top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Big Data Analytics and Knowledge Discovery : 25th International Conference, DaWaK 2023, Penang, Malaysia, August 28–30, 2023, Proceedings / / edited by Robert Wrembel, Johann Gamper, Gabriele Kotsis, A Min Tjoa, Ismail Khalil
Big Data Analytics and Knowledge Discovery : 25th International Conference, DaWaK 2023, Penang, Malaysia, August 28–30, 2023, Proceedings / / edited by Robert Wrembel, Johann Gamper, Gabriele Kotsis, A Min Tjoa, Ismail Khalil
Autore Wrembel Robert
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (407 pages)
Disciplina 001.422
005.7
005.745
Altri autori (Persone) GamperJohann
KotsisGabriele
TjoaA. Min
KhalilIsmail
Collana Lecture Notes in Computer Science
Soggetto topico Quantitative research
Data mining
Application software
Artificial intelligence
Data Analysis and Big Data
Data Mining and Knowledge Discovery
Computer and Information Systems Applications
Artificial Intelligence
ISBN 9783031398315
3031398319
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- From an Interpretable Predictive Model to a Model Agnostic Explanation (Abstract of Keynote Talk) -- Contents -- Data Quality -- Using Ontologies as Context for Data Warehouse Quality Assessment -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Running Example -- 3.2 Data Warehouse Formal Specification -- 3.3 Context Formal Specification -- 4 Data Warehouse to Ontology Mapping -- 5 Context-Based Data Quality Rules -- 6 Experimentation -- 6.1 Implementation -- 6.2 Validation -- 7 Conclusions and Future Work -- References -- Preventing Technical Errors in Data Lake Analyses with Type Theory -- 1 Introduction -- 2 Related Works -- 3 Type-Theoretical Framework -- 4 Conclusion -- References -- EXOS: Explaining Outliers in Data Streams -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 The Proposed Algorithm: EXOS -- 4.1 Estimator -- 4.2 Temporal Neighbor Clustering -- 4.3 Outlying Attribute Generators -- 5 Evaluation -- 5.1 Experimental Setup -- 5.2 Results and Analysis -- 6 Conclusions -- References -- Motif Alignment for Time Series Data Augmentation -- 1 Introduction -- 2 Preliminaries -- 2.1 Matrix Profile -- 2.2 Pan-Matrix Profile -- 2.3 DTW Alignment for Time Series Data Augmentation -- 3 Proposed Method -- 3.1 Motif Mapping -- 3.2 Time Series Augmentation -- 4 Experimental Evaluation -- 4.1 Setup -- 4.2 Aligning Time Series Using MotifDTW -- 4.3 Performance Gain -- 5 Conclusion -- References -- State-Transition-Aware Anomaly Detection Under Concept Drifts -- 1 Introduction -- 2 Related Works -- 3 Problem Definition -- 3.1 Terminology -- 3.2 Problem Statement -- 4 State-Transition-Aware Anomaly Detection -- 4.1 Reconstruction and Latent Representation Learning -- 4.2 Drift Detection in the Latent Space -- 4.3 State Transition Model -- 5 Experiment -- 5.1 Experiment Setup -- 5.2 Performance.
6 Conclusion -- References -- Anomaly Detection in Financial Transactions Via Graph-Based Feature Aggregations -- 1 Introduction -- 2 Related Work -- 2.1 Graph Embedding -- 2.2 Anomaly Detection -- 3 Problem Formalization -- 4 Proposed Method -- 4.1 PFA: Proximal Feature Aggregation -- 4.2 AFA: Anomaly Feature Aggregation -- 5 Experiment -- 5.1 Experimental Setup -- 5.2 Effectiveness Evaluation -- 5.3 Scalability Evaluation -- 6 Conclusion -- References -- The Synergies of Context and Data Aging in Recommendations -- 1 Introduction -- 2 ALBA: Adding Aging to LookBack Apriori -- 3 Context Modeling -- 4 Evaluation -- 4.1 Contexts -- 4.2 Methodology -- 4.3 Fitbit Validation -- 4.4 Auditel Validation -- 5 Conclusions and Future Work -- References -- Advanced Analytics and Pattern Discovery -- Hypergraph Embedding Based on Random Walk with Adjusted Transition Probabilities -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Notation -- 3.2 Hypergraph Projection -- 3.3 Random Walk and Stationary Distribution -- 3.4 Skip-Gram -- 4 Proposed Method -- 4.1 Random Walk -- 5 Experiment -- 5.1 Transition Probabilities in Steady State -- 5.2 Node Label Estimation -- 5.3 Parameter Dependence of F1 Score -- 6 Conclusion -- References -- Contextual Shift Method (CSM) -- 1 Introduction -- 2 Contextual Shifts -- 3 Contextual Shift Method -- 4 Experiments -- 5 Conclusion -- References -- Utility-Oriented Gradual Itemsets Mining Using High Utility Itemsets Mining -- 1 Introduction -- 2 Preliminary Definitions -- 3 High Utility Gradual Itemsets Mining -- 3.1 Database Encoding -- 3.2 High Utility Gradual Itemsets Extraction -- 4 Experimental Study -- 5 Conclusion -- References -- Discovery of Contrast Itemset with Statistical Background Between Two Continuous Variables -- 1 Introduction -- 2 Contrast ItemSB -- 3 Experimental Results -- 4 Conclusions -- References.
DBGAN: A Data Balancing Generative Adversarial Network for Mobility Pattern Recognition -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Reproducing Kernel Hilbert Space Embeddings -- 3.2 Attention Mechanism -- 3.3 Generative Adversarial Network -- 4 DBGAN Mobility Pattern Classification Model -- 4.1 Attributes of Travel Trajectories Utilized for Classification -- 4.2 Sequences to Images with Kernel Embedding -- 4.3 Classification Using Self Attention-Based Generative Adversarial Network -- 5 Evaluation -- 6 Conclusion -- References -- Bitwise Vertical Mining of Minimal Rare Patterns -- 1 Introduction -- 2 Background and Related Works -- 3 Our RP-VIPER Algorithm -- 4 Evaluation -- 5 Conclusions -- References -- Inter-item Time Intervals in Sequential Patterns -- 1 Introduction -- 2 Related Work -- 3 Representing Time in Sequences -- 3.1 Preliminaries -- 3.2 Integrating Intervals in Sequences -- 4 Experiments -- 4.1 Datasets and Models -- 4.2 Results -- 5 Conclusion -- References -- Fair-DSP: Fair Dynamic Survival Prediction on Longitudinal Electronic Health Record -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Fair Dynamic Survival Model -- 3.2 Individual Fairness -- 3.3 Group Fairness -- 4 Experiments -- 4.1 Quantitative Analysis -- 4.2 Sensitivity Study -- 5 Conclusions -- References -- Machine Learning -- DAT@Z21: A Comprehensive Multimodal Dataset for Rumor Classification in Microblogs -- 1 Introduction -- 2 Related Works -- 2.1 Fake Health News Datasets -- 2.2 Fake News Datasets -- 3 Data Collection -- 3.1 News Articles and Ground Truth Collection -- 3.2 Preparing the Tweets Collection -- 3.3 Tweets Collection -- 4 Rumor Classification Using DAT@Z21 -- 4.1 Baselines -- 4.2 Experiment Settings -- 4.3 Experimental Results -- 5 Conclusion and Perspectives -- References.
Dealing with Data Bias in Classification: Can Generated Data Ensure Representation and Fairness? -- 1 Introduction -- 2 Related Work -- 3 Measuring Discrimination -- 4 Problem Formulation -- 5 Methodology -- 6 Evaluation -- 6.1 Comparing Pre-processors -- 6.2 Investigating the Fairness-Agnostic Property -- 7 Conclusion -- 8 Discussion and Future Work -- A Proof of Time Complexity -- References -- Random Hypergraph Model Preserving Two-Mode Clustering Coefficient -- 1 Introduction -- 2 Preliminaries -- 3 Extending the Hyper dK-Series to the Case of dv = 2.5+ -- 4 Experiments -- 5 Conclusion -- References -- A Non-overlapping Community Detection Approach Based on -Structural Similarity -- 1 Introduction -- 2 Preliminaries -- 3 A Hierarchical Clustering Approach Based on -Structural Similarity -- 4 Experiments -- 5 Conclusion and Future Work -- A Appendix a -- B Appendix B -- References -- Improving Stochastic Gradient Descent Initializing with Data Summarization -- 1 Introduction -- 2 Definitions -- 2.1 Input Data Set -- 2.2 LR Model -- 3 System and Algorithms -- 3.1 Gamma Summarization () -- 3.2 Mini-batch SGD -- 3.3 Mini-batch SGD Initialization Using Gamma -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Experimental Results -- 5 Related Work -- 6 Conclusions -- References -- Feature Analysis of Regional Behavioral Facilitation Information Based on Source Location and Target People in Disaster -- 1 Introduction -- 2 Related Work -- 3 Basic Concept of RBF Tweet Classification -- 3.1 Extraction of BF Tweets -- 3.2 RBF Tweet Extraction and Classification -- 4 Analysis of RBF Tweets -- 4.1 Training and Test Data -- 4.2 Research Question -- 4.3 Results and Discussion of Research Questions -- 5 Conclusion -- References -- Exploring Dialog Act Recognition in Open Domain Conversational Agents -- 1 Introduction -- 2 Related Works.
3 Proposed Dialog Act Taxonomy -- 3.1 Data Sources -- 4 Proposed Dialog Act Classifier -- 4.1 Experimental Setup -- 4.2 Performance Evaluation -- 4.3 Generalizability of Model -- 5 Conclusion -- References -- UniCausal: Unified Benchmark and Repository for Causal Text Mining -- 1 Introduction -- 2 Related Work -- 2.1 Tasks -- 2.2 Datasets -- 2.3 Other Large Causal Resources -- 3 Methodology -- 3.1 Creation of UniCausal -- 3.2 Baseline Model -- 4 Experiments -- 4.1 Baseline Performance -- 4.2 Impact of Datasets -- 4.3 Adding CauseNet to Investigate the Importance of Linguistic Variation in Examples -- 5 Conclusion -- References -- Deep Learning -- Accounting for Imputation Uncertainty During Neural Network Training -- 1 Introduction -- 2 Related Works -- 3 Contributions -- 3.1 Single-Hotpatching -- 3.2 Multiple-Hotpatching -- 4 Experiments -- 4.1 Experimental Protocol -- 4.2 Results -- 5 Discussion and Conclusion -- References -- Supervised Hybrid Model for Rumor Classification: A Comparative Study of Machine and Deep Learning Approaches -- 1 Introduction -- 2 Related Work -- 3 Datasets and Preprocessing -- 4 Implementation -- 4.1 Traditional ML Approaches -- 4.2 DL Approaches -- 4.3 The Ensemble Stack ML Model -- 4.4 The Hybrid ML-DL Model -- 5 Results and Analysis -- 6 Conclusion and Future Work -- References -- Attention-Based Counterfactual Explanation for Multivariate Time Series -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Notation -- 3.2 Proposed Method -- 4 Experiments -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Experimental Result -- 5 Conclusion -- References -- DRUM: A Real Time Detector for Regime Shifts in Data Streams via an Unsupervised, Multivariate Framework -- 1 Introduction -- 2 Related Work -- 3 DRUM -- 4 Evaluation -- 5 Conclusion -- References.
Hierarchical Graph Neural Network with Cross-Attention for Cross-Device User Matching.
Record Nr. UNINA-9910741143403321
Wrembel Robert  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data Analytics and Knowledge Discovery : 24th International Conference, DaWaK 2022, Vienna, Austria, August 22–24, 2022, Proceedings / / edited by Robert Wrembel, Johann Gamper, Gabriele Kotsis, A Min Tjoa, Ismail Khalil
Big Data Analytics and Knowledge Discovery : 24th International Conference, DaWaK 2022, Vienna, Austria, August 22–24, 2022, Proceedings / / edited by Robert Wrembel, Johann Gamper, Gabriele Kotsis, A Min Tjoa, Ismail Khalil
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (275 pages)
Disciplina 005.7
005.745
Collana Lecture Notes in Computer Science
Soggetto topico Quantitative research
Data mining
Application software
Artificial intelligence
Data Analysis and Big Data
Data Mining and Knowledge Discovery
Computer and Information Systems Applications
Artificial Intelligence
ISBN 3-031-12670-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Integration of TextGCN and Autoencoder into Aspect-based Sentiment Analysis -- OpBerg: Discovering causal sentences using optimal alignments -- Text-based Causal Inference on Irony and Sarcasm Detection -- Sarcastic RoBERTa: a RoBERTa-based deep neural network detecting sarcasm on Twitter -- A Fast NDFA-Based Approach to Approximate Pattern-Matching for Plagiarism Detection in Blockchain-Driven NFTs -- On Decisive Skyline Queries -- Safeness: Suffix Arrays driven Materialized View Selection Framework for Large-Scale Workloads -- A Process Warehouse for Process Variants Analysis -- Feature Selection Algorithms -- Unsupervised Features Ranking via Coalitional Game Theory for Categorical Data -- Multi-label Online Streaming Feature Selection Algorithms via Extending Alpha Investing Strategy -- Feature Selection Under Fairness and Performance Constraints -- Time Series Processing -- Interpretable Input-Output Hidden Markov Model-Based Deep Reinforcement Learning for the Predictive Maintenance of Turbofan Engines -- Pathology Data Prioritisation: A Study Using Multi-Variate Time Series -- Outlier/Anomaly detection of univariate time series: A dataset collection and benchmark -- Automatic Machine Learning-based OLAP Measure Detection for Tabular Data -- Discovering Overlapping Communities based on Cohesive Subgraph Models over Graph Data -- Discovery of Keys for Graphs -- OPTIMA: Framework Selecting Optimal Virtual Model to Query Large Heterogeneous Data -- . Q-VIPER: Quantitative Vertical Bitwise Algorithm to Mine Frequent Patterns -- Enhanced Sliding Window-Based Periodic Pattern Mining from Dynamic Streams -- Explainable Recommendations for Wearable Sensor Data Machine Learning -- SLA-Aware Cloud Query Processing with Reinforcement Learning-based MultiObjective Re-Optimization -- Distance Based K-Means Clustering -- Grapevine Phenology Prediction: A Comparison of Physical and Machine Learning Models.
Record Nr. UNINA-9910585793603321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data architecture : a primer for the data scientist : big data, data warehouse and data vault / / W. H. Inmon, Dan Linstedt ; Steven Elliot, executive editor ; Mark Rogers, designer
Data architecture : a primer for the data scientist : big data, data warehouse and data vault / / W. H. Inmon, Dan Linstedt ; Steven Elliot, executive editor ; Mark Rogers, designer
Autore Inmon W. H.
Edizione [1st edition]
Pubbl/distr/stampa Amsterdam, Netherlands : , : Morgan Kaufmann, , 2015
Descrizione fisica 1 online resource (378 p.)
Disciplina 005.745
Soggetto topico Data warehousing
Big data
ISBN 0-12-802091-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Dedication; Contents; Preface; About the authors; 1.1 - Corporate data; The Totality of Data Across the Corporation; Dividing Unstructured Data; Business Relevancy; Big Data; The Great Divide; The Continental Divide; The Complete Picture; 1.2 - The data infrastructure; Two Types of Repetitive Data; Repetitive Structured Data; Repetitive Big Data; The Two Infrastructures; What's being Optimized?; Comparing the Two Infrastructures; 1.3 - The "great divide"; Classifying Corporate Data; The "Great Divide"; Repetitive Unstructured Data; Nonrepetitive Unstructured Data
Different Worlds1.4 - Demographics of corporate data; 1.5 - Corporate data analysis; 1.6 - The life cycle of data - understanding data over time; 1.7 - A brief history of data; Paper Tape and Punch Cards; Magnetic Tapes; Disk Storage; Database Management System; Coupled Processors; Online Transaction Processing; Data Warehouse; Parallel Data Management; Data Vault; Big Data; The Great Divide; 2.1 - A brief history of big data; An Analogy - Taking the High Ground; Taking the High Ground; Standardization with the 360; Online Transaction Processing
Enter Teradata and Massively Parallel ProcessingThen Came Hadoop and Big Data; IBM and Hadoop; Holding the High Ground; 2.2 - What is big data?; Another Definition; Large Volumes; Inexpensive Storage; The Roman Census Approach; Unstructured Data; Data in Big Data; Context in Repetitive Data; Nonrepetitive Data; Context in Nonrepetitive Data; 2.3 - Parallel processing; 2.4 - Unstructured data; Textual Information Everywhere; Decisions Based on Structured Data; The Business Value Proposition; Repetitive and Nonrepetitive Unstructured Information; Ease of Analysis; Contextualization
Some Approaches to ContextualizationMapReduce; Manual Analysis; 2.5 - Contextualizing repetitive unstructured data; Parsing Repetitive Unstructured Data; Recasting the Output Data; 2.6 - Textual disambiguation; From Narrative into an Analytical Database; Input into Textual Disambiguation; Mapping; Input/Output; Document Fracturing/Named Value Processing; Preprocessing a Document; Emails - A Special Case; Spreadsheets; Report Decompilation; 2.7 - Taxonomies; Data Models and Taxonomies; Applicability of Taxonomies; What is a Taxonomy?; Taxonomies in Multiple Languages
Dynamics of Taxonomies and Textual DisambiguationTaxonomies and Textual Disambiguation - Separate Technologies; Different Types of Taxonomies; Taxonomies - Maintenance Over Time; 3.1 - A brief history of data warehouse; Early Applications; Online Applications; Extract Programs; 4GL Technology; Personal Computers; Spreadsheets; Integrity of Data; Spider-Web Systems; The Maintenance Backlog; The Data Warehouse; To an Architected Environment; To the CIF; DW 2.0; 3.2 - Integrated corporate data; Many Applications; Looking Across the Corporation; More Than One Analyst; ETL Technology
The Challenges of Integration
Record Nr. UNINA-9910787905603321
Inmon W. H.  
Amsterdam, Netherlands : , : Morgan Kaufmann, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data architecture : a primer for the data scientist : big data, data warehouse and data vault / / W. H. Inmon, Dan Linstedt ; Steven Elliot, executive editor ; Mark Rogers, designer
Data architecture : a primer for the data scientist : big data, data warehouse and data vault / / W. H. Inmon, Dan Linstedt ; Steven Elliot, executive editor ; Mark Rogers, designer
Autore Inmon W. H.
Edizione [1st edition]
Pubbl/distr/stampa Amsterdam, Netherlands : , : Morgan Kaufmann, , 2015
Descrizione fisica 1 online resource (378 p.)
Disciplina 005.745
Soggetto topico Data warehousing
Big data
ISBN 0-12-802091-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Dedication; Contents; Preface; About the authors; 1.1 - Corporate data; The Totality of Data Across the Corporation; Dividing Unstructured Data; Business Relevancy; Big Data; The Great Divide; The Continental Divide; The Complete Picture; 1.2 - The data infrastructure; Two Types of Repetitive Data; Repetitive Structured Data; Repetitive Big Data; The Two Infrastructures; What's being Optimized?; Comparing the Two Infrastructures; 1.3 - The "great divide"; Classifying Corporate Data; The "Great Divide"; Repetitive Unstructured Data; Nonrepetitive Unstructured Data
Different Worlds1.4 - Demographics of corporate data; 1.5 - Corporate data analysis; 1.6 - The life cycle of data - understanding data over time; 1.7 - A brief history of data; Paper Tape and Punch Cards; Magnetic Tapes; Disk Storage; Database Management System; Coupled Processors; Online Transaction Processing; Data Warehouse; Parallel Data Management; Data Vault; Big Data; The Great Divide; 2.1 - A brief history of big data; An Analogy - Taking the High Ground; Taking the High Ground; Standardization with the 360; Online Transaction Processing
Enter Teradata and Massively Parallel ProcessingThen Came Hadoop and Big Data; IBM and Hadoop; Holding the High Ground; 2.2 - What is big data?; Another Definition; Large Volumes; Inexpensive Storage; The Roman Census Approach; Unstructured Data; Data in Big Data; Context in Repetitive Data; Nonrepetitive Data; Context in Nonrepetitive Data; 2.3 - Parallel processing; 2.4 - Unstructured data; Textual Information Everywhere; Decisions Based on Structured Data; The Business Value Proposition; Repetitive and Nonrepetitive Unstructured Information; Ease of Analysis; Contextualization
Some Approaches to ContextualizationMapReduce; Manual Analysis; 2.5 - Contextualizing repetitive unstructured data; Parsing Repetitive Unstructured Data; Recasting the Output Data; 2.6 - Textual disambiguation; From Narrative into an Analytical Database; Input into Textual Disambiguation; Mapping; Input/Output; Document Fracturing/Named Value Processing; Preprocessing a Document; Emails - A Special Case; Spreadsheets; Report Decompilation; 2.7 - Taxonomies; Data Models and Taxonomies; Applicability of Taxonomies; What is a Taxonomy?; Taxonomies in Multiple Languages
Dynamics of Taxonomies and Textual DisambiguationTaxonomies and Textual Disambiguation - Separate Technologies; Different Types of Taxonomies; Taxonomies - Maintenance Over Time; 3.1 - A brief history of data warehouse; Early Applications; Online Applications; Extract Programs; 4GL Technology; Personal Computers; Spreadsheets; Integrity of Data; Spider-Web Systems; The Maintenance Backlog; The Data Warehouse; To an Architected Environment; To the CIF; DW 2.0; 3.2 - Integrated corporate data; Many Applications; Looking Across the Corporation; More Than One Analyst; ETL Technology
The Challenges of Integration
Record Nr. UNINA-9910816227103321
Inmon W. H.  
Amsterdam, Netherlands : , : Morgan Kaufmann, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data warehouse : teoria e pratica della progettazione / Matteo Golfarelli, Stefano Rizzi
Data warehouse : teoria e pratica della progettazione / Matteo Golfarelli, Stefano Rizzi
Autore Golfarelli, Matteo
Edizione [2. ed.]
Pubbl/distr/stampa Milano : McGraw Hill, 2006
Descrizione fisica xvi, 447 p. ; 24 cm + 1 CD-ROM
Disciplina 005.745
658.4038
Altri autori (Persone) Rizzi, Stefanoauthor
Collana Workbooks
Soggetto topico Data warehousing
Aziende - Archivi di dati - Progettazione
Database design
ISBN 9788838662911
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISALENTO-991003073919707536
Golfarelli, Matteo  
Milano : McGraw Hill, 2006
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Data warehouse design : modern principles and methodologies / Matteo Golfarelli, Stefano Rizzi ; translated by Claudio Pagliarani
Data warehouse design : modern principles and methodologies / Matteo Golfarelli, Stefano Rizzi ; translated by Claudio Pagliarani
Autore Golfarelli, Matteo
Pubbl/distr/stampa New York : McGraw-Hill, c2009
Descrizione fisica xxi, 458 p. : ill. ; 24 cm
Disciplina 005.745
Altri autori (Persone) Rizzi, Stefanoauthor
Soggetto topico Data warehousing
Database design
ISBN 9780071610391
0071610391
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003596389707536
Golfarelli, Matteo  
New York : McGraw-Hill, c2009
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Data warehouse designs : achieving ROI with market basket analysis and time variance / / Fon Silvers
Data warehouse designs : achieving ROI with market basket analysis and time variance / / Fon Silvers
Autore Silvers Fon
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2012
Descrizione fisica 1 online resource (286 p.)
Disciplina 005.74
005.745
Soggetto topico Business intelligence - Computer programs
Data warehousing
Soggetto genere / forma Electronic books.
ISBN 0-429-10803-6
1-4665-1666-6
1-283-59614-8
9786613908599
1-4398-7077-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Dedication; Contents; Preface; Acknowledgments; The Author; Chapter 1: Data Warehouse ROI; Chapter 2: What Is Market Basket Analysis?; Chapter 3: How Does Market Basket Analysis Produce ROI?; Chapter 4: Why Is Market Basket Analysis Difficult?; Chapter 5: Market Basket Analysis Solution Definition; Chapter 6: Market Basket Architecture and Database Design; Chapter 7: ETL into a Market Basket Datamart; Chapter 8: What Is Time Variance?; Chapter 9: How Does Time Variance Produce ROI?; Chapter 10: Why Is Time Variance Difficult?; Chapter 11: Time Variant Solution Definition
Chapter 12: Time Variant Database DefinitionChapter 13: ETL into a Time Variant Data Warehouse; Chapter 14: Market Basket Analysis in a Time Variant Data Warehouse; References
Record Nr. UNINA-9910457444503321
Silvers Fon  
Boca Raton, Fla. : , : CRC Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data warehouse designs : achieving ROI with market basket analysis and time variance / / Fon Silvers
Data warehouse designs : achieving ROI with market basket analysis and time variance / / Fon Silvers
Autore Silvers Fon
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2012
Descrizione fisica 1 online resource (286 p.)
Disciplina 005.74
005.745
Soggetto topico Business intelligence - Computer programs
Data warehousing
ISBN 0-429-10803-6
1-4665-1666-6
1-283-59614-8
9786613908599
1-4398-7077-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Dedication; Contents; Preface; Acknowledgments; The Author; Chapter 1: Data Warehouse ROI; Chapter 2: What Is Market Basket Analysis?; Chapter 3: How Does Market Basket Analysis Produce ROI?; Chapter 4: Why Is Market Basket Analysis Difficult?; Chapter 5: Market Basket Analysis Solution Definition; Chapter 6: Market Basket Architecture and Database Design; Chapter 7: ETL into a Market Basket Datamart; Chapter 8: What Is Time Variance?; Chapter 9: How Does Time Variance Produce ROI?; Chapter 10: Why Is Time Variance Difficult?; Chapter 11: Time Variant Solution Definition
Chapter 12: Time Variant Database DefinitionChapter 13: ETL into a Time Variant Data Warehouse; Chapter 14: Market Basket Analysis in a Time Variant Data Warehouse; References
Record Nr. UNINA-9910778816003321
Silvers Fon  
Boca Raton, Fla. : , : CRC Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data warehouse designs : achieving ROI with market basket analysis and time variance / / Fon Silvers
Data warehouse designs : achieving ROI with market basket analysis and time variance / / Fon Silvers
Autore Silvers Fon
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2012
Descrizione fisica 1 online resource (286 p.)
Disciplina 005.74
005.745
Soggetto topico Business intelligence - Computer programs
Data warehousing
ISBN 0-429-10803-6
1-4665-1666-6
1-283-59614-8
9786613908599
1-4398-7077-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Dedication; Contents; Preface; Acknowledgments; The Author; Chapter 1: Data Warehouse ROI; Chapter 2: What Is Market Basket Analysis?; Chapter 3: How Does Market Basket Analysis Produce ROI?; Chapter 4: Why Is Market Basket Analysis Difficult?; Chapter 5: Market Basket Analysis Solution Definition; Chapter 6: Market Basket Architecture and Database Design; Chapter 7: ETL into a Market Basket Datamart; Chapter 8: What Is Time Variance?; Chapter 9: How Does Time Variance Produce ROI?; Chapter 10: Why Is Time Variance Difficult?; Chapter 11: Time Variant Solution Definition
Chapter 12: Time Variant Database DefinitionChapter 13: ETL into a Time Variant Data Warehouse; Chapter 14: Market Basket Analysis in a Time Variant Data Warehouse; References
Record Nr. UNINA-9910800098903321
Silvers Fon  
Boca Raton, Fla. : , : CRC Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data warehousing and analytics : fueling the data engine / / David Taniar and Wenny Rahayu
Data warehousing and analytics : fueling the data engine / / David Taniar and Wenny Rahayu
Autore Taniar David
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (642 pages)
Disciplina 005.745
Collana Data-Centric Systems and Applications
Soggetto topico Quantitative research
Data warehousing
ISBN 3-030-81979-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464383603316
Taniar David  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui