Advances in Probabilistic Databases for Uncertain Information Management / / edited by Zongmin Ma, Li Yan |
Edizione | [1st ed. 2013.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 |
Descrizione fisica | 1 online resource (X, 161 p. 23 illus.) |
Disciplina | 005.74068 |
Collana | Studies in Fuzziness and Soft Computing |
Soggetto topico |
Applied mathematics
Engineering mathematics Artificial intelligence Application software Mathematical and Computational Engineering Artificial Intelligence Information Systems Applications (incl. Internet) |
ISBN | 3-642-37509-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Research in Probabilistic Spatiotemporal Databases: The SPOT Framework -- 2 A Probabilistic Object-Oriented Database Model with Fuzzy Measures -- 3 Probabilistic XML: Models and Complexity -- 4 Uncertain Data: Representations, Query Processing, and Applications -- 5 A Theoretically-Sound Approach for OLAPing Uncertain and Imprecise Multidimensional Data Streams -- 6 Tractable Probabilistic Description Logic Programs. . |
Record Nr. | UNINA-9910437891703321 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied data mining for business and industry [[electronic resource] /] / Paolo Giudici, Silvia Figini |
Autore | Giudici Paolo |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, NJ, : John Wiley, 2009 |
Descrizione fisica | 1 online resource (259 p.) |
Disciplina |
005.74068
006.312 |
Altri autori (Persone) | FiginiSilvia |
Soggetto topico |
Data mining
Business - Data processing Commercial statistics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-12369-6
9786612123696 0-470-05886-2 0-470-74583-5 0-470-74582-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Applied Data Mining for Business and Industry; Contents; 1 Introduction; Part I Methodology; 2 Organisation of the data; 2.1 Statistical units and statistical variables; 2.2 Data matrices and their transformations; 2.3 Complex data structures; 2.4 Summary; 3 Summary statistics; 3.1 Univariate exploratory analysis; 3.1.1 Measures of location; 3.1.2 Measures of variability; 3.1.3 Measures of heterogeneity; 3.1.4 Measures of concentration; 3.1.5 Measures of asymmetry; 3.1.6 Measures of kurtosis; 3.2 Bivariate exploratory analysis of quantitative data
3.3 Multivariate exploratory analysis of quantitative data3.4 Multivariate exploratory analysis of qualitative data; 3.4.1 Independence and association; 3.4.2 Distance measures; 3.4.3 Dependency measures; 3.4.4 Model-based measures; 3.5 Reduction of dimensionality; 3.5.1 Interpretation of the principal components; 3.6 Further reading; 4 Model specification; 4.1 Measures of distance; 4.1.1 Euclidean distance; 4.1.2 Similarity measures; 4.1.3 Multidimensional scaling; 4.2 Cluster analysis; 4.2.1 Hierarchical methods; 4.2.2 Evaluation of hierarchical methods; 4.2.3 Non-hierarchical methods 4.3 Linear regression4.3.1 Bivariate linear regression; 4.3.2 Properties of the residuals; 4.3.3 Goodness of fit; 4.3.4 Multiple linear regression; 4.4 Logistic regression; 4.4.1 Interpretation of logistic regression; 4.4.2 Discriminant analysis; 4.5 Tree models; 4.5.1 Division criteria; 4.5.2 Pruning; 4.6 Neural networks; 4.6.1 Architecture of a neural network; 4.6.2 The multilayer perceptron; 4.6.3 Kohonen networks; 4.7 Nearest-neighbour models; 4.8 Local models; 4.8.1 Association rules; 4.8.2 Retrieval by content; 4.9 Uncertainty measures and inference; 4.9.1 Probability 4.9.2 Statistical models4.9.3 Statistical inference; 4.10 Non-parametric modelling; 4.11 The normal linear model; 4.11.1 Main inferential results; 4.12 Generalised linear models; 4.12.1 The exponential family; 4.12.2 Definition of generalised linear models; 4.12.3 The logistic regression model; 4.13 Log-linear models; 4.13.1 Construction of a log-linear model; 4.13.2 Interpretation of a log-linear model; 4.13.3 Graphical log-linear models; 4.13.4 Log-linear model comparison; 4.14 Graphical models; 4.14.1 Symmetric graphical models; 4.14.2 Recursive graphical models 4.14.3 Graphical models and neural networks4.15 Survival analysis models; 4.16 Further reading; 5 Model evaluation; 5.1 Criteria based on statistical tests; 5.1.1 Distance between statistical models; 5.1.2 Discrepancy of a statistical model; 5.1.3 Kullback-Leibler discrepancy; 5.2 Criteria based on scoring functions; 5.3 Bayesian criteria; 5.4 Computational criteria; 5.5 Criteria based on loss functions; 5.6 Further reading; Part II Business case studies; 6 Describing website visitors; 6.1 Objectives of the analysis; 6.2 Description of the data; 6.3 Exploratory analysis; 6.4 Model building 6.4.1 Cluster analysis |
Record Nr. | UNINA-9910146147203321 |
Giudici Paolo | ||
Hoboken, NJ, : John Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied data mining for business and industry [[electronic resource] /] / Paolo Giudici, Silvia Figini |
Autore | Giudici Paolo |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, NJ, : John Wiley, 2009 |
Descrizione fisica | 1 online resource (259 p.) |
Disciplina |
005.74068
006.312 |
Altri autori (Persone) | FiginiSilvia |
Soggetto topico |
Data mining
Business - Data processing Commercial statistics |
ISBN |
1-282-12369-6
9786612123696 0-470-05886-2 0-470-74583-5 0-470-74582-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Applied Data Mining for Business and Industry; Contents; 1 Introduction; Part I Methodology; 2 Organisation of the data; 2.1 Statistical units and statistical variables; 2.2 Data matrices and their transformations; 2.3 Complex data structures; 2.4 Summary; 3 Summary statistics; 3.1 Univariate exploratory analysis; 3.1.1 Measures of location; 3.1.2 Measures of variability; 3.1.3 Measures of heterogeneity; 3.1.4 Measures of concentration; 3.1.5 Measures of asymmetry; 3.1.6 Measures of kurtosis; 3.2 Bivariate exploratory analysis of quantitative data
3.3 Multivariate exploratory analysis of quantitative data3.4 Multivariate exploratory analysis of qualitative data; 3.4.1 Independence and association; 3.4.2 Distance measures; 3.4.3 Dependency measures; 3.4.4 Model-based measures; 3.5 Reduction of dimensionality; 3.5.1 Interpretation of the principal components; 3.6 Further reading; 4 Model specification; 4.1 Measures of distance; 4.1.1 Euclidean distance; 4.1.2 Similarity measures; 4.1.3 Multidimensional scaling; 4.2 Cluster analysis; 4.2.1 Hierarchical methods; 4.2.2 Evaluation of hierarchical methods; 4.2.3 Non-hierarchical methods 4.3 Linear regression4.3.1 Bivariate linear regression; 4.3.2 Properties of the residuals; 4.3.3 Goodness of fit; 4.3.4 Multiple linear regression; 4.4 Logistic regression; 4.4.1 Interpretation of logistic regression; 4.4.2 Discriminant analysis; 4.5 Tree models; 4.5.1 Division criteria; 4.5.2 Pruning; 4.6 Neural networks; 4.6.1 Architecture of a neural network; 4.6.2 The multilayer perceptron; 4.6.3 Kohonen networks; 4.7 Nearest-neighbour models; 4.8 Local models; 4.8.1 Association rules; 4.8.2 Retrieval by content; 4.9 Uncertainty measures and inference; 4.9.1 Probability 4.9.2 Statistical models4.9.3 Statistical inference; 4.10 Non-parametric modelling; 4.11 The normal linear model; 4.11.1 Main inferential results; 4.12 Generalised linear models; 4.12.1 The exponential family; 4.12.2 Definition of generalised linear models; 4.12.3 The logistic regression model; 4.13 Log-linear models; 4.13.1 Construction of a log-linear model; 4.13.2 Interpretation of a log-linear model; 4.13.3 Graphical log-linear models; 4.13.4 Log-linear model comparison; 4.14 Graphical models; 4.14.1 Symmetric graphical models; 4.14.2 Recursive graphical models 4.14.3 Graphical models and neural networks4.15 Survival analysis models; 4.16 Further reading; 5 Model evaluation; 5.1 Criteria based on statistical tests; 5.1.1 Distance between statistical models; 5.1.2 Discrepancy of a statistical model; 5.1.3 Kullback-Leibler discrepancy; 5.2 Criteria based on scoring functions; 5.3 Bayesian criteria; 5.4 Computational criteria; 5.5 Criteria based on loss functions; 5.6 Further reading; Part II Business case studies; 6 Describing website visitors; 6.1 Objectives of the analysis; 6.2 Description of the data; 6.3 Exploratory analysis; 6.4 Model building 6.4.1 Cluster analysis |
Record Nr. | UNINA-9910830379703321 |
Giudici Paolo | ||
Hoboken, NJ, : John Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied data mining for business and industry / / Paolo Giudici, Silvia Figini |
Autore | Giudici Paolo |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, NJ, : John Wiley, 2009 |
Descrizione fisica | 1 online resource (259 p.) |
Disciplina |
005.74068
006.312 |
Altri autori (Persone) | FiginiSilvia |
Soggetto topico |
Data mining
Business - Data processing Commercial statistics |
ISBN |
1-282-12369-6
9786612123696 0-470-05886-2 0-470-74583-5 0-470-74582-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Applied Data Mining for Business and Industry; Contents; 1 Introduction; Part I Methodology; 2 Organisation of the data; 2.1 Statistical units and statistical variables; 2.2 Data matrices and their transformations; 2.3 Complex data structures; 2.4 Summary; 3 Summary statistics; 3.1 Univariate exploratory analysis; 3.1.1 Measures of location; 3.1.2 Measures of variability; 3.1.3 Measures of heterogeneity; 3.1.4 Measures of concentration; 3.1.5 Measures of asymmetry; 3.1.6 Measures of kurtosis; 3.2 Bivariate exploratory analysis of quantitative data
3.3 Multivariate exploratory analysis of quantitative data3.4 Multivariate exploratory analysis of qualitative data; 3.4.1 Independence and association; 3.4.2 Distance measures; 3.4.3 Dependency measures; 3.4.4 Model-based measures; 3.5 Reduction of dimensionality; 3.5.1 Interpretation of the principal components; 3.6 Further reading; 4 Model specification; 4.1 Measures of distance; 4.1.1 Euclidean distance; 4.1.2 Similarity measures; 4.1.3 Multidimensional scaling; 4.2 Cluster analysis; 4.2.1 Hierarchical methods; 4.2.2 Evaluation of hierarchical methods; 4.2.3 Non-hierarchical methods 4.3 Linear regression4.3.1 Bivariate linear regression; 4.3.2 Properties of the residuals; 4.3.3 Goodness of fit; 4.3.4 Multiple linear regression; 4.4 Logistic regression; 4.4.1 Interpretation of logistic regression; 4.4.2 Discriminant analysis; 4.5 Tree models; 4.5.1 Division criteria; 4.5.2 Pruning; 4.6 Neural networks; 4.6.1 Architecture of a neural network; 4.6.2 The multilayer perceptron; 4.6.3 Kohonen networks; 4.7 Nearest-neighbour models; 4.8 Local models; 4.8.1 Association rules; 4.8.2 Retrieval by content; 4.9 Uncertainty measures and inference; 4.9.1 Probability 4.9.2 Statistical models4.9.3 Statistical inference; 4.10 Non-parametric modelling; 4.11 The normal linear model; 4.11.1 Main inferential results; 4.12 Generalised linear models; 4.12.1 The exponential family; 4.12.2 Definition of generalised linear models; 4.12.3 The logistic regression model; 4.13 Log-linear models; 4.13.1 Construction of a log-linear model; 4.13.2 Interpretation of a log-linear model; 4.13.3 Graphical log-linear models; 4.13.4 Log-linear model comparison; 4.14 Graphical models; 4.14.1 Symmetric graphical models; 4.14.2 Recursive graphical models 4.14.3 Graphical models and neural networks4.15 Survival analysis models; 4.16 Further reading; 5 Model evaluation; 5.1 Criteria based on statistical tests; 5.1.1 Distance between statistical models; 5.1.2 Discrepancy of a statistical model; 5.1.3 Kullback-Leibler discrepancy; 5.2 Criteria based on scoring functions; 5.3 Bayesian criteria; 5.4 Computational criteria; 5.5 Criteria based on loss functions; 5.6 Further reading; Part II Business case studies; 6 Describing website visitors; 6.1 Objectives of the analysis; 6.2 Description of the data; 6.3 Exploratory analysis; 6.4 Model building 6.4.1 Cluster analysis |
Record Nr. | UNINA-9910876922603321 |
Giudici Paolo | ||
Hoboken, NJ, : John Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data mining : metodi informatici, statistici e applicazioni / Paolo Giudici |
Autore | Giudici, Paolo |
Edizione | [2. ed.] |
Pubbl/distr/stampa | Milano : McGraw-Hill, 2005 |
Descrizione fisica | xii, 401 p. ; 24 cm |
Disciplina | 005.74068 |
Collana | Workbooks |
Soggetto topico |
Aziende - Gestione - Metodi statistici
Aziende - Sistemi informativi - Automazione Aziende - Archivi di dati - Gestione |
ISBN | 8838662312 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991001592169707536 |
Giudici, Paolo | ||
Milano : McGraw-Hill, 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Data mining : metodi statistici per le applicazioni aziendali / Paolo Giudici |
Autore | Giudici, Paolo |
Pubbl/distr/stampa | Milano [etc.] : McGraw-Hill, [2001] |
Descrizione fisica | XIII, 424 p. ; 24 cm |
Disciplina | 005.74068 |
Collana | Workbooks |
Soggetto topico | Aziende - Gestione - Metodi statistici |
ISBN | 8838660018 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991000382379707536 |
Giudici, Paolo | ||
Milano [etc.] : McGraw-Hill, [2001] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Intelligent data engineering and automated learning -- IDEAL 2009 : 10th international conference, Burgos, Spain, September 23-26, 2009 : proceedings / / edited by Hujun Yin [and three others] |
Edizione | [1st ed. 2007.] |
Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer, , [2007] |
Descrizione fisica | 1 online resource (XX, 1174 p.) |
Disciplina | 005.74068 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Intelligent agents (Computer software)
Database management |
ISBN | 3-540-77226-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Learning and Information Processing -- Data Mining and Information Management -- Bioinformatics and Neuroinformatics -- Agents and Distributed Systems -- Financial Engineering and Modelling -- Agent-Based Approach to Service Sciences -- Neural-evolutionary Fusion Algorithms and Their Applications. |
Record Nr. | UNINA-9910484428703321 |
Berlin, Germany ; ; New York, New York : , : Springer, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Intelligent data engineering and automated learning -- IDEAL 2009 : 10th international conference, Burgos, Spain, September 23-26, 2009 : proceedings / / edited by Hujun Yin [and three others] |
Edizione | [1st ed. 2007.] |
Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer, , [2007] |
Descrizione fisica | 1 online resource (XX, 1174 p.) |
Disciplina | 005.74068 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Intelligent agents (Computer software)
Database management |
ISBN | 3-540-77226-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Learning and Information Processing -- Data Mining and Information Management -- Bioinformatics and Neuroinformatics -- Agents and Distributed Systems -- Financial Engineering and Modelling -- Agent-Based Approach to Service Sciences -- Neural-evolutionary Fusion Algorithms and Their Applications. |
Record Nr. | UNISA-996466244003316 |
Berlin, Germany ; ; New York, New York : , : Springer, , [2007] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
International Conference on Scientific and Statistical Database Management : [proceedings] / / SSDBM |
Pubbl/distr/stampa | Los Alamitos, Calif., : IEEE Computer Society, c2003- |
Descrizione fisica | v. : ill. ; ; 28 cm |
Disciplina |
005
005.74068 |
Soggetto topico |
Database design
Database management Mathematical statistics - Data processing Science - Data processing |
Soggetto genere / forma | Conference papers and proceedings. |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910145483803321 |
Los Alamitos, Calif., : IEEE Computer Society, c2003- | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
International Conference on Scientific and Statistical Database Management : [proceedings] / / SSDBM |
Pubbl/distr/stampa | Los Alamitos, Calif., : IEEE Computer Society, c2003- |
Descrizione fisica | 1 online resource |
Disciplina |
005
005.74068 |
Soggetto topico |
Database design
Database management Mathematical statistics - Data processing Science - Data processing |
Soggetto genere / forma | Conference papers and proceedings. |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996279726603316 |
Los Alamitos, Calif., : IEEE Computer Society, c2003- | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|