top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bias and social aspects in search and recommendation : first International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings / / Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo (eds.)
Bias and social aspects in search and recommendation : first International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings / / Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo (eds.)
Pubbl/distr/stampa Cham : , : Springer, , [2020]
Descrizione fisica 1 online resource : illustrations (chiefly color)
Disciplina 005.56
Collana Communications in Computer and Information Science
Soggetto topico Recommender systems (Information filtering)
Information retrieval
Discrimination
ISBN 3-030-52485-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Facets of Fairness in Search and Recommendation -- Mitigating Gender Bias in Machine Learning Data Sets -- Why Do We Need To Be Bots? What Prevents Society From Detecting Biases in Recommendation Systems -- Effect of Debiasing on Information Retrieval -- Matchmaking Under Fairness Constraints: a Speed Dating Case Study -- Recommendation Filtering à la Carte for Intelligent Tutoring Systems -- Bias Goggles - Exploring the bias of Web Domains through the Eyes of the Users -- Data Pipelines for Personalized Exploration of Rated Datasets -- Beyond Accuracy in Link Prediction -- A Novel Similarity Measure for Group Recommender Systems with Optimal Time Complexity -- What Kind of Content are you Prone to Tweet? Multi-topic Preference Model for Tweeters -- Venue Suggestion Using Social-Centric Scores -- The Impact of Foursquare Checkins on Users’ Emotions on Twitter -- Improving News Personalization through Search Logs -- Analyzing the Interaction of Users with News Articles to Create Personalization Services -- Using String-Comparison measures to Improve and Evaluate Collaborative Filtering Recommender Systems -- Enriching Product Catalogs with User Opinions.
Record Nr. UNISA-996465363503316
Cham : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bias and Social Aspects in Search and Recommendation : First International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Bias and Social Aspects in Search and Recommendation : First International Workshop, BIAS 2020, Lisbon, Portugal, April 14, Proceedings / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource : illustrations (chiefly color)
Disciplina 005.56
Collana Communications in Computer and Information Science
Soggetto topico Database management
Artificial intelligence
Computer engineering
Computer networks
Social sciences - Data processing
Electronic commerce
Database Management System
Artificial Intelligence
Computer Engineering and Networks
Computer Application in Social and Behavioral Sciences
e-Commerce and e-Business
ISBN 3-030-52485-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Facets of Fairness in Search and Recommendation -- Mitigating Gender Bias in Machine Learning Data Sets -- Why Do We Need To Be Bots? What Prevents Society From Detecting Biases in Recommendation Systems -- Effect of Debiasing on Information Retrieval -- Matchmaking Under Fairness Constraints: a Speed Dating Case Study -- Recommendation Filtering à la Carte for Intelligent Tutoring Systems -- Bias Goggles - Exploring the bias of Web Domains through the Eyes of the Users -- Data Pipelines for Personalized Exploration of Rated Datasets -- Beyond Accuracy in Link Prediction -- A Novel Similarity Measure for Group Recommender Systems with Optimal Time Complexity -- What Kind of Content are you Prone to Tweet? Multi-topic Preference Model for Tweeters -- Venue Suggestion Using Social-Centric Scores -- The Impact of Foursquare Checkins on Users’ Emotions on Twitter -- Improving News Personalization through Search Logs -- Analyzing the Interaction of Users with News Articles to Create Personalization Services -- Using String-Comparison measures to Improve and Evaluate Collaborative Filtering Recommender Systems -- Enriching Product Catalogs with User Opinions.
Record Nr. UNINA-9910413447003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recommender System for Improving Customer Loyalty / / by Katarzyna Tarnowska, Zbigniew W. Ras, Lynn Daniel
Recommender System for Improving Customer Loyalty / / by Katarzyna Tarnowska, Zbigniew W. Ras, Lynn Daniel
Autore Tarnowska Katarzyna
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (133 pages) : illustrations
Disciplina 001.64
005.56
Collana Studies in Big Data
Soggetto topico Computational intelligence
Customer relations—Management
Data mining
Pattern recognition
Computational Intelligence
Customer Relationship Management
Data Mining and Knowledge Discovery
Pattern Recognition
ISBN 3-030-13438-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Introduction -- Chapter 2: Customer Loyalty Improvement -- Chapter 3: State of the Art -- Chapter 4: Background -- Chapter 5: Overview of Recommender System Engine -- Chapter 6: Visual Data Analysis -- Chapter 7: Improving Performance of Knowledge Miner -- Chapter 8: Recommender System Based on Unstructured Data -- Chapter 9: Customer Attrition Problem -- Chapter 10: Conclusion.
Record Nr. UNINA-9910739424503321
Tarnowska Katarzyna  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recommender Systems : The Textbook / / by Charu C. Aggarwal
Recommender Systems : The Textbook / / by Charu C. Aggarwal
Autore Aggarwal Charu C
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XXI, 498 p. 79 illus., 18 illus. in color.)
Disciplina 005.56
Soggetto topico Data mining
Artificial intelligence
Data Mining and Knowledge Discovery
Artificial Intelligence
Informàtica
Sistemes d'informació
Difusió selectiva de la informació
Intel·ligència artificial
Soggetto genere / forma Llibres electrònics
ISBN 3-319-29659-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Introduction to Recommender Systems -- Neighborhood-Based Collaborative Filtering -- Model-Based Collaborative Filtering -- Content-Based Recommender Systems -- Knowledge-Based Recommender Systems -- Ensemble-Based and Hybrid Recommender Systems -- Evaluating Recommender Systems -- Context-Sensitive Recommender Systems -- Time- and Location-Sensitive Recommender Systems -- Structural Recommendations in Networks -- Social and Trust-Centric Recommender Systems -- Attack-Resistant Recommender Systems -- Advanced Topics in Recommender Systems.
Record Nr. UNINA-9910254982703321
Aggarwal Charu C  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recommender systems in fashion and retail : proceedings of the Third Workshop at the Recommender Systems Conference (2021) / / edited by Nima Dokoohaki, [and three others]
Recommender systems in fashion and retail : proceedings of the Third Workshop at the Recommender Systems Conference (2021) / / edited by Nima Dokoohaki, [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (116 pages)
Disciplina 005.56
Collana Lecture Notes in Electrical Engineering
Soggetto topico Recommender systems (Information filtering)
ISBN 3-030-94016-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464453403316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Recommender systems in fashion and retail : proceedings of the Third Workshop at the Recommender Systems Conference (2021) / / edited by Nima Dokoohaki, [and three others]
Recommender systems in fashion and retail : proceedings of the Third Workshop at the Recommender Systems Conference (2021) / / edited by Nima Dokoohaki, [and three others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (116 pages)
Disciplina 005.56
Collana Lecture Notes in Electrical Engineering
Soggetto topico Recommender systems (Information filtering)
ISBN 3-030-94016-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910551842603321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui