Advances in data mining and modeling, Hong Kong, 27-28 June 2002 [[electronic resource] /] / editors, Wai-Ki Ching, Michael Kwok-Po Ng |
Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, 2003 |
Descrizione fisica | 1 online resource (197 p.) |
Disciplina |
005.741
006.312 |
Altri autori (Persone) |
ChingWai Ki <1969->
NgMichael K |
Soggetto topico |
Data mining
Database searching |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-37299-4
9786611372996 981-270-495-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
CONTENTS; Data Mining; Data Modeling; Preface; Author Index; Algorithms for Mining Frequent Sequences Ben Kao and Ming-Hua Zhang; High Dimensional Feature Selection for Discriminant Microarray Data Analysis Ju-Fu Feng, Jiang-Xin Shi and Qing-Yun Shi; Clustering and Cluster Validation in Data Mining Joshua Zhe-Xue Huang, Hong-Qiang Rong, Jessica Ting, Yun-Ming Ye and Qi-Ming Huang; Cluster Analysis Using Unidimensional Scaling Pui-Lam hung , Chi-Yin Li and Kin-Nam Lau; Automatic Stock Trend Prediction by Real Time News Gabriel Pui-Cheong Fung, Jeffrey Xu Yu and Wai Lam
From Associated Implication Networks to Intermarket Analysis Phil Chi- Wang Tse and Ji-Ming Liu Automating Technical Analysis Philip Leung-Ho Yu, Kin Lam and Sze-Hong Ng; A Divide-and-Conquer Fast Implementation of Radial Basis Function Networks with Application to Time Series Forecasting Rong-Bo Huang, Yiu-Ming Cheung and Lap-Tak Law; Learning Sunspot Series Dynamics by Recurrent Neural Networks Leong-Kwan Li; Independent Component Analysis: The One-Bit-Matching Conjecture and a Simplified LPM-ICA Algorithm Zhi-Yong Liu, Kai-Chun Chiu and Lei Xu An Higher-Order Markov Chain Model for Prediction of Categorical Data Sequences Wai-Ki Ching, Eric Siu-Leung Fung and Michael Kwok-Po Ng An Application of the Mixture Autoregressive Model: A Case Study of Modelling Yearly Sunspot Data Kevin Kin-Foon Wong and Chun-Shan Wong; Bond Risk and Return in the SSE Long-Zhen Fan; Mining Loyal Customers: A Practical Use of the Repeat Buying Theory Hing-Po Lo, Xiao-Ling Lu and Zoe Sau-Chun Ng |
Record Nr. | UNINA-9910451311303321 |
Singapore ; ; River Edge, NJ, : World Scientific, 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in data mining and modeling, Hong Kong, 27-28 June 2002 [[electronic resource] /] / editors, Wai-Ki Ching, Michael Kwok-Po Ng |
Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, 2003 |
Descrizione fisica | 1 online resource (197 p.) |
Disciplina |
005.741
006.312 |
Altri autori (Persone) |
ChingWai Ki <1969->
NgMichael K |
Soggetto topico |
Data mining
Database searching |
ISBN |
1-281-37299-4
9786611372996 981-270-495-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
CONTENTS; Data Mining; Data Modeling; Preface; Author Index; Algorithms for Mining Frequent Sequences Ben Kao and Ming-Hua Zhang; High Dimensional Feature Selection for Discriminant Microarray Data Analysis Ju-Fu Feng, Jiang-Xin Shi and Qing-Yun Shi; Clustering and Cluster Validation in Data Mining Joshua Zhe-Xue Huang, Hong-Qiang Rong, Jessica Ting, Yun-Ming Ye and Qi-Ming Huang; Cluster Analysis Using Unidimensional Scaling Pui-Lam hung , Chi-Yin Li and Kin-Nam Lau; Automatic Stock Trend Prediction by Real Time News Gabriel Pui-Cheong Fung, Jeffrey Xu Yu and Wai Lam
From Associated Implication Networks to Intermarket Analysis Phil Chi- Wang Tse and Ji-Ming Liu Automating Technical Analysis Philip Leung-Ho Yu, Kin Lam and Sze-Hong Ng; A Divide-and-Conquer Fast Implementation of Radial Basis Function Networks with Application to Time Series Forecasting Rong-Bo Huang, Yiu-Ming Cheung and Lap-Tak Law; Learning Sunspot Series Dynamics by Recurrent Neural Networks Leong-Kwan Li; Independent Component Analysis: The One-Bit-Matching Conjecture and a Simplified LPM-ICA Algorithm Zhi-Yong Liu, Kai-Chun Chiu and Lei Xu An Higher-Order Markov Chain Model for Prediction of Categorical Data Sequences Wai-Ki Ching, Eric Siu-Leung Fung and Michael Kwok-Po Ng An Application of the Mixture Autoregressive Model: A Case Study of Modelling Yearly Sunspot Data Kevin Kin-Foon Wong and Chun-Shan Wong; Bond Risk and Return in the SSE Long-Zhen Fan; Mining Loyal Customers: A Practical Use of the Repeat Buying Theory Hing-Po Lo, Xiao-Ling Lu and Zoe Sau-Chun Ng |
Record Nr. | UNINA-9910783917603321 |
Singapore ; ; River Edge, NJ, : World Scientific, 2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Blockchain entry level : la rete nel XXI secolo / Paolo Siligoni e Clemente Venece |
Autore | Siligoni, Paolo |
Pubbl/distr/stampa | Bologna, : Fausto Lupetti, 2020 |
Descrizione fisica | 159 p. : ill. ; 21 cm |
Disciplina | 005.741 |
Altri autori (Persone) | Venece, Clemente |
Collana | Media Web Comunications |
Soggetto non controllato | Servizi finanziari - Innovazione tecnologica |
ISBN | 978-88-6874-249-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNINA-9910507306003321 |
Siligoni, Paolo | ||
Bologna, : Fausto Lupetti, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Configuration and tuning GPFS for digital media environments [[electronic resource] /] / Octavian Lascu ... [et al.] |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Austin, TX, : IBM, International Technical Support Organization, 2005 |
Descrizione fisica | xii, 252 p. : ill |
Disciplina | 005.741 |
Collana | Redbooks |
Soggetto topico |
Parallel processing (Electronic computers)
File organization (Computer science) Computer network architectures Digital media |
Soggetto genere / forma | Electronic books. |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910450131103321 |
Austin, TX, : IBM, International Technical Support Organization, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Configuration and tuning GPFS for digital media environments [[electronic resource] /] / Octavian Lascu ... [et al.] |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Austin, TX, : IBM, International Technical Support Organization, 2005 |
Descrizione fisica | xii, 252 p. : ill |
Disciplina | 005.741 |
Collana | Redbooks |
Soggetto topico |
Parallel processing (Electronic computers)
File organization (Computer science) Computer network architectures Digital media |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910783525603321 |
Austin, TX, : IBM, International Technical Support Organization, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data analysis and related applications . Volume 2 : multivariate, health and demographic data analysis / / edited by Konstantinos N Zafeiris [and four others] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] |
Descrizione fisica | 1 online resource (444 pages) |
Disciplina | 005.741 |
Collana | Big data, artificial intelligence and data analysis set |
Soggetto topico | Quantitative research |
ISBN |
1-394-16554-4
1-394-16552-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- PART 1 -- 1. A Topological Clustering of Variables -- 1.1. Introduction -- 1.2. Topological context -- 1.2.1. Reference adjacency matrices -- 1.2.2. Quantitative variables -- 1.2.3. Qualitative variables -- 1.2.4. Mixed variables -- 1.3. Topological clustering of variables - selective review -- 1.4. Illustration on real data of simple examples -- 1.4.1. Case of a set of quantitative variables -- 1.4.2. Case of a set of qualitative variables -- 1.4.3. Case of a set of mixed variables -- 1.5. Conclusion -- 1.6. Appendix -- 1.7. References -- 2. A New Regression Model for Count Compositions -- 2.1. Introduction -- 2.1.1. Distributions for count vectors -- 2.2. Regression models and Bayesian inference -- 2.3. Simulation studies -- 2.3.1. Fitting study -- 2.3.2. Excess of zeroes -- 2.4. Application to real electoral data -- 2.5. References -- 3. Intergenerational Class Mobility in Greece with Evidence from EU-SILC -- 3.1. Introduction -- 3.2. Data and methods -- 3.3. The trends of class mobility between different birth cohorts -- 3.4. Conclusion -- 3.5. References -- 4. Capturing School-to-Work Transitions Using Data from the First European Graduate Survey -- 4.1. Introduction -- 4.2. Data and methodology -- 4.3. Results -- 4.4. Conclusion -- 4.5. References -- 5. A Cluster Analysis Approach for Identifying Precarious Workers -- 5.1. Introduction -- 5.2. Data and methodology -- 5.3. Results -- 5.4. Conclusion and discussion -- 5.4.1. Declarations -- 5.5. References -- 6. American Option Pricing Under a Varying Economic Situation Using Semi-Markov Decision Process -- 6.1. Introduction -- 6.2. American option pricing -- 6.3. Exercising strategies -- 6.3.1. Setting parameter -- 6.3.2. Relationship between the American option price and economic situation i.
6.3.3. Relationship between the American option price and the asset price s -- 6.3.4. Relationship between the American option price and maturity T -- 6.3.5. Relationship between the American option price and transition probabilities P -- 6.3.6. Consideration of the optimal exercise region -- 6.4. Conclusion -- 6.5. References -- 7. The Implementation of Hierarchical Classifications and Cochran's Rule in the Analysis of Social Data -- 7.1. Introduction -- 7.2. Methods -- 7.3. Results -- 7.4. Conclusion -- 7.5. References -- 8. Dynamic Optimization with Tempered Stable Subordinators for Modeling River Hydraulics -- 8.1. Introduction -- 8.2. Mathematical model -- 8.3. Optimization problem -- 8.4. HJBI equation: formulation and solution -- 8.5. Concluding remarks -- 8.6. Acknowledgments -- 8.7. References -- PART 2 -- 9. Predicting Event Counts in Event-Driven Clinical Trials Accounting for Cure and Ongoing Recruitment -- 9.1. Introduction -- 9.2. Modeling the process of event occurrence -- 9.2.1. Estimating parameters of the model -- 9.3. Predicting event counts for patients at risk -- 9.3.1. Global prediction -- 9.4. Predicting event counts accounting for ongoing recruitment -- 9.4.1. Modeling and predicting patient recruitment -- 9.4.2. Predicting event counts -- 9.4.3. Global forecasting event counts at interim stage -- 9.5. Monte Carlo simulation -- 9.6. Software development -- 9.6.1. R package design -- 9.6.2. R package input data required -- 9.7. R package and implementation in a clinical trial -- 9.7.1. Introduction -- 9.7.2. Key predictions -- 9.7.3. Plots and parameter estimates -- 9.8. Conclusion -- 9.9. References -- 10. Structural Modeling: An Application to the Evaluation of Ecosystem Practices at the Plot Level -- 10.1. Introduction -- 10.2. Structural equation modeling using partial least squares. 10.2.1. Specification of the internal model -- 10.2.2. Specification of the external model -- 10.2.3. Validation statistics for the external model -- 10.2.4. Overall validation of structural modeling -- 10.3. Material and method -- 10.3.1. Agro-ecological context of the study -- 10.3.2. Data -- 10.3.3. The structural model and the estimation -- 10.4. Results and discussion -- 10.4.1. Checking the block one-dimensionality -- 10.4.2. Fitting the external model and assessing the quality of the fit -- 10.4.3. The structural model after revision -- 10.5. Conclusion -- 10.6. References -- 11. Lean Management as an Improvement Factor in Health Services - The Case of Venizeleio General Hospital of Crete, Greece -- 11.1. Introduction -- 11.2. Theoretical framework -- 11.3. Purpose of the research -- 11.4. Methodology -- 11.5. Research results -- 11.6. Conclusion -- 11.7. References -- 12. Motivation and Professional Satisfaction of Medical and Nursing Staff of Primary Health Care Structures (Urban and Regional Health Centers) of the Prefecture of Heraklion, Under the Responsibility of the 7th Ministry -- 12.1. Introduction -- 12.2. Methodology and material -- 12.2.1. Research tools for measuring motivation and professional -- 12.2.2. Purpose and objectives of the research -- 12.2.3. Material and method -- 12.2.4. Statistical analysis -- 12.3. Results -- 12.4. Discussion -- 12.5. Conclusion -- 12.6. References -- 13. Developing a Bibliometric Quality Indicator for Journals Applied to the Field of Dentistry -- 13.1. Introduction -- 13.2. Methodology -- 13.3. Discussion and conclusion -- 13.4. Acknowledgments -- 13.5. Appendix -- 13.6. References -- 14. Statistical Process Monitoring Techniques for Covid-19 -- 14.1. Introduction -- 14.2. Materials and methods -- 14.3. Behavior of Covid-19 disease in the Mediterranean region -- 14.4. Conclusion. 14.5. Acknowledgments -- 14.6. References -- PART 3 -- 15. Increase of Retirement Age and Health State of Population in Czechia -- 15.1. Introduction -- 15.2. Data and methodological remarks -- 15.3. Statutory retirement age -- 15.4. Development of the state of health of population -- 15.5. Development of the state of health of population in productive and post-productive ages -- 15.6. Conclusion -- 15.7. Acknowledgment -- 15.8. References -- 16. A Generalized Mean Under a Non-Regular Framework and Extreme Value Index Estimation -- 16.1. Introduction -- 16.2. Preliminary results in the area of EVT for heavy tails and asymptotic behavior of MOp functionals -- 16.2.1. A brief review of firstand second-order conditions -- 16.2.2. Asymptotic behavior of the Hill EVI-estimators -- 16.2.3. Asymptotic behavior of MOp EVI-estimators under a regular framework -- 16.2.4. A brief reference to additive stable laws -- 16.2.5. Asymptotic behavior of EVI-estimators under a non-regular framework -- 16.3. Finite-sample behavior of MOp functionals -- 16.4. A non-regular adaptive choice of p and k -- 16.5. Concluding remarks -- 16.6. References -- 17. Demography and Policies in V4 Countries -- 17.1. Introduction -- 17.2. Demographic development in the V4 countries -- 17.3. Development of fertility and family policy -- 17.4. Pension systems of the Visegrad Four countries -- 17.5. Prediction of future development of V4 populations -- 17.6. Conclusion -- 17.7. Acknowledgments -- 17.8. References -- 18. Decomposing Differences in Life Expectancy With and Without Disability: The Case of Czechia -- 18.1. Introduction -- 18.2. Methodology and data -- 18.3. Main results -- 18.3.1. Effect of mortality -- 18.3.2. Effects of mortality and health -- 18.4. Conclusion -- 18.5. Acknowledgments -- 18.6. References. 19. Assessing the Predictive Ability of Subjective Survival Probabilities -- 19.1. Introduction -- 19.1.1. Actual mortality patterns -- 19.1.2. Objectives of the study -- 19.2. Methods -- 19.2.1. Data -- 19.2.2. Force of subjective mortality -- 19.2.3. Variables -- 19.2.4. Statistical modeling -- 19.3. Results -- 19.3.1. Sample -- 19.3.2. Multivariable analyses -- 19.4. Discussion -- 19.5. Conclusion -- 19.6. Acknowledgments -- 19.7. References -- 20. Exploring Excess Mortality During the Covid-19 Pandemic with Seasonal ARIMA Models -- 20.1. Introduction -- 20.2. Binomial mortality model and the empirical distribution of daily deaths in Germany -- 20.3. Non-seasonal ARIMA model for weekly data in Germany -- 20.4. Seasonal ARIMA models of weekly deaths for Spain, Germany and Sweden -- 20.5. Measuring excess mortality, especially in Spain, Germany and Sweden -- 20.6. Forecasting daily deaths in Germany -- 20.7. Conclusion -- 20.8. Appendix -- 20.8.1. Estimation results of the other age classes -- 20.8.2. Time series decomposition -- 20.9. References -- 21. The Impact of Cesarean Section on Neonatal Mortality in Rural-Urban Divisions in a Region of Brazil -- 21.1. Introduction -- 21.2. Materials and methods -- 21.2.1. Multilevel logistic model -- 21.3. Results and discussion -- 21.4. Conclusion -- 21.5. References -- 22. Analysis of Alcohol Policy in Czechia: Estimation of Alcohol Policy Scale Compared to EU Countries -- 22.1. Introduction -- 22.2. Literature review -- 22.3. Methods -- 22.4. Results -- 22.5. Discussion -- 22.6. Conclusion -- 22.7. Acknowledgment -- 22.8. References -- 23. Alcohol-Related Mortality and Its Cause-Elimination in Life Tables in Selected European Countries and USA: An International Comparison -- 23.1. Introduction -- 23.2. Data and methods -- 23.3. Alcohol consumption in European countries by the OECD -- 23.4. Czechia. 23.5. Poland. |
Record Nr. | UNINA-9910830678503321 |
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data mining : concepts and techniques / Jiawei Han, Micheline Kamber |
Autore | Han, Jiawei |
Edizione | [2th ed.] |
Pubbl/distr/stampa | Amsterdam [etc.] : Elsevier : Morgan Kaufmann, [2006] |
Descrizione fisica | XXVIII, 770 p. : ill. ; 24 cm |
Disciplina | 005.741 |
Altri autori (Persone) | Kamber, Micheline |
Collana | The Morgan Kaufmann series in data management systems |
Soggetto non controllato | DatiAnalisi |
ISBN | 1-55860-901-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNIPARTHENOPE-000022537 |
Han, Jiawei | ||
Amsterdam [etc.] : Elsevier : Morgan Kaufmann, [2006] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Parthenope | ||
|
Data mining [[electronic resource] ] : concepts and techniques / / Jiawei Han, Micheline Kamber |
Autore | Han Jiawei |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Amsterdam ; ; London, : Elsevier, c2006 |
Descrizione fisica | 1 online resource (772 p.) |
Disciplina | 005.741 |
Altri autori (Persone) | KamberMicheline |
Collana | The Morgan Kaufmann series in data management systems |
Soggetto topico |
Data mining
Computer science |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-66586-3
9786612665868 0-08-047558-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front cover; Title page; Copyright page; Dedication; Table of contents; Foreword; Preface; Organization of the Book; To the Instructor; To the Student; To the Professional; Book Websites with Resources; Acknowledgments for the First Edition of the Book; Acknowledgments for the Second Edition of the Book; 1 Introduction; 1.1 What Motivated Data Mining? Why Is It Important?; 1.2 So, What Is Data Mining?; 1.3 Data Mining-On What Kind of Data?; 1.4 Data Mining Functionalities-What Kinds of Patterns Can Be Mined?; 1.5 Are All of the Patterns Interesting?; 1.6 Classification of Data Mining Systems
1.7 Data Mining Task Primitives1.8 Integration of a Data Mining System with a Database or Data Warehouse System; 1.9 Major Issues in Data Mining; 1.10 Summary; Exercises; Bibliographic Notes; 2 Data Preprocessing; 2.1 Why Preprocess the Data?; 2.2 Descriptive Data Summarization; 2.3 Data Cleaning; 2.4 Data Integration and Transformation; 2.5 Data Reduction; 2.6 Data Discretization and Concept Hierarchy Generation; 2.7 Summary; Exercises; Bibliographic Notes; 3 Data Warehouse and OLAP Technology: An Overview; 3.1 What Is a Data Warehouse?; 3.2 A Multidimensional Data Model 3.3 Data Warehouse Architecture3.4 Data Warehouse Implementation; 3.5 From Data Warehousing to Data Mining; 3.6 Summary; Exercises; Bibliographic Notes; 4 Data Cube Computation and Data Generalization; 4.1 Efficient Methods for Data Cube Computation; 4.2 Further Development of Data Cube and OLAP Technology; 4.3 Attribute-Oriented Induction-An Alternative Method for Data Generalization and Concept Description; 4.4 Summary; Exercises; Bibliographic Notes; 5 Mining Frequent Patterns, Associations, and Correlations; 5.1 Basic Concepts and a Road Map 5.2 Efficient and Scalable Frequent Itemset Mining Methods5.3 Mining Various Kinds of Association Rules; 5.4 From Association Mining to Correlation Analysis; 5.5 Constraint-Based Association Mining; 5.6 Summary; Exercises; Bibliographic Notes; 6 Classification and Prediction; 6.1 What Is Classification? What Is Prediction?; 6.2 Issues Regarding Classification and Prediction; 6.3 Classification by Decision Tree Induction; 6.4 Bayesian Classification; 6.5 Rule-Based Classification; 6.6 Classification by Backpropagation; 6.7 Support Vector Machines 6.8 Associative Classification: Classification by Association Rule Analysis6.9 Lazy Learners (or Learning from Your Neighbors); 6.10 Other Classification Methods; 6.11 Prediction; 6.12 Accuracy and Error Measures; 6.13 Evaluating the Accuracy of a Classifier or Predictor; 6.14 Ensemble Methods-Increasing the Accuracy; 6.15 Model Selection; 6.16 Summary; Exercises; Bibliographic Notes; 7 Cluster Analysis; 7.1 What Is Cluster Analysis?; 7.2 Types of Data in Cluster Analysis; 7.3 A Categorization of Major Clustering Methods; 7.4 Partitioning Methods; 7.5 Hierarchical Methods 7.6 Density-Based Methods |
Record Nr. | UNINA-9910451443203321 |
Han Jiawei | ||
Amsterdam ; ; London, : Elsevier, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data mining [[electronic resource] ] : concepts and techniques / / Jiawei Han, Micheline Kamber |
Autore | Han Jiawei |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Amsterdam ; ; London, : Elsevier, c2006 |
Descrizione fisica | 1 online resource (772 p.) |
Disciplina | 005.741 |
Altri autori (Persone) | KamberMicheline |
Collana | The Morgan Kaufmann series in data management systems |
Soggetto topico |
Data mining
Computer science |
ISBN | 9780080475585 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front cover; Title page; Copyright page; Dedication; Table of contents; Foreword; Preface; Organization of the Book; To the Instructor; To the Student; To the Professional; Book Websites with Resources; Acknowledgments for the First Edition of the Book; Acknowledgments for the Second Edition of the Book; 1 Introduction; 1.1 What Motivated Data Mining? Why Is It Important?; 1.2 So, What Is Data Mining?; 1.3 Data Mining-On What Kind of Data?; 1.4 Data Mining Functionalities-What Kinds of Patterns Can Be Mined?; 1.5 Are All of the Patterns Interesting?; 1.6 Classification of Data Mining Systems
1.7 Data Mining Task Primitives1.8 Integration of a Data Mining System with a Database or Data Warehouse System; 1.9 Major Issues in Data Mining; 1.10 Summary; Exercises; Bibliographic Notes; 2 Data Preprocessing; 2.1 Why Preprocess the Data?; 2.2 Descriptive Data Summarization; 2.3 Data Cleaning; 2.4 Data Integration and Transformation; 2.5 Data Reduction; 2.6 Data Discretization and Concept Hierarchy Generation; 2.7 Summary; Exercises; Bibliographic Notes; 3 Data Warehouse and OLAP Technology: An Overview; 3.1 What Is a Data Warehouse?; 3.2 A Multidimensional Data Model 3.3 Data Warehouse Architecture3.4 Data Warehouse Implementation; 3.5 From Data Warehousing to Data Mining; 3.6 Summary; Exercises; Bibliographic Notes; 4 Data Cube Computation and Data Generalization; 4.1 Efficient Methods for Data Cube Computation; 4.2 Further Development of Data Cube and OLAP Technology; 4.3 Attribute-Oriented Induction-An Alternative Method for Data Generalization and Concept Description; 4.4 Summary; Exercises; Bibliographic Notes; 5 Mining Frequent Patterns, Associations, and Correlations; 5.1 Basic Concepts and a Road Map 5.2 Efficient and Scalable Frequent Itemset Mining Methods5.3 Mining Various Kinds of Association Rules; 5.4 From Association Mining to Correlation Analysis; 5.5 Constraint-Based Association Mining; 5.6 Summary; Exercises; Bibliographic Notes; 6 Classification and Prediction; 6.1 What Is Classification? What Is Prediction?; 6.2 Issues Regarding Classification and Prediction; 6.3 Classification by Decision Tree Induction; 6.4 Bayesian Classification; 6.5 Rule-Based Classification; 6.6 Classification by Backpropagation; 6.7 Support Vector Machines 6.8 Associative Classification: Classification by Association Rule Analysis6.9 Lazy Learners (or Learning from Your Neighbors); 6.10 Other Classification Methods; 6.11 Prediction; 6.12 Accuracy and Error Measures; 6.13 Evaluating the Accuracy of a Classifier or Predictor; 6.14 Ensemble Methods-Increasing the Accuracy; 6.15 Model Selection; 6.16 Summary; Exercises; Bibliographic Notes; 7 Cluster Analysis; 7.1 What Is Cluster Analysis?; 7.2 Types of Data in Cluster Analysis; 7.3 A Categorization of Major Clustering Methods; 7.4 Partitioning Methods; 7.5 Hierarchical Methods 7.6 Density-Based Methods |
Record Nr. | UNINA-9910784150603321 |
Han Jiawei | ||
Amsterdam ; ; London, : Elsevier, c2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data mining : concepts and techniques / Jiawei Han, Micheline Kamber |
Autore | Han, Jiawei |
Edizione | [2. ed] |
Pubbl/distr/stampa | Amsterdam [etc.], : Elsevier |
Descrizione fisica | XXVIII, 770 p. : ill. ; 24 cm. |
Disciplina |
005.74
005.741 |
Altri autori (Persone) | Kamber, Micheline |
Collana | The Morgan Kaufmann series in data management systems |
Soggetto topico | Archivi di dati |
ISBN |
1558609016
9781558609013 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISANNIO-USM1614368 |
Han, Jiawei | ||
Amsterdam [etc.], : Elsevier | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Sannio | ||
|