the Remaining Chapters; References; 2 Tools for Image Preprocessing; 2.1 Generic Form-Processing System; 2.2 A Stroke Model for Complex Background Elimination; 2.2.1 Global Gray Level Thresholding; 2.2.2 Local Gray Level Thresholding
2.2.3 Local Feature Thresholding-Stroke-Based Model2.2.4 Choosing the Most Efficient Character Extraction Method; 2.2.5 Cleaning Up Form Items Using Stroke-Based Model; 2.3 A Scale-Space Approach for Visual Data Extraction; 2.3.1 Image Regularization; 2.3.2 Data Extraction; 2.3.3 Concluding Remarks; 2.4 Data Preprocessing; 2.4.1 Smoothing and Noise Removal; 2.4.2 Skew Detection and Correction; 2.4.3 Slant Correction; 2.4.4 Character Normalization; 2.4.5 Contour Tracing/Analysis; 2.4.6 Thinning; 2.5 Chapter Summary; References; 3 Feature Extraction, Selection, and Creation
3.1 Feature Extraction3.1.1 Moments; 3.1.2 Histogram; 3.1.3 Direction Features; 3.1.4 Image Registration; 3.1.5 Hough Transform; 3.1.6 Line-Based Representation; 3.1.7 Fourier Descriptors; 3.1.8 Shape Approximation; 3.1.9 Topological Features; 3.1.10 Linear Transforms; 3.1.11 Kernels; 3.2 Feature Selection for Pattern Classification; 3.2.1 Review of Feature Selection Methods; 3.3 Feature Creation for Pattern Classification; 3.3.1 Categories of Feature Creation; 3.3.2 Review of Feature Creation Methods; 3.3.3 Future Trends; 3.4 Chapter Summary; References; 4 Pattern Classification Methods
4.1 Overview of Classification Methods4.2 Statistical Methods; 4.2.1 Bayes Decision Theory; 4.2.2 Parametric Methods; 4.2.3 Nonparametric Methods; 4.3 Artificial Neural Networks; 4.3.1 Single-Layer Neural Network; 4.3.2 Multilayer Perceptron; 4.3.3 Radial Basis Function Network; 4.3.4 Polynomial Network; 4.3.5 Unsupervised Learning; 4.3.6 Learning Vector Quantization; 4.4 Support Vector Machines; 4.4.1 Maximal Margin Classifier; 4.4.2 Soft Margin and Kernels; 4.4.3 Implementation Issues; 4.5 Structural Pattern Recognition; 4.5.1 Attributed String Matching; 4.5.2 Attributed Graph Matching
4.6 Combining Multiple Classifiers4.6.1 Problem Formulation; 4.6.2 Combining Discrete Outputs; 4.6.3 Combining Continuous Outputs; 4.6.4 Dynamic Classifier Selection; 4.6.5 Ensemble Generation; 4.7 A Concrete Example; 4.8 Chapter Summary; References; 5 Word and String Recognition; 5.1 Introduction; 5.2 Character Segmentation; 5.2.1 Overview of Dissection Techniques; 5.2.2 Segmentation of Handwritten Digits; 5.3 Classification-Based String Recognition; 5.3.1 String Classification Model; 5.3.2 Classifier Design for String Recognition; 5.3.3 Search Strategies
5.3.4 Strategies for Large Vocabulary
Record Nr. UNINA-9910145585503321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Character recognition systems [[electronic resource] ] : a guide for students and practioners / / Mohamed Cheriet ... [et al.]
Character recognition systems [[electronic resource] ] : a guide for students and practioners / / Mohamed Cheriet ... [et al.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (360 p.)
Disciplina 006.4/24
006.424
Altri autori (Persone) CherietM (Mohamed)
Soggetto topico Optical character recognition devices
ISBN 1-281-13472-4
9786611134723
0-470-17653-9
0-470-17652-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CHARACTER RECOGNITION SYSTEMS; CONTENTS; Preface; Acknowledgments; List of Figures; List of Tables; Acronyms; 1 Introduction: Character Recognition, Evolution, and Development; 1.1 Generation and Recognition of Characters; 1.2 History of OCR; 1.3 Development of New Techniques; 1.4 Recent Trends and Movements; 1.5 Organization of the Remaining Chapters; References; 2 Tools for Image Preprocessing; 2.1 Generic Form-Processing System; 2.2 A Stroke Model for Complex Background Elimination; 2.2.1 Global Gray Level Thresholding; 2.2.2 Local Gray Level Thresholding
2.2.3 Local Feature Thresholding-Stroke-Based Model2.2.4 Choosing the Most Efficient Character Extraction Method; 2.2.5 Cleaning Up Form Items Using Stroke-Based Model; 2.3 A Scale-Space Approach for Visual Data Extraction; 2.3.1 Image Regularization; 2.3.2 Data Extraction; 2.3.3 Concluding Remarks; 2.4 Data Preprocessing; 2.4.1 Smoothing and Noise Removal; 2.4.2 Skew Detection and Correction; 2.4.3 Slant Correction; 2.4.4 Character Normalization; 2.4.5 Contour Tracing/Analysis; 2.4.6 Thinning; 2.5 Chapter Summary; References; 3 Feature Extraction, Selection, and Creation
3.1 Feature Extraction3.1.1 Moments; 3.1.2 Histogram; 3.1.3 Direction Features; 3.1.4 Image Registration; 3.1.5 Hough Transform; 3.1.6 Line-Based Representation; 3.1.7 Fourier Descriptors; 3.1.8 Shape Approximation; 3.1.9 Topological Features; 3.1.10 Linear Transforms; 3.1.11 Kernels; 3.2 Feature Selection for Pattern Classification; 3.2.1 Review of Feature Selection Methods; 3.3 Feature Creation for Pattern Classification; 3.3.1 Categories of Feature Creation; 3.3.2 Review of Feature Creation Methods; 3.3.3 Future Trends; 3.4 Chapter Summary; References; 4 Pattern Classification Methods
4.1 Overview of Classification Methods4.2 Statistical Methods; 4.2.1 Bayes Decision Theory; 4.2.2 Parametric Methods; 4.2.3 Nonparametric Methods; 4.3 Artificial Neural Networks; 4.3.1 Single-Layer Neural Network; 4.3.2 Multilayer Perceptron; 4.3.3 Radial Basis Function Network; 4.3.4 Polynomial Network; 4.3.5 Unsupervised Learning; 4.3.6 Learning Vector Quantization; 4.4 Support Vector Machines; 4.4.1 Maximal Margin Classifier; 4.4.2 Soft Margin and Kernels; 4.4.3 Implementation Issues; 4.5 Structural Pattern Recognition; 4.5.1 Attributed String Matching; 4.5.2 Attributed Graph Matching
4.6 Combining Multiple Classifiers4.6.1 Problem Formulation; 4.6.2 Combining Discrete Outputs; 4.6.3 Combining Continuous Outputs; 4.6.4 Dynamic Classifier Selection; 4.6.5 Ensemble Generation; 4.7 A Concrete Example; 4.8 Chapter Summary; References; 5 Word and String Recognition; 5.1 Introduction; 5.2 Character Segmentation; 5.2.1 Overview of Dissection Techniques; 5.2.2 Segmentation of Handwritten Digits; 5.3 Classification-Based String Recognition; 5.3.1 String Classification Model; 5.3.2 Classifier Design for String Recognition; 5.3.3 Search Strategies
5.3.4 Strategies for Large Vocabulary
Record Nr. UNINA-9910830367403321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Character recognition systems : a guide for students and practioners / / Mohamed Cheriet ... [et al.]
Character recognition systems : a guide for students and practioners / / Mohamed Cheriet ... [et al.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (360 p.)
Disciplina 006.4/24
Altri autori (Persone) CherietM (Mohamed)
Soggetto topico Optical character recognition devices
ISBN 9786611134723
9781281134721
1281134724
9780470176535
0470176539
9780470176528
0470176520
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CHARACTER RECOGNITION SYSTEMS; CONTENTS; Preface; Acknowledgments; List of Figures; List of Tables; Acronyms; 1 Introduction: Character Recognition, Evolution, and Development; 1.1 Generation and Recognition of Characters; 1.2 History of OCR; 1.3 Development of New Techniques; 1.4 Recent Trends and Movements; 1.5 Organization of the Remaining Chapters; References; 2 Tools for Image Preprocessing; 2.1 Generic Form-Processing System; 2.2 A Stroke Model for Complex Background Elimination; 2.2.1 Global Gray Level Thresholding; 2.2.2 Local Gray Level Thresholding
2.2.3 Local Feature Thresholding-Stroke-Based Model2.2.4 Choosing the Most Efficient Character Extraction Method; 2.2.5 Cleaning Up Form Items Using Stroke-Based Model; 2.3 A Scale-Space Approach for Visual Data Extraction; 2.3.1 Image Regularization; 2.3.2 Data Extraction; 2.3.3 Concluding Remarks; 2.4 Data Preprocessing; 2.4.1 Smoothing and Noise Removal; 2.4.2 Skew Detection and Correction; 2.4.3 Slant Correction; 2.4.4 Character Normalization; 2.4.5 Contour Tracing/Analysis; 2.4.6 Thinning; 2.5 Chapter Summary; References; 3 Feature Extraction, Selection, and Creation
3.1 Feature Extraction3.1.1 Moments; 3.1.2 Histogram; 3.1.3 Direction Features; 3.1.4 Image Registration; 3.1.5 Hough Transform; 3.1.6 Line-Based Representation; 3.1.7 Fourier Descriptors; 3.1.8 Shape Approximation; 3.1.9 Topological Features; 3.1.10 Linear Transforms; 3.1.11 Kernels; 3.2 Feature Selection for Pattern Classification; 3.2.1 Review of Feature Selection Methods; 3.3 Feature Creation for Pattern Classification; 3.3.1 Categories of Feature Creation; 3.3.2 Review of Feature Creation Methods; 3.3.3 Future Trends; 3.4 Chapter Summary; References; 4 Pattern Classification Methods
4.1 Overview of Classification Methods4.2 Statistical Methods; 4.2.1 Bayes Decision Theory; 4.2.2 Parametric Methods; 4.2.3 Nonparametric Methods; 4.3 Artificial Neural Networks; 4.3.1 Single-Layer Neural Network; 4.3.2 Multilayer Perceptron; 4.3.3 Radial Basis Function Network; 4.3.4 Polynomial Network; 4.3.5 Unsupervised Learning; 4.3.6 Learning Vector Quantization; 4.4 Support Vector Machines; 4.4.1 Maximal Margin Classifier; 4.4.2 Soft Margin and Kernels; 4.4.3 Implementation Issues; 4.5 Structural Pattern Recognition; 4.5.1 Attributed String Matching; 4.5.2 Attributed Graph Matching
4.6 Combining Multiple Classifiers4.6.1 Problem Formulation; 4.6.2 Combining Discrete Outputs; 4.6.3 Combining Continuous Outputs; 4.6.4 Dynamic Classifier Selection; 4.6.5 Ensemble Generation; 4.7 A Concrete Example; 4.8 Chapter Summary; References; 5 Word and String Recognition; 5.1 Introduction; 5.2 Character Segmentation; 5.2.1 Overview of Dissection Techniques; 5.2.2 Segmentation of Handwritten Digits; 5.3 Classification-Based String Recognition; 5.3.1 String Classification Model; 5.3.2 Classifier Design for String Recognition; 5.3.3 Search Strategies
5.3.4 Strategies for Large Vocabulary
Record Nr. UNINA-9911019651103321
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui