Advances in Probabilistic Databases for Uncertain Information Management / / edited by Zongmin Ma, Li Yan
| Advances in Probabilistic Databases for Uncertain Information Management / / edited by Zongmin Ma, Li Yan |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 |
| Descrizione fisica | 1 online resource (X, 161 p. 23 illus.) |
| Disciplina | 005.74068 |
| Collana | Studies in Fuzziness and Soft Computing |
| Soggetto topico |
Applied mathematics
Engineering mathematics Artificial intelligence Application software Mathematical and Computational Engineering Artificial Intelligence Information Systems Applications (incl. Internet) |
| ISBN |
9783642375095
364237509X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Research in Probabilistic Spatiotemporal Databases: The SPOT Framework -- 2 A Probabilistic Object-Oriented Database Model with Fuzzy Measures -- 3 Probabilistic XML: Models and Complexity -- 4 Uncertain Data: Representations, Query Processing, and Applications -- 5 A Theoretically-Sound Approach for OLAPing Uncertain and Imprecise Multidimensional Data Streams -- 6 Tractable Probabilistic Description Logic Programs. . |
| Record Nr. | UNINA-9910437891703321 |
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied data mining for business and industry [[electronic resource] /] / Paolo Giudici, Silvia Figini
| Applied data mining for business and industry [[electronic resource] /] / Paolo Giudici, Silvia Figini |
| Autore | Giudici Paolo |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Hoboken, NJ, : John Wiley, 2009 |
| Descrizione fisica | 1 online resource (259 p.) |
| Disciplina |
005.74068
006.312 |
| Altri autori (Persone) | FiginiSilvia |
| Soggetto topico |
Data mining
Business - Data processing Commercial statistics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-12369-6
9786612123696 0-470-05886-2 0-470-74583-5 0-470-74582-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Applied Data Mining for Business and Industry; Contents; 1 Introduction; Part I Methodology; 2 Organisation of the data; 2.1 Statistical units and statistical variables; 2.2 Data matrices and their transformations; 2.3 Complex data structures; 2.4 Summary; 3 Summary statistics; 3.1 Univariate exploratory analysis; 3.1.1 Measures of location; 3.1.2 Measures of variability; 3.1.3 Measures of heterogeneity; 3.1.4 Measures of concentration; 3.1.5 Measures of asymmetry; 3.1.6 Measures of kurtosis; 3.2 Bivariate exploratory analysis of quantitative data
3.3 Multivariate exploratory analysis of quantitative data3.4 Multivariate exploratory analysis of qualitative data; 3.4.1 Independence and association; 3.4.2 Distance measures; 3.4.3 Dependency measures; 3.4.4 Model-based measures; 3.5 Reduction of dimensionality; 3.5.1 Interpretation of the principal components; 3.6 Further reading; 4 Model specification; 4.1 Measures of distance; 4.1.1 Euclidean distance; 4.1.2 Similarity measures; 4.1.3 Multidimensional scaling; 4.2 Cluster analysis; 4.2.1 Hierarchical methods; 4.2.2 Evaluation of hierarchical methods; 4.2.3 Non-hierarchical methods 4.3 Linear regression4.3.1 Bivariate linear regression; 4.3.2 Properties of the residuals; 4.3.3 Goodness of fit; 4.3.4 Multiple linear regression; 4.4 Logistic regression; 4.4.1 Interpretation of logistic regression; 4.4.2 Discriminant analysis; 4.5 Tree models; 4.5.1 Division criteria; 4.5.2 Pruning; 4.6 Neural networks; 4.6.1 Architecture of a neural network; 4.6.2 The multilayer perceptron; 4.6.3 Kohonen networks; 4.7 Nearest-neighbour models; 4.8 Local models; 4.8.1 Association rules; 4.8.2 Retrieval by content; 4.9 Uncertainty measures and inference; 4.9.1 Probability 4.9.2 Statistical models4.9.3 Statistical inference; 4.10 Non-parametric modelling; 4.11 The normal linear model; 4.11.1 Main inferential results; 4.12 Generalised linear models; 4.12.1 The exponential family; 4.12.2 Definition of generalised linear models; 4.12.3 The logistic regression model; 4.13 Log-linear models; 4.13.1 Construction of a log-linear model; 4.13.2 Interpretation of a log-linear model; 4.13.3 Graphical log-linear models; 4.13.4 Log-linear model comparison; 4.14 Graphical models; 4.14.1 Symmetric graphical models; 4.14.2 Recursive graphical models 4.14.3 Graphical models and neural networks4.15 Survival analysis models; 4.16 Further reading; 5 Model evaluation; 5.1 Criteria based on statistical tests; 5.1.1 Distance between statistical models; 5.1.2 Discrepancy of a statistical model; 5.1.3 Kullback-Leibler discrepancy; 5.2 Criteria based on scoring functions; 5.3 Bayesian criteria; 5.4 Computational criteria; 5.5 Criteria based on loss functions; 5.6 Further reading; Part II Business case studies; 6 Describing website visitors; 6.1 Objectives of the analysis; 6.2 Description of the data; 6.3 Exploratory analysis; 6.4 Model building 6.4.1 Cluster analysis |
| Record Nr. | UNINA-9910146147203321 |
Giudici Paolo
|
||
| Hoboken, NJ, : John Wiley, 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied data mining for business and industry [[electronic resource] /] / Paolo Giudici, Silvia Figini
| Applied data mining for business and industry [[electronic resource] /] / Paolo Giudici, Silvia Figini |
| Autore | Giudici Paolo |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Hoboken, NJ, : John Wiley, 2009 |
| Descrizione fisica | 1 online resource (259 p.) |
| Disciplina |
005.74068
006.312 |
| Altri autori (Persone) | FiginiSilvia |
| Soggetto topico |
Data mining
Business - Data processing Commercial statistics |
| ISBN |
1-282-12369-6
9786612123696 0-470-05886-2 0-470-74583-5 0-470-74582-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Applied Data Mining for Business and Industry; Contents; 1 Introduction; Part I Methodology; 2 Organisation of the data; 2.1 Statistical units and statistical variables; 2.2 Data matrices and their transformations; 2.3 Complex data structures; 2.4 Summary; 3 Summary statistics; 3.1 Univariate exploratory analysis; 3.1.1 Measures of location; 3.1.2 Measures of variability; 3.1.3 Measures of heterogeneity; 3.1.4 Measures of concentration; 3.1.5 Measures of asymmetry; 3.1.6 Measures of kurtosis; 3.2 Bivariate exploratory analysis of quantitative data
3.3 Multivariate exploratory analysis of quantitative data3.4 Multivariate exploratory analysis of qualitative data; 3.4.1 Independence and association; 3.4.2 Distance measures; 3.4.3 Dependency measures; 3.4.4 Model-based measures; 3.5 Reduction of dimensionality; 3.5.1 Interpretation of the principal components; 3.6 Further reading; 4 Model specification; 4.1 Measures of distance; 4.1.1 Euclidean distance; 4.1.2 Similarity measures; 4.1.3 Multidimensional scaling; 4.2 Cluster analysis; 4.2.1 Hierarchical methods; 4.2.2 Evaluation of hierarchical methods; 4.2.3 Non-hierarchical methods 4.3 Linear regression4.3.1 Bivariate linear regression; 4.3.2 Properties of the residuals; 4.3.3 Goodness of fit; 4.3.4 Multiple linear regression; 4.4 Logistic regression; 4.4.1 Interpretation of logistic regression; 4.4.2 Discriminant analysis; 4.5 Tree models; 4.5.1 Division criteria; 4.5.2 Pruning; 4.6 Neural networks; 4.6.1 Architecture of a neural network; 4.6.2 The multilayer perceptron; 4.6.3 Kohonen networks; 4.7 Nearest-neighbour models; 4.8 Local models; 4.8.1 Association rules; 4.8.2 Retrieval by content; 4.9 Uncertainty measures and inference; 4.9.1 Probability 4.9.2 Statistical models4.9.3 Statistical inference; 4.10 Non-parametric modelling; 4.11 The normal linear model; 4.11.1 Main inferential results; 4.12 Generalised linear models; 4.12.1 The exponential family; 4.12.2 Definition of generalised linear models; 4.12.3 The logistic regression model; 4.13 Log-linear models; 4.13.1 Construction of a log-linear model; 4.13.2 Interpretation of a log-linear model; 4.13.3 Graphical log-linear models; 4.13.4 Log-linear model comparison; 4.14 Graphical models; 4.14.1 Symmetric graphical models; 4.14.2 Recursive graphical models 4.14.3 Graphical models and neural networks4.15 Survival analysis models; 4.16 Further reading; 5 Model evaluation; 5.1 Criteria based on statistical tests; 5.1.1 Distance between statistical models; 5.1.2 Discrepancy of a statistical model; 5.1.3 Kullback-Leibler discrepancy; 5.2 Criteria based on scoring functions; 5.3 Bayesian criteria; 5.4 Computational criteria; 5.5 Criteria based on loss functions; 5.6 Further reading; Part II Business case studies; 6 Describing website visitors; 6.1 Objectives of the analysis; 6.2 Description of the data; 6.3 Exploratory analysis; 6.4 Model building 6.4.1 Cluster analysis |
| Record Nr. | UNINA-9910830379703321 |
Giudici Paolo
|
||
| Hoboken, NJ, : John Wiley, 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied data mining for business and industry / / Paolo Giudici, Silvia Figini
| Applied data mining for business and industry / / Paolo Giudici, Silvia Figini |
| Autore | Giudici Paolo |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Hoboken, NJ, : John Wiley, 2009 |
| Descrizione fisica | 1 online resource (259 p.) |
| Disciplina |
005.74068
006.312 |
| Altri autori (Persone) | FiginiSilvia |
| Soggetto topico |
Data mining
Business - Data processing Commercial statistics |
| ISBN |
9786612123696
9781282123694 1282123696 9780470058862 0470058862 9780470745830 0470745835 9780470745823 0470745827 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Applied Data Mining for Business and Industry; Contents; 1 Introduction; Part I Methodology; 2 Organisation of the data; 2.1 Statistical units and statistical variables; 2.2 Data matrices and their transformations; 2.3 Complex data structures; 2.4 Summary; 3 Summary statistics; 3.1 Univariate exploratory analysis; 3.1.1 Measures of location; 3.1.2 Measures of variability; 3.1.3 Measures of heterogeneity; 3.1.4 Measures of concentration; 3.1.5 Measures of asymmetry; 3.1.6 Measures of kurtosis; 3.2 Bivariate exploratory analysis of quantitative data
3.3 Multivariate exploratory analysis of quantitative data3.4 Multivariate exploratory analysis of qualitative data; 3.4.1 Independence and association; 3.4.2 Distance measures; 3.4.3 Dependency measures; 3.4.4 Model-based measures; 3.5 Reduction of dimensionality; 3.5.1 Interpretation of the principal components; 3.6 Further reading; 4 Model specification; 4.1 Measures of distance; 4.1.1 Euclidean distance; 4.1.2 Similarity measures; 4.1.3 Multidimensional scaling; 4.2 Cluster analysis; 4.2.1 Hierarchical methods; 4.2.2 Evaluation of hierarchical methods; 4.2.3 Non-hierarchical methods 4.3 Linear regression4.3.1 Bivariate linear regression; 4.3.2 Properties of the residuals; 4.3.3 Goodness of fit; 4.3.4 Multiple linear regression; 4.4 Logistic regression; 4.4.1 Interpretation of logistic regression; 4.4.2 Discriminant analysis; 4.5 Tree models; 4.5.1 Division criteria; 4.5.2 Pruning; 4.6 Neural networks; 4.6.1 Architecture of a neural network; 4.6.2 The multilayer perceptron; 4.6.3 Kohonen networks; 4.7 Nearest-neighbour models; 4.8 Local models; 4.8.1 Association rules; 4.8.2 Retrieval by content; 4.9 Uncertainty measures and inference; 4.9.1 Probability 4.9.2 Statistical models4.9.3 Statistical inference; 4.10 Non-parametric modelling; 4.11 The normal linear model; 4.11.1 Main inferential results; 4.12 Generalised linear models; 4.12.1 The exponential family; 4.12.2 Definition of generalised linear models; 4.12.3 The logistic regression model; 4.13 Log-linear models; 4.13.1 Construction of a log-linear model; 4.13.2 Interpretation of a log-linear model; 4.13.3 Graphical log-linear models; 4.13.4 Log-linear model comparison; 4.14 Graphical models; 4.14.1 Symmetric graphical models; 4.14.2 Recursive graphical models 4.14.3 Graphical models and neural networks4.15 Survival analysis models; 4.16 Further reading; 5 Model evaluation; 5.1 Criteria based on statistical tests; 5.1.1 Distance between statistical models; 5.1.2 Discrepancy of a statistical model; 5.1.3 Kullback-Leibler discrepancy; 5.2 Criteria based on scoring functions; 5.3 Bayesian criteria; 5.4 Computational criteria; 5.5 Criteria based on loss functions; 5.6 Further reading; Part II Business case studies; 6 Describing website visitors; 6.1 Objectives of the analysis; 6.2 Description of the data; 6.3 Exploratory analysis; 6.4 Model building 6.4.1 Cluster analysis |
| Record Nr. | UNINA-9911019548903321 |
Giudici Paolo
|
||
| Hoboken, NJ, : John Wiley, 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Big data e innovazione computazionale / Andrea Ottolia
| Big data e innovazione computazionale / Andrea Ottolia |
| Autore | Ottolia, Andrea <1976- > |
| Pubbl/distr/stampa | Torino, : G. Giappichelli Editore, [2017] |
| Descrizione fisica | XII, 363 p. ; 24 cm |
| Disciplina |
005.74068
346.048028563 |
| Collana | Quaderni di AIDA |
| Soggetto non controllato | Big data - Tutela [della] proprietà immateriale |
| ISBN | 978-88-921-1234-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNINA-9910269060203321 |
Ottolia, Andrea <1976- >
|
||
| Torino, : G. Giappichelli Editore, [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data mining : metodi informatici, statistici e applicazioni / Paolo Giudici
| Data mining : metodi informatici, statistici e applicazioni / Paolo Giudici |
| Autore | Giudici, Paolo |
| Edizione | [2. ed.] |
| Pubbl/distr/stampa | Milano : McGraw-Hill, 2005 |
| Descrizione fisica | xii, 401 p. ; 24 cm |
| Disciplina | 005.74068 |
| Collana | Workbooks |
| Soggetto topico |
Aziende - Gestione - Metodi statistici
Aziende - Sistemi informativi - Automazione Aziende - Archivi di dati - Gestione |
| ISBN | 8838662312 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISALENTO-991001592169707536 |
Giudici, Paolo
|
||
| Milano : McGraw-Hill, 2005 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Data mining : metodi statistici per le applicazioni aziendali / Paolo Giudici
| Data mining : metodi statistici per le applicazioni aziendali / Paolo Giudici |
| Autore | Giudici, Paolo |
| Pubbl/distr/stampa | Milano [etc.] : McGraw-Hill, [2001] |
| Descrizione fisica | XIII, 424 p. ; 24 cm |
| Disciplina | 005.74068 |
| Collana | Workbooks |
| Soggetto topico | Aziende - Gestione - Metodi statistici |
| ISBN | 8838660018 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISALENTO-991000382379707536 |
Giudici, Paolo
|
||
| Milano [etc.] : McGraw-Hill, [2001] | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Intelligent Data Engineering and Automated Learning - IDEAL 2007 : 8th International Conference, Birmingham, UK, December 16-19, 2007, Proceedings / / edited by Hujun Yin, Xin Yao, Peter Tino, Emilio Corchado, Will Byrne
| Intelligent Data Engineering and Automated Learning - IDEAL 2007 : 8th International Conference, Birmingham, UK, December 16-19, 2007, Proceedings / / edited by Hujun Yin, Xin Yao, Peter Tino, Emilio Corchado, Will Byrne |
| Edizione | [1st ed. 2007.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2007 |
| Descrizione fisica | 1 online resource (XX, 1174 p.) |
| Disciplina | 005.74068 |
| Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
| Soggetto topico |
Data structures (Computer science)
Information theory Database management Algorithms Artificial intelligence Application software Data mining Data Structures and Information Theory Database Management Artificial Intelligence Computer and Information Systems Applications Data Mining and Knowledge Discovery |
| ISBN | 3-540-77226-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Learning and Information Processing -- Data Mining and Information Management -- Bioinformatics and Neuroinformatics -- Agents and Distributed Systems -- Financial Engineering and Modelling -- Agent-Based Approach to Service Sciences -- Neural-evolutionary Fusion Algorithms and Their Applications. |
| Record Nr. | UNINA-9910484428703321 |
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intelligent data engineering and automated learning -- IDEAL 2009 : 10th international conference, Burgos, Spain, September 23-26, 2009 : proceedings / / edited by Hujun Yin [and three others]
| Intelligent data engineering and automated learning -- IDEAL 2009 : 10th international conference, Burgos, Spain, September 23-26, 2009 : proceedings / / edited by Hujun Yin [and three others] |
| Edizione | [1st ed. 2007.] |
| Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer, , [2007] |
| Descrizione fisica | 1 online resource (XX, 1174 p.) |
| Disciplina | 005.74068 |
| Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
| Soggetto topico |
Intelligent agents (Computer software)
Database management |
| ISBN | 3-540-77226-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Learning and Information Processing -- Data Mining and Information Management -- Bioinformatics and Neuroinformatics -- Agents and Distributed Systems -- Financial Engineering and Modelling -- Agent-Based Approach to Service Sciences -- Neural-evolutionary Fusion Algorithms and Their Applications. |
| Record Nr. | UNISA-996466244003316 |
| Berlin, Germany ; ; New York, New York : , : Springer, , [2007] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
International Conference on Scientific and Statistical Database Management : [proceedings] / / SSDBM
| International Conference on Scientific and Statistical Database Management : [proceedings] / / SSDBM |
| Pubbl/distr/stampa | Los Alamitos, Calif., : IEEE Computer Society, c2003- |
| Descrizione fisica | v. : ill. ; ; 28 cm |
| Disciplina |
005
005.74068 |
| Soggetto topico |
Database design
Database management Mathematical statistics - Data processing Science - Data processing |
| Soggetto genere / forma | Conference papers and proceedings. |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910145483803321 |
| Los Alamitos, Calif., : IEEE Computer Society, c2003- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||