top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in information systems set . Volume 1 From big data to smart data / / Fernando Iafrate
Advances in information systems set . Volume 1 From big data to smart data / / Fernando Iafrate
Autore Iafrate Fernando
Edizione [1st edition]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Descrizione fisica 1 online resource (89 p.)
Disciplina 005.74023
Collana Information Systems Web and Pervasive Computing Series
Soggetto topico Big data
ISBN 1-119-11925-1
1-119-11618-X
1-119-11926-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Preface; List of Figures and Tables; Introduction; I.1. Objectives; I.2. Observation; I.2.1. Before 2000 (largely speaking, before e-commerce); I.2.2. Between 2000 and 2010 (the boom of e-commerce, then the advent of social networks); I.2.3. Since 2010 (mobility and real-time become keywords); I.2.4. And then ... (connected objects...); I.3. In sum; 1: What is Big Data?; 1.1. The four "V"s characterizing Big Data; 1.1.1. V for "Volume"; 1.1.2. V for "Variety"; 1.1.3. V for "Velocity"; 1.1.4. V for "Value", associated with Smart Data
1.1.4.1. What value can be taken from Big Data?1.2. The technology that supports Big Data; 2: What is Smart Data?; 2.1. How can we define it?; 2.1.1. More formal integration into business processes; 2.1.2. A stronger relationship with transactionsolutions; 2.1.3. The mobility and the temporality of information; 2.1.3.1. The automation of analysis; 2.2. The structural dimension; 2.2.1. The objectives of a BICC; 2.3. The closed loop between Big Data and Smart Data; 3: Zero Latency Organization; 3.1. From Big Data to Smart Data for a zero latency organization; 3.2. Three types of latency
3.2.1. Latency linked to data3.2.2. Latency linked to analytical processes; 3.2.3. Latency linked to decision-making processes; 3.2.4. Action latency; 4: Summary by Example; 4.1. Example 1: date/product/price recommendation; 4.1.1. Steps "1" and "2"; 4.1.2. Steps "3" and "4": enter the world of "SmartData"; 4.1.3. Step "5": the presentation phase; 4.1.4. Step "6": the "Holy Grail" (the purchase); 4.1.5. Step "7": Smart Data; 4.2. Example 2: yield/revenue management (rate controls); 4.2.1. How it works: an explanation based on the Tetrisprinciple (see Figure 4.4)
4.3. Example 3: optimization of operational performance4.3.1. General department (top management) ; 4.3.2. Operations departments (middle management); 4.3.3. Operations management (and operationalplayers); Conclusion; Bibliography; Glossary; Index
Record Nr. UNINA-9910132269203321
Iafrate Fernando  
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in information systems set . Volume 1 From big data to smart data / / Fernando Iafrate
Advances in information systems set . Volume 1 From big data to smart data / / Fernando Iafrate
Autore Iafrate Fernando
Edizione [1st edition]
Pubbl/distr/stampa London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Descrizione fisica 1 online resource (89 p.)
Disciplina 005.74023
Collana Information Systems Web and Pervasive Computing Series
Soggetto topico Big data
ISBN 1-119-11925-1
1-119-11618-X
1-119-11926-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Preface; List of Figures and Tables; Introduction; I.1. Objectives; I.2. Observation; I.2.1. Before 2000 (largely speaking, before e-commerce); I.2.2. Between 2000 and 2010 (the boom of e-commerce, then the advent of social networks); I.2.3. Since 2010 (mobility and real-time become keywords); I.2.4. And then ... (connected objects...); I.3. In sum; 1: What is Big Data?; 1.1. The four "V"s characterizing Big Data; 1.1.1. V for "Volume"; 1.1.2. V for "Variety"; 1.1.3. V for "Velocity"; 1.1.4. V for "Value", associated with Smart Data
1.1.4.1. What value can be taken from Big Data?1.2. The technology that supports Big Data; 2: What is Smart Data?; 2.1. How can we define it?; 2.1.1. More formal integration into business processes; 2.1.2. A stronger relationship with transactionsolutions; 2.1.3. The mobility and the temporality of information; 2.1.3.1. The automation of analysis; 2.2. The structural dimension; 2.2.1. The objectives of a BICC; 2.3. The closed loop between Big Data and Smart Data; 3: Zero Latency Organization; 3.1. From Big Data to Smart Data for a zero latency organization; 3.2. Three types of latency
3.2.1. Latency linked to data3.2.2. Latency linked to analytical processes; 3.2.3. Latency linked to decision-making processes; 3.2.4. Action latency; 4: Summary by Example; 4.1. Example 1: date/product/price recommendation; 4.1.1. Steps "1" and "2"; 4.1.2. Steps "3" and "4": enter the world of "SmartData"; 4.1.3. Step "5": the presentation phase; 4.1.4. Step "6": the "Holy Grail" (the purchase); 4.1.5. Step "7": Smart Data; 4.2. Example 2: yield/revenue management (rate controls); 4.2.1. How it works: an explanation based on the Tetrisprinciple (see Figure 4.4)
4.3. Example 3: optimization of operational performance4.3.1. General department (top management) ; 4.3.2. Operations departments (middle management); 4.3.3. Operations management (and operationalplayers); Conclusion; Bibliography; Glossary; Index
Record Nr. UNINA-9910815766903321
Iafrate Fernando  
London, England ; ; Hoboken, New Jersey : , : iSTE : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Big Data [[electronic resource] ] : A Primer / / edited by Hrushikesha Mohanty, Prachet Bhuyan, Deepak Chenthati
Big Data [[electronic resource] ] : A Primer / / edited by Hrushikesha Mohanty, Prachet Bhuyan, Deepak Chenthati
Edizione [1st ed. 2015.]
Pubbl/distr/stampa New Delhi : , : Springer India : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (195 p.)
Disciplina 005.74023
Collana Studies in Big Data
Soggetto topico Data mining
Data structures (Computer science)
Computational intelligence
Data Mining and Knowledge Discovery
Data Storage Representation
Computational Intelligence
ISBN 81-322-2494-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Big Data: An Introduction -- Big Data Architecture -- Big Data Processing Algorithms -- Big Data Search and Mining -- Security and Privacy of Big Data -- Big Data Service Agreement -- Applications of Big Data.
Record Nr. UNINA-9910741152203321
New Delhi : , : Springer India : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High-Performance Big-Data Analytics : Computing Systems and Approaches / / by Pethuru Raj, Anupama Raman, Dhivya Nagaraj, Siddhartha Duggirala
High-Performance Big-Data Analytics : Computing Systems and Approaches / / by Pethuru Raj, Anupama Raman, Dhivya Nagaraj, Siddhartha Duggirala
Autore Raj Pethuru
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (443 p.)
Disciplina 005.74023
Collana Computer Communications and Networks
Soggetto topico Computer networks
Application software
Microprocessors
Computer Communication Networks
Information Systems Applications (incl. Internet)
Computer Appl. in Administrative Data Processing
Processor Architectures
ISBN 3-319-20744-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Emerging Trends and Transformations in the IT Landscape -- High Performance Technologies for Big- and Fast-Data Analytics -- Big- and Fast-Data Analytics for High-Performance Computing -- Network Infrastructure for High-Performance Big-Data Analytics -- Storage Infrastructure for High-Performance Big-Data Analytics -- Real-Time Analytics using High-Performance Computing -- High-Performance Computing Paradigms -- In-Database Processing and In-Memory Analytics -- High-Performance Integrated Systems, Databases and Warehouses for Big- and Fast-Data Analytics -- Cluster and Grid Computing Paradigms -- High-Performance Peer-to-Peer Systems -- Visualization Dimensions for High-Performance Big-Data Analytics -- Social Media Analytics for Organization Empowerment -- Big-Data Analytics for Healthcare.
Record Nr. UNINA-9910299222303321
Raj Pethuru  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Techniques and Environments for Big Data Analysis : Parallel, Cloud, and Grid Computing / / edited by B. S.P. Mishra, Satchidananda Dehuri, Euiwhan Kim, Gi-Name Wang
Techniques and Environments for Big Data Analysis : Parallel, Cloud, and Grid Computing / / edited by B. S.P. Mishra, Satchidananda Dehuri, Euiwhan Kim, Gi-Name Wang
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (199 p.)
Disciplina 005.74023
Collana Studies in Big Data
Soggetto topico Computational intelligence
Data mining
Artificial intelligence
Computational Intelligence
Data Mining and Knowledge Discovery
Artificial Intelligence
ISBN 9783319275208
3319275208
Classificazione 32.24
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Big Data Analysis -- Parallel Environments -- A Deep Dive into the Hadoop World to Explore its Various Performances -- Natural Language Processing and Machine Learning for Big Data -- Big Data and Cyber Foraging: Future Scope and Challenges -- Parallel GA in Big Data Analysis -- Evolutionary Algorithm Based Techniques to Handle Big Data -- Statistical and Evolutionary Feature Selection Techniques Parallelized using MapReduce Programming Model -- A Data Aware Scheme for Scheduling Big-Data Applications on SAVANNA Hadoop -- The Role of Grid Technologies: A Next Level Combat with Big Data.
Record Nr. UNINA-9910739427803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui