top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cross section and experimental data analysis using EViews / / I Gusti Ngurah Agung
Cross section and experimental data analysis using EViews / / I Gusti Ngurah Agung
Autore Agung I Gusti Ngurah
Pubbl/distr/stampa Singapore, : John Wiley & Sons, 2011
Descrizione fisica 1 online resource (586 p.)
Disciplina 005.5/5
Soggetto topico Statistics
ISBN 0-470-82845-5
1-283-37249-5
9786613372499
0-470-82843-9
0-470-82844-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CROSS SECTION AND EXPERIMENTAL DATA ANALYSIS USING EVIEWS; Contents; Preface; 1 Misinterpretation of Selected Theoretical Concepts of Statistics; 1.1 Introduction; 1.2 What is a Population?; 1.3 A Sample and Sample Space; 1.3.1 What is a Sample?; 1.3.2 What is the Sample Space?; 1.3.3 What is a Representative Sample?; 1.3.4 Relationship between the Sample Space, Population, and a Sample; 1.4 Distribution of a Random Sample Space; 1.5 What is a Random Variable?; 1.6 Theoretical Concept of a Random Sample; 1.6.1 What is a Random Sample in Statistics?; 1.6.2 Central Limit Theorem
1.6.3 Unbiased Statistics based on Random Samples 1.6.4 Special Notes on Nonrandom Sample; 1.7 Does a Representative Sample Really Exist?; 1.8 Remarks on Statistical Powers and Sample Sizes; 1.9 Hypothesis and Hypothesis Testing; 1.10 Groups of Research Variables; 1.10.1 Problem Indicators; 1.10.2 Controllable Cause Factors; 1.10.3 Uncontrollable Cause Factors; 1.10.4 Background or Classification Factors; 1.10.5 Environmental Factors; 1.11 Causal Relationship between Variables; 1.11.1 Bivariate Correlation; 1.11.2 Special Remarks; 1.12 Misinterpretation of Selected Statistics
1.12.1 Standard Error 1.12.2 Significance Level and Power of a Test; 1.12.3 Reliability of a Test or Instrument; 1.12.4 Validity of a Test or Instrument; 1.12.5 Reliability and Validity of Forecasting; 1.12.6 Reliability and Validity of a Predicted Risk; 2 Simple Statistical Analysis but Good for Strategic Decision Making; 2.1 Introduction; 2.2 A Single Input for Decision Making; 2.2.1 A Single Sampled Unit; 2.2.2 Descriptive Statistics Based on a Single Measurable Variable; 2.2.3 Agung Six-Point Scale (ASPS) Problem Indicator; 2.2.4 Latent Variables and Composite Indexes
2.2.5 Demographic and Social-Economic Factors 2.2.6 Garbage as a Data Source; 2.2.7 Boxplot as an Input for Decision Making; 2.2.8 A Series of Inputs for Strategic Decision Making; 2.3 Data Transformation; 2.3.1 To Generate Categorical Variables; 2.3.2 To Generate Dummy Variables; 2.4 Biserial Correlation Analysis; 2.5 One-Way Tabulation of a Variable; 2.6 Two-Way Tabulations; 2.6.1 Measure of Associations for Bivariate Categorical Variables; 2.6.2 Other Measures of Association Based on a 2 X 2 Table; 2.6.3 Measures of Association Based on a I X 2 Table; 2.7 Three-Way Tabulation
2.7.1 Conditional Measures of Association for a 2 X 2 X 2 Table 2.7.2 Conditional Odds Ratio for an I X J X 2 Table; 2.8 Special Notes and Comments; 2.9 Special Cases of the N-Way Incomplete Tables; 2.10 Partial Associations; 2.11 Multiple Causal Associations Based on Categorical Variables; 2.11.1 Theoretical and Empirical Concepts of Causal Associations; 2.11.2 Multidimensional Frequency Table; 2.12 Seemingly Causal Model Based on Categorical Variables; 2.12.1 Causal Association Based on (X1, X2, Y1) or (X1, Y1, Y2); 2.12.2 Causal Association Based on (X1, X2, Y1, Y2)
2.12.3 Causal Association Based on Multidimensional Variables
Record Nr. UNINA-9910133595903321
Agung I Gusti Ngurah  
Singapore, : John Wiley & Sons, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cross section and experimental data analysis using EViews / / I Gusti Ngurah Agung
Cross section and experimental data analysis using EViews / / I Gusti Ngurah Agung
Autore Agung I Gusti Ngurah
Edizione [1st ed.]
Pubbl/distr/stampa Singapore, : John Wiley & Sons, 2011
Descrizione fisica 1 online resource (586 p.)
Disciplina 005.5/5
Soggetto topico Statistics
ISBN 0-470-82845-5
1-283-37249-5
9786613372499
0-470-82843-9
0-470-82844-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CROSS SECTION AND EXPERIMENTAL DATA ANALYSIS USING EVIEWS; Contents; Preface; 1 Misinterpretation of Selected Theoretical Concepts of Statistics; 1.1 Introduction; 1.2 What is a Population?; 1.3 A Sample and Sample Space; 1.3.1 What is a Sample?; 1.3.2 What is the Sample Space?; 1.3.3 What is a Representative Sample?; 1.3.4 Relationship between the Sample Space, Population, and a Sample; 1.4 Distribution of a Random Sample Space; 1.5 What is a Random Variable?; 1.6 Theoretical Concept of a Random Sample; 1.6.1 What is a Random Sample in Statistics?; 1.6.2 Central Limit Theorem
1.6.3 Unbiased Statistics based on Random Samples 1.6.4 Special Notes on Nonrandom Sample; 1.7 Does a Representative Sample Really Exist?; 1.8 Remarks on Statistical Powers and Sample Sizes; 1.9 Hypothesis and Hypothesis Testing; 1.10 Groups of Research Variables; 1.10.1 Problem Indicators; 1.10.2 Controllable Cause Factors; 1.10.3 Uncontrollable Cause Factors; 1.10.4 Background or Classification Factors; 1.10.5 Environmental Factors; 1.11 Causal Relationship between Variables; 1.11.1 Bivariate Correlation; 1.11.2 Special Remarks; 1.12 Misinterpretation of Selected Statistics
1.12.1 Standard Error 1.12.2 Significance Level and Power of a Test; 1.12.3 Reliability of a Test or Instrument; 1.12.4 Validity of a Test or Instrument; 1.12.5 Reliability and Validity of Forecasting; 1.12.6 Reliability and Validity of a Predicted Risk; 2 Simple Statistical Analysis but Good for Strategic Decision Making; 2.1 Introduction; 2.2 A Single Input for Decision Making; 2.2.1 A Single Sampled Unit; 2.2.2 Descriptive Statistics Based on a Single Measurable Variable; 2.2.3 Agung Six-Point Scale (ASPS) Problem Indicator; 2.2.4 Latent Variables and Composite Indexes
2.2.5 Demographic and Social-Economic Factors 2.2.6 Garbage as a Data Source; 2.2.7 Boxplot as an Input for Decision Making; 2.2.8 A Series of Inputs for Strategic Decision Making; 2.3 Data Transformation; 2.3.1 To Generate Categorical Variables; 2.3.2 To Generate Dummy Variables; 2.4 Biserial Correlation Analysis; 2.5 One-Way Tabulation of a Variable; 2.6 Two-Way Tabulations; 2.6.1 Measure of Associations for Bivariate Categorical Variables; 2.6.2 Other Measures of Association Based on a 2 X 2 Table; 2.6.3 Measures of Association Based on a I X 2 Table; 2.7 Three-Way Tabulation
2.7.1 Conditional Measures of Association for a 2 X 2 X 2 Table 2.7.2 Conditional Odds Ratio for an I X J X 2 Table; 2.8 Special Notes and Comments; 2.9 Special Cases of the N-Way Incomplete Tables; 2.10 Partial Associations; 2.11 Multiple Causal Associations Based on Categorical Variables; 2.11.1 Theoretical and Empirical Concepts of Causal Associations; 2.11.2 Multidimensional Frequency Table; 2.12 Seemingly Causal Model Based on Categorical Variables; 2.12.1 Causal Association Based on (X1, X2, Y1) or (X1, Y1, Y2); 2.12.2 Causal Association Based on (X1, X2, Y1, Y2)
2.12.3 Causal Association Based on Multidimensional Variables
Record Nr. UNINA-9910812400003321
Agung I Gusti Ngurah  
Singapore, : John Wiley & Sons, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IBM SPSS statistics 23 step by step : a simple guide and reference / Darren George, Paul Mallery
IBM SPSS statistics 23 step by step : a simple guide and reference / Darren George, Paul Mallery
Autore George, Darren
Edizione [14th ed.]
Pubbl/distr/stampa Boston : Pearson, 2017
Descrizione fisica xiii, 382 p : ill. ; 28 cm
Disciplina 005.5/5
Altri autori (Persone) Mallery, Paulauthor
Soggetto topico SPSS (Computer file)
Social sciences - Statistical methods - Computer programs
ISBN 9780134320250
Classificazione LC HA32
621.3.8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNISALENTO-991002858779707536
George, Darren  
Boston : Pearson, 2017
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Multilevel modeling using R / W. Holmes Finch, Jocelyn E. Bolin, Ken Kelley
Multilevel modeling using R / W. Holmes Finch, Jocelyn E. Bolin, Ken Kelley
Autore Finch, W. Holmes
Pubbl/distr/stampa Boca Raton, FL : CRC Press, Taylor & Francis Group, [2014]
Descrizione fisica xiii, 216 p. : ill. ; 24 cm
Disciplina 005.5/5
Altri autori (Persone) Bolin, Jocelyn E.
Kelley, Ken
Collana Chapman & Hall/CRC statistics in the social and behavioral sciences
Soggetto non controllato Analisi multivariata
ISBN 978-1-4665-1585-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990009955200403321
Finch, W. Holmes  
Boca Raton, FL : CRC Press, Taylor & Francis Group, [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multilevel models [[electronic resource] ] : applications using SAS / / Jichuan Wang, Haiyi Xie, James H. Fischer
Multilevel models [[electronic resource] ] : applications using SAS / / Jichuan Wang, Haiyi Xie, James H. Fischer
Autore Wang Jichuan
Pubbl/distr/stampa Berlin, : De Gruyter
Descrizione fisica 1 online resource (274 p.)
Disciplina 005.5/5
Altri autori (Persone) XieHaiyi
FischerJames H
Soggetto topico Social sciences - Research - Mathematical models
Multilevel models (Statistics)
Soggetto genere / forma Electronic books.
ISBN 3-11-026770-5
Classificazione SK 850
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface / Wang, Jichuan / Xie, Haiyi / Fisher, James H. -- Contents -- Chapter 1. Introduction -- Chapter 2. Basics of linear multilevel models -- Chapter 3. Application of two-level linear multilevel models -- Chapter 4. Application of multilevel modeling to longitudinal data -- Chapter 5. Multilevel models for discrete outcome measures -- Chapter 6. Other applications of multilevel modeling and related issues -- References -- Index
Record Nr. UNINA-9910465523203321
Wang Jichuan  
Berlin, : De Gruyter
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multilevel models [[electronic resource] ] : applications using SAS / / Jichuan Wang, Haiyi Xie, James H. Fischer
Multilevel models [[electronic resource] ] : applications using SAS / / Jichuan Wang, Haiyi Xie, James H. Fischer
Autore Wang Jichuan
Pubbl/distr/stampa Berlin, : De Gruyter
Descrizione fisica 1 online resource (274 p.)
Disciplina 005.5/5
Altri autori (Persone) XieHaiyi
FischerJames H
Soggetto topico Social sciences - Research - Mathematical models
Multilevel models (Statistics)
Soggetto non controllato Multilevel Model
SAS®
Statistics
ISBN 3-11-026770-5
Classificazione SK 850
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface / Wang, Jichuan / Xie, Haiyi / Fisher, James H. -- Contents -- Chapter 1. Introduction -- Chapter 2. Basics of linear multilevel models -- Chapter 3. Application of two-level linear multilevel models -- Chapter 4. Application of multilevel modeling to longitudinal data -- Chapter 5. Multilevel models for discrete outcome measures -- Chapter 6. Other applications of multilevel modeling and related issues -- References -- Index
Record Nr. UNINA-9910791967403321
Wang Jichuan  
Berlin, : De Gruyter
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multilevel models : applications using SAS / / Jichuan Wang, Haiyi Xie, James H. Fischer
Multilevel models : applications using SAS / / Jichuan Wang, Haiyi Xie, James H. Fischer
Autore Wang Jichuan
Edizione [1st ed.]
Pubbl/distr/stampa Berlin, : De Gruyter
Descrizione fisica 1 online resource (274 p.)
Disciplina 005.5/5
Altri autori (Persone) XieHaiyi
FischerJames H
Soggetto topico Social sciences - Research - Mathematical models
Multilevel models (Statistics)
Soggetto non controllato Multilevel Model
SAS®
Statistics
ISBN 3-11-026770-5
Classificazione SK 850
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Preface / Wang, Jichuan / Xie, Haiyi / Fisher, James H. -- Contents -- Chapter 1. Introduction -- Chapter 2. Basics of linear multilevel models -- Chapter 3. Application of two-level linear multilevel models -- Chapter 4. Application of multilevel modeling to longitudinal data -- Chapter 5. Multilevel models for discrete outcome measures -- Chapter 6. Other applications of multilevel modeling and related issues -- References -- Index
Record Nr. UNINA-9910828881503321
Wang Jichuan  
Berlin, : De Gruyter
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Panel data analysis using eviews / / I. Gusti Ngurah Agung
Panel data analysis using eviews / / I. Gusti Ngurah Agung
Autore Agung I Gusti Ngurah
Pubbl/distr/stampa Hoboken : , : Wiley, , 2014
Descrizione fisica 1 online resource (541 p.)
Disciplina 005.5/5
Soggetto topico Statistics
ISBN 1-118-71556-X
1-118-71554-3
1-118-71557-8
Classificazione MAT029000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Panel Data Analysis Using EViews; Contents; Preface; About the Author; Part One: Panel Data as a Multivariate Time Series by States; 1 Data Analysis Based on a Single Time Series by States; 1.1 Introduction; 1.2 Multivariate Growth Models; 1.2.1 Continuous Growth Models; 1.2.2 Discontinuous Growth Models; 1.3 Alternative Multivariate Growth Models; 1.3.1 A Generalization of MAR(p)_GM; 1.3.2 Multivariate Lagged Variables Growth Models; 1.3.3 Multivariate Lagged-Variable Autoregressive Growth Models; 1.3.4 Bounded MLVAR(p; q)_GM; 1.3.5 Special Notes
1.4 Various Models Based on Correlated States1.4.1 Seemingly Causal Models with Trend; 1.4.2 The Application of the Object "VAR"; 1.4.3 The Application of the Instrumental Variables Models; 1.5 Seemingly Causal Models with Time-Related Effects; 1.5.1 SCM Based on the Path Diagram in Figure 1.10(a); 1.5.2 SCM Based on the Path Diagram in Figure 1.10(b); 1.6 The Application of the Object POOL; 1.6.1 What is a Fixed-Effect Model?; 1.6.2 What is a Random Effect Model?; 1.6.3 Special Notes; 1.7 Growth Models of Sample Statistics; 1.8 Special Notes on Time-State Observations
1.9 Growth Models with an Environmental Variable1.9.1 The Simplest Possible Model; 1.9.2 The Application of VAR and VEC Models; 1.9.3 Application of ARCH Model; 1.9.4 The Application of Instrumental Variables Models; 1.10 Models with an Environmental Multivariate; 1.10.1 Bivariate Correlation and Simple Linear Regressions; 1.10.2 Simple Models with an Environmental Multivariate; 1.10.3 The VAR Models; 1.11 Special Piece-Wise Models; 1.11.1 The Application of Growth Models; 1.11.2 Equality Tests by Classifications; 2 Data Analysis Based on Bivariate Time Series by States; 2.1 Introduction
2.2 Models Based on Independent States2.2.1 MAR(p) Growth Model with an Exogenous Variable; 2.2.2 A General MAR(p) Model with an Exogenous Variable; 2.3 Time-Series Models Based on Two Correlated States; 2.3.1 Analysis using the Object System; 2.3.2 Two-SLS Instrumental Variables Models; 2.3.3 Three-SLS Instrumental Variables Models; 2.3.4 Analysis using the Object "VAR"; 2.4 Time-Series Models Based on Multiple Correlated States; 2.4.1 Extension of the Path Diagram in Figure 2.6; 2.4.2 SCMs as VAR Models; 2.5 Time-Series Models with an Environmental Variable Zt, Based on Independent States
2.5.1 The Simplest Possible Model2.5.2 Interaction Models Based on Two Independent States; 2.6 Models Based on Correlated States; 2.6.1 MLV(1) Interaction Model with Trend; 2.6.2 Simultaneous SCMs with Trend; 2.7 Piece-Wise Time-Series Models; 3 Data Analysis Based on Multivariate Time Series by States; 3.1 Introduction; 3.2 Models Based on (X_i,Y_i,Z_i) for Independent States; 3.2.1 MLVAR(p; q) Model with Trend Based on (X_i,Y_i,Z_i); 3.3 Models Based on (X_i, Y_i,Z_i) for Correlated States; 3.3.1 MLV(1) Interaction Model with Trend; 3.3.2 MLV(1) Interaction Model with Time-Related Effects
3.4 Simultaneous SCMs with Trend
Record Nr. UNINA-9910138972803321
Agung I Gusti Ngurah  
Hoboken : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Panel data analysis using eviews / / I. Gusti Ngurah Agung
Panel data analysis using eviews / / I. Gusti Ngurah Agung
Autore Agung I Gusti Ngurah
Pubbl/distr/stampa Hoboken : , : Wiley, , 2014
Descrizione fisica 1 online resource (541 p.)
Disciplina 005.5/5
Soggetto topico Statistics
ISBN 1-118-71556-X
1-118-71554-3
1-118-71557-8
Classificazione MAT029000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Panel Data Analysis Using EViews; Contents; Preface; About the Author; Part One: Panel Data as a Multivariate Time Series by States; 1 Data Analysis Based on a Single Time Series by States; 1.1 Introduction; 1.2 Multivariate Growth Models; 1.2.1 Continuous Growth Models; 1.2.2 Discontinuous Growth Models; 1.3 Alternative Multivariate Growth Models; 1.3.1 A Generalization of MAR(p)_GM; 1.3.2 Multivariate Lagged Variables Growth Models; 1.3.3 Multivariate Lagged-Variable Autoregressive Growth Models; 1.3.4 Bounded MLVAR(p; q)_GM; 1.3.5 Special Notes
1.4 Various Models Based on Correlated States1.4.1 Seemingly Causal Models with Trend; 1.4.2 The Application of the Object "VAR"; 1.4.3 The Application of the Instrumental Variables Models; 1.5 Seemingly Causal Models with Time-Related Effects; 1.5.1 SCM Based on the Path Diagram in Figure 1.10(a); 1.5.2 SCM Based on the Path Diagram in Figure 1.10(b); 1.6 The Application of the Object POOL; 1.6.1 What is a Fixed-Effect Model?; 1.6.2 What is a Random Effect Model?; 1.6.3 Special Notes; 1.7 Growth Models of Sample Statistics; 1.8 Special Notes on Time-State Observations
1.9 Growth Models with an Environmental Variable1.9.1 The Simplest Possible Model; 1.9.2 The Application of VAR and VEC Models; 1.9.3 Application of ARCH Model; 1.9.4 The Application of Instrumental Variables Models; 1.10 Models with an Environmental Multivariate; 1.10.1 Bivariate Correlation and Simple Linear Regressions; 1.10.2 Simple Models with an Environmental Multivariate; 1.10.3 The VAR Models; 1.11 Special Piece-Wise Models; 1.11.1 The Application of Growth Models; 1.11.2 Equality Tests by Classifications; 2 Data Analysis Based on Bivariate Time Series by States; 2.1 Introduction
2.2 Models Based on Independent States2.2.1 MAR(p) Growth Model with an Exogenous Variable; 2.2.2 A General MAR(p) Model with an Exogenous Variable; 2.3 Time-Series Models Based on Two Correlated States; 2.3.1 Analysis using the Object System; 2.3.2 Two-SLS Instrumental Variables Models; 2.3.3 Three-SLS Instrumental Variables Models; 2.3.4 Analysis using the Object "VAR"; 2.4 Time-Series Models Based on Multiple Correlated States; 2.4.1 Extension of the Path Diagram in Figure 2.6; 2.4.2 SCMs as VAR Models; 2.5 Time-Series Models with an Environmental Variable Zt, Based on Independent States
2.5.1 The Simplest Possible Model2.5.2 Interaction Models Based on Two Independent States; 2.6 Models Based on Correlated States; 2.6.1 MLV(1) Interaction Model with Trend; 2.6.2 Simultaneous SCMs with Trend; 2.7 Piece-Wise Time-Series Models; 3 Data Analysis Based on Multivariate Time Series by States; 3.1 Introduction; 3.2 Models Based on (X_i,Y_i,Z_i) for Independent States; 3.2.1 MLVAR(p; q) Model with Trend Based on (X_i,Y_i,Z_i); 3.3 Models Based on (X_i, Y_i,Z_i) for Correlated States; 3.3.1 MLV(1) Interaction Model with Trend; 3.3.2 MLV(1) Interaction Model with Time-Related Effects
3.4 Simultaneous SCMs with Trend
Record Nr. UNINA-9910828295303321
Agung I Gusti Ngurah  
Hoboken : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Performing data analysis using IBM SPSS [[electronic resource]] / Lawrence S. Meyers, Glenn C. Gamst, A. J. Guarino
Performing data analysis using IBM SPSS [[electronic resource]] / Lawrence S. Meyers, Glenn C. Gamst, A. J. Guarino
Autore Meyers Lawrence S
Pubbl/distr/stampa Hoboken, N.J., : Wiley, c2013
Descrizione fisica 1 online resource (734 p.)
Disciplina 005.5/5
Altri autori (Persone) GamstGlenn C
GuarinoA. J
Soggetto topico Social sciences - Statistical methods - Computer programs
Soggetto genere / forma Electronic books.
ISBN 1-118-36356-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PERFORMING DATA ANALYSIS USING IBM SPSS®; CONTENTS; PREFACE; PART 1 | GETTING STARTED WITH IBM SPSS®; CHAPTER 1 | INTRODUCTION TO IBM SPSS®; 1.1 WHAT IS IBM SPSS?; 1.2 BRIEF HISTORY; 1.3 TYPES OF IBM SPSS FILES AND FILE NAME EXTENSIONS; CHAPTER 2 | ENTERING DATA IN IBM SPSS; 2.1 THE STARTING POINT; 2.2 THE TWO TYPES OF DISPLAYS; 2.3 A SAMPLE DATA SET; 2.4 THE VARIABLE VIEW DISPLAY; 2.5 ENTERING SPECIFICATIONS IN THE VARIABLE VIEW DISPLAY; 2.6 SAVING THE DATA FILE; 2.7 ENTERING SPECIFICATIONS IN THE DATA VIEW DISPLAY; CHAPTER 3 | IMPORTING DATA FROM EXCEL TO IBM SPSS®; 3.1 THE STARTING POINT
3.2 THE IMPORTING PROCESS PART 2 | OBTAINING, EDITING, AND SAVING STATISTICAL OUTPUT; CHAPTER 4 | PERFORMING STATISTICAL PROCEDURES IN IBM SPSS®; 4.1 OVERVIEW; 4.2 USING DIALOG WINDOWS TO SETUP THE ANALYSIS; 4.3 THE OUTPUT; CHAPTER 5 | EDITING OUTPUT; 5.1 OVERVIEW; 5.2 CHANGING THE WORDING OF A COLUMN HEADING; 5.3 CHANGING THE WIDTH OF A COLUMN; 5.4 VIEWING MORE DECIMAL VALUES; 5.5 EDITING TEXT IN IBM SPSS OUTPUT FILES; CHAPTER 6 | SAVING AND COPYING OUTPUT; 6.1 OVERVIEW; 6.2 SAVING AN OUTPUT FILE AS AN IBM SPSS OUTPUT FILE; 6.3 SAVING AN OUTPUT FILE IN OTHER FORMATS
6.4 USING OPERATING SYSTEM UTILITIES TO COPY AN IBM SPSS TABLE TO A WORD PROCESSING DOCUMENT 6.5 USING THE COPY AND PASTE FUNCTIONS TO COPY AN IBM SPSS OUTPUT TABLE TO A WORD PROCESSING DOCUMENT; PART 3 | MANIPULATING DATA; CHAPTER 7 | SORTING AND SELECTING CASES; 7.1 OVERVIEW; 7.2 SORTING CASES; 7.3 SELECTING CASES; CHAPTER 8 | SPLITTING DATA FILES; 8.1 OVERVIEW; 8.2 THE GENERAL SPLITTING PROCESS; 8.3 THE PROCEDURE TO SPLIT THE DATA FILE; 8.4 THE DATA FILE AFTER THE SPLIT; 8.5 STATISTICAL ANALYSES UNDER SPLIT FILE; 8.6 RESETTING THE DATA FILE; CHAPTER 9 | MERGING DATA FROM SEPARATE FILES
9.1 OVERVIEW 9.2 ADDING CASES; 9.3 ADDING VARIABLES; PART 4 | DESCRIPTIVE STATISTICS PROCEDURES; CHAPTER 10 | FREQUENCIES; 10.1 OVERVIEW; 10.2 NUMERICAL EXAMPLE; 10.3 ANALYSIS SETUP: CATEGORICAL VARIABLES; 10.4 ANALYSIS OUTPUT: CATEGORICAL VARIABLES; 10.5 ANALYSIS SETUP: QUANTITATIVE VARIABLES; 10.6 ANALYSIS OUTPUT: QUANTITATIVE VARIABLES; CHAPTER 11 | DESCRIPTIVES; 11.1 OVERVIEW; 11.2 NUMERICAL EXAMPLE; 11.3 ANALYSIS SETUP; 11.4 ANALYSIS OUTPUT; CHAPTER 12 | EXPLORE; 12.1 OVERVIEW; 12.2 NUMERICAL EXAMPLE; 12.3 ANALYSIS SETUP; 12.4 ANALYSIS OUTPUT; PART 5 | SIMPLE DATA TRANSFORMATIONS
CHAPTER 13 | STANDARDIZING VARIABLES TO Z SCORES 13.1 OVERVIEW; 13.2 NUMERICAL EXAMPLE; 13.3 ANALYSIS SETUP; 13.4 ANALYSIS OUTPUT; 13.5 DESCRIPTIVE STATISTICS ON ZNEONEURO; 13.6 OTHER STANDARD SCORES; CHAPTER 14 | RECODING VARIABLES; 14.1 OVERVIEW; 14.2 NUMERICAL EXAMPLE; 14.3 ANALYSIS STRATEGY; 14.4 FREQUENCIES ANALYSIS; 14.5 RECODING AN ORIGINAL VARIABLE USING RANGES; 14.6 THE RESULTS OF THE RECODING; 14.7 RECODING AN ORIGINAL VARIABLE USING INDIVIDUAL VALUES; CHAPTER 15 | VISUAL BINNING; 15.1 OVERVIEW; 15.2 NUMERICAL EXAMPLE; 15.3 ANALYSIS SETUP; CHAPTER 16 | COMPUTING NEW VARIABLES
16.1 OVERVIEW
Record Nr. UNINA-9910463789603321
Meyers Lawrence S  
Hoboken, N.J., : Wiley, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui