Foundations of linear and generalized linear models / / Alan Agresti
| Foundations of linear and generalized linear models / / Alan Agresti |
| Autore | Agresti Alan |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] |
| Descrizione fisica | 1 online resource (472 p.) |
| Disciplina | 003/.74 |
| Collana | Wiley series in probability and statistics |
| Soggetto topico |
Mathematical analysis - Foundations
Linear models (Statistics) |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-118-73005-4
1-118-73030-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Foundations of Linear and Generalized Linear Models; Contents; Preface; Purpose of this book; Use as a textbook; Acknowledgments; 1 Introduction to Linear and Generalized Linear Models; 1.1 Components of a Generalized Linear Model; 1.1.1 Random Component of a GLM; 1.1.2 Linear Predictor of a GLM; 1.1.3 Link Function of a GLM; 1.1.4 A GLM with Identity Link Function is a "Linear Model"; 1.1.5 GLMs for Normal, Binomial, and Poisson Responses; 1.1.6 Advantages of GLMs versus Transforming the Data; 1.2 Quantitative/Qualitative Explanatory Variables and Interpreting Effects
1.2.1 Quantitative and Qualitative Variables in Linear Predictors1.2.2 Interval, Nominal, and Ordinal Variables; 1.2.3 Interpreting Effects in Linear Models; 1.3 Model Matrices and Model Vector Spaces; 1.3.1 Model Matrices Induce Model Vector Spaces; 1.3.2 Dimension of Model Space Equals Rank of Model Matrix; 1.3.3 Example: The One-Way Layout; 1.4 Identifiability and Estimability; 1.4.1 Identifiability of GLM Model Parameters; 1.4.2 Estimability in Linear Models; 1.5 Example: Using Software to Fit a GLM; 1.5.1 Example: Male Satellites for Female Horseshoe Crabs 1.5.2 Linear Model Using Weight to Predict Satellite Counts1.5.3 Comparing Mean Numbers of Satellites by Crab Color; Chapter Notes; Exercises; 2 Linear Models: Least Squares Theory; 2.1 Least Squares Model Fitting; 2.1.1 The Normal Equations and Least Squares Solution; 2.1.2 Hat Matrix and Moments of Estimators; 2.1.3 Bivariate Linear Model and Regression Toward the Mean; 2.1.4 Least Squares Solutions When X Does Not Have Full Rank; 2.1.5 Orthogonal Subspaces and Residuals; 2.1.6 Alternatives to Least Squares; 2.2 Projections of Data Onto Model Spaces; 2.2.1 Projection Matrices 2.2.2 Projection Matrices for Linear Model Spaces2.2.3 Example: The Geometry of a Linear Model; 2.2.4 Orthogonal Columns and Parameter Orthogonality; 2.2.5 Pythagoras's Theorem Applications for Linear Models; 2.3 Linear Model Examples: Projections and SS Decompositions; 2.3.1 Example: Null Model; 2.3.2 Example: Model for the One-way Layout; 2.3.3 Sums of Squares and ANOVA Table for One-Way Layout; 2.3.4 Example: Model for Two-Way Layout with Randomized Block Design; 2.4 Summarizing Variability in a Linear Model; 2.4.1 Estimating the Error Variance for a Linear Model 2.4.2 Sums of Squares: Error (SSE) and Regression (SSR)2.4.3 Effect on SSR and SSE of Adding Explanatory Variables; 2.4.4 Sequential and Partial Sums of Squares; 2.4.5 Uncorrelated Predictors: Sequential SS = Partial SS = SSR Component; 2.4.6 R-Squared and the Multiple Correlation; 2.5 Residuals, Leverage, and Influence; 2.5.1 Residuals and Fitted Values Are Uncorrelated; 2.5.2 Plots of Residuals; 2.5.3 Standardized and Studentized Residuals; 2.5.4 Leverages from Hat Matrix Measure Potential Influence; 2.5.5 Influential Points for Least Squares Fits 2.5.6 Adjusting for Explanatory Variables by Regressing Residuals |
| Record Nr. | UNINA-9910460533503321 |
Agresti Alan
|
||
| Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Foundations of linear and generalized linear models / / Alan Agresti
| Foundations of linear and generalized linear models / / Alan Agresti |
| Autore | Agresti Alan |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] |
| Descrizione fisica | 1 online resource (472 pages) : illustrations |
| Disciplina | 003/.74 |
| Collana | Wiley series in probability and statistics |
| Soggetto topico |
Linear models (Statistics)
Mathematical analysis - Foundations |
| ISBN |
1-118-73005-4
1-118-73030-5 |
| Classificazione | MAT029000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910795964903321 |
Agresti Alan
|
||
| Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Foundations of linear and generalized linear models / / Alan Agresti
| Foundations of linear and generalized linear models / / Alan Agresti |
| Autore | Agresti Alan |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] |
| Descrizione fisica | 1 online resource (472 pages) : illustrations |
| Disciplina | 003/.74 |
| Collana | Wiley series in probability and statistics |
| Soggetto topico |
Linear models (Statistics)
Mathematical analysis - Foundations |
| ISBN |
1-118-73005-4
1-118-73030-5 |
| Classificazione | MAT029000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910820269703321 |
Agresti Alan
|
||
| Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Linear systems / / Henri Bourles
| Linear systems / / Henri Bourles |
| Autore | Bourles Henri |
| Pubbl/distr/stampa | London, U.K., : ISTE |
| Descrizione fisica | 1 online resource (594 p.) |
| Disciplina | 003/.74 |
| Collana | Control systems, robotics and manufacturing series |
| Soggetto topico | Linear systems |
| ISBN |
1-118-61998-6
1-299-31540-2 1-118-61973-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Table of Contents; 7.2.1. Invariant zeros and transmission zeros; 12.3.1. Fourier transforms of distributions; Preface; Chapter 1. Physical Models; 1.1.Electric system; 1.1.1.Mesh rule; 1.1.2. Nodal rule; 1.2. Mechanical system; 1.2.1. Fundamental principle of dynamics; 1.2.2. Lagrangian formalism; 1.3. Electromechanical system; 1.4.Thermal hydraulic system; 1.4.1. Balance in volume; 1.4.2. Exit rate: Torricelli's formula; 1.4.3. Energy balance; 1.5.Exercises; Chapter 2. Systems Theory (I); 2.1. Introductory example
2.2. General representation and properties2.2.1.Variables; 2.2.2.Equations; 2.2.3.Time-invariant systems; 2.2.4. Linear systems; 2.2.5. Linear time-invariant systems; 2.2.6. Equilibrium point; 2.2.7. Linearization around an equilibrium point; 2.3. Control systems; 2.3.1. Inputs; 2.3.2. Outputs; 2.3.3. Latent variables; 2.3.4. Classification of systems; 2.3.5. Rosenbrock representation; 2.3.6. State-space representation; 2.3.7. Poles and order of a system; 2.3.8. Free response and behavior; 2.4. Transfer matrix; 2.4.1. Laplace transforms; 2.4.2. Transfer matrix: definition; 2.4.3. Examples 2.4.4. Transmission poles and zeros2.4.5. *MacMillan poles and zeros; 2.4.6. Minimal systems; 2.4.7. Transmission poles and zeros at infinity; 2.5. Responses of a control system; 2.5.1. Input-output operator; 2.5.2. Impulse and step responses; 2.5.3. Proper, biproper and strictly proper systems; 2.5.4. Frequency response; 2.6. Diagrams and their algebra; 2.6.1. Diagram of a control system; 2.6.2. General algebra of diagrams; 2.6.3. Specificity of linear systems; 2.7. Exercises; Chapter 3. Open-Loop Systems; 3.1. Stability and static gain; 3.1.1. Stability; 3.1.2. Static gain 3.2. First-order systems3.2.1.Transfer function; 3.2.2. Time domain responses; 3.2.3. Frequency response; 3.2.4. Bode plot; 3.2.5. Case of an unstable first-order system; 3.3. Second-order systems; 3.3.1.Transfer function; 3.3.2. Time domain responses; 3.3.3. Bode plot; 3.4. Systems of any order; 3.4.1. Stability; 3.4.2. Decomposition of the transfer function; 3.4.3. Asymptotic Bode plot; 3.4.4. Amplitude/phase relation; 3.5. Time-delay systems; 3.5.1. Left formtime-delay systems; 3.5.2. Transfer function; 3.5.3. Bode plot; 3.5.4. Example: first-order time-delay system 3.5.5. Approximations of a time-delay system3.6. Exercises; Chapter 4. Closed-Loop Systems; 4.1. Closed-loop stability; 4.1.1. Standard feedback system; 4.1.2. Closed-loop equations; 4.1.3. Stability of a closed-loop system; 4.1.4. Nyquist criterion; 4.1.5. Small gain theorem; 4.2. Robustness and performance; 4.2.1. Generalities; 4.2.2. Robustness margins; 4.2.3. Use of the Nichols chart; 4.2.4. Robustness against neglected dynamics; 4.2.5. Performance; 4.2.6. Sensitivity to measurement noise; 4.2.7. Loopshaping of L(s); 4.2.8. Degradation of robustness/performance trade-off 4.2.9. *Extension to the MIMOcase |
| Record Nr. | UNINA-9911018972903321 |
Bourles Henri
|
||
| London, U.K., : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Linear systems [[electronic resource] /] / Henri Bourlès
| Linear systems [[electronic resource] /] / Henri Bourlès |
| Autore | Bourlès Henri |
| Pubbl/distr/stampa | London, U.K., : ISTE |
| Descrizione fisica | 1 online resource (594 p.) |
| Disciplina |
003.74
003/.74 670.427 |
| Collana | Control systems, robotics and manufacturing series |
| Soggetto topico | Linear systems |
| ISBN |
1-118-61998-6
1-299-31540-2 1-118-61973-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Table of Contents; 7.2.1. Invariant zeros and transmission zeros; 12.3.1. Fourier transforms of distributions; Preface; Chapter 1. Physical Models; 1.1.Electric system; 1.1.1.Mesh rule; 1.1.2. Nodal rule; 1.2. Mechanical system; 1.2.1. Fundamental principle of dynamics; 1.2.2. Lagrangian formalism; 1.3. Electromechanical system; 1.4.Thermal hydraulic system; 1.4.1. Balance in volume; 1.4.2. Exit rate: Torricelli's formula; 1.4.3. Energy balance; 1.5.Exercises; Chapter 2. Systems Theory (I); 2.1. Introductory example
2.2. General representation and properties2.2.1.Variables; 2.2.2.Equations; 2.2.3.Time-invariant systems; 2.2.4. Linear systems; 2.2.5. Linear time-invariant systems; 2.2.6. Equilibrium point; 2.2.7. Linearization around an equilibrium point; 2.3. Control systems; 2.3.1. Inputs; 2.3.2. Outputs; 2.3.3. Latent variables; 2.3.4. Classification of systems; 2.3.5. Rosenbrock representation; 2.3.6. State-space representation; 2.3.7. Poles and order of a system; 2.3.8. Free response and behavior; 2.4. Transfer matrix; 2.4.1. Laplace transforms; 2.4.2. Transfer matrix: definition; 2.4.3. Examples 2.4.4. Transmission poles and zeros2.4.5. *MacMillan poles and zeros; 2.4.6. Minimal systems; 2.4.7. Transmission poles and zeros at infinity; 2.5. Responses of a control system; 2.5.1. Input-output operator; 2.5.2. Impulse and step responses; 2.5.3. Proper, biproper and strictly proper systems; 2.5.4. Frequency response; 2.6. Diagrams and their algebra; 2.6.1. Diagram of a control system; 2.6.2. General algebra of diagrams; 2.6.3. Specificity of linear systems; 2.7. Exercises; Chapter 3. Open-Loop Systems; 3.1. Stability and static gain; 3.1.1. Stability; 3.1.2. Static gain 3.2. First-order systems3.2.1.Transfer function; 3.2.2. Time domain responses; 3.2.3. Frequency response; 3.2.4. Bode plot; 3.2.5. Case of an unstable first-order system; 3.3. Second-order systems; 3.3.1.Transfer function; 3.3.2. Time domain responses; 3.3.3. Bode plot; 3.4. Systems of any order; 3.4.1. Stability; 3.4.2. Decomposition of the transfer function; 3.4.3. Asymptotic Bode plot; 3.4.4. Amplitude/phase relation; 3.5. Time-delay systems; 3.5.1. Left formtime-delay systems; 3.5.2. Transfer function; 3.5.3. Bode plot; 3.5.4. Example: first-order time-delay system 3.5.5. Approximations of a time-delay system3.6. Exercises; Chapter 4. Closed-Loop Systems; 4.1. Closed-loop stability; 4.1.1. Standard feedback system; 4.1.2. Closed-loop equations; 4.1.3. Stability of a closed-loop system; 4.1.4. Nyquist criterion; 4.1.5. Small gain theorem; 4.2. Robustness and performance; 4.2.1. Generalities; 4.2.2. Robustness margins; 4.2.3. Use of the Nichols chart; 4.2.4. Robustness against neglected dynamics; 4.2.5. Performance; 4.2.6. Sensitivity to measurement noise; 4.2.7. Loopshaping of L(s); 4.2.8. Degradation of robustness/performance trade-off 4.2.9. *Extension to the MIMOcase |
| Record Nr. | UNINA-9910139246903321 |
Bourlès Henri
|
||
| London, U.K., : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Linear systems [[electronic resource] /] / Henri Bourlès
| Linear systems [[electronic resource] /] / Henri Bourlès |
| Autore | Bourlès Henri |
| Pubbl/distr/stampa | London, U.K., : ISTE |
| Descrizione fisica | 1 online resource (594 p.) |
| Disciplina |
003.74
003/.74 670.427 |
| Collana | Control systems, robotics and manufacturing series |
| Soggetto topico | Linear systems |
| ISBN |
1-118-61998-6
1-299-31540-2 1-118-61973-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Copyright Page; Table of Contents; 7.2.1. Invariant zeros and transmission zeros; 12.3.1. Fourier transforms of distributions; Preface; Chapter 1. Physical Models; 1.1.Electric system; 1.1.1.Mesh rule; 1.1.2. Nodal rule; 1.2. Mechanical system; 1.2.1. Fundamental principle of dynamics; 1.2.2. Lagrangian formalism; 1.3. Electromechanical system; 1.4.Thermal hydraulic system; 1.4.1. Balance in volume; 1.4.2. Exit rate: Torricelli's formula; 1.4.3. Energy balance; 1.5.Exercises; Chapter 2. Systems Theory (I); 2.1. Introductory example
2.2. General representation and properties2.2.1.Variables; 2.2.2.Equations; 2.2.3.Time-invariant systems; 2.2.4. Linear systems; 2.2.5. Linear time-invariant systems; 2.2.6. Equilibrium point; 2.2.7. Linearization around an equilibrium point; 2.3. Control systems; 2.3.1. Inputs; 2.3.2. Outputs; 2.3.3. Latent variables; 2.3.4. Classification of systems; 2.3.5. Rosenbrock representation; 2.3.6. State-space representation; 2.3.7. Poles and order of a system; 2.3.8. Free response and behavior; 2.4. Transfer matrix; 2.4.1. Laplace transforms; 2.4.2. Transfer matrix: definition; 2.4.3. Examples 2.4.4. Transmission poles and zeros2.4.5. *MacMillan poles and zeros; 2.4.6. Minimal systems; 2.4.7. Transmission poles and zeros at infinity; 2.5. Responses of a control system; 2.5.1. Input-output operator; 2.5.2. Impulse and step responses; 2.5.3. Proper, biproper and strictly proper systems; 2.5.4. Frequency response; 2.6. Diagrams and their algebra; 2.6.1. Diagram of a control system; 2.6.2. General algebra of diagrams; 2.6.3. Specificity of linear systems; 2.7. Exercises; Chapter 3. Open-Loop Systems; 3.1. Stability and static gain; 3.1.1. Stability; 3.1.2. Static gain 3.2. First-order systems3.2.1.Transfer function; 3.2.2. Time domain responses; 3.2.3. Frequency response; 3.2.4. Bode plot; 3.2.5. Case of an unstable first-order system; 3.3. Second-order systems; 3.3.1.Transfer function; 3.3.2. Time domain responses; 3.3.3. Bode plot; 3.4. Systems of any order; 3.4.1. Stability; 3.4.2. Decomposition of the transfer function; 3.4.3. Asymptotic Bode plot; 3.4.4. Amplitude/phase relation; 3.5. Time-delay systems; 3.5.1. Left formtime-delay systems; 3.5.2. Transfer function; 3.5.3. Bode plot; 3.5.4. Example: first-order time-delay system 3.5.5. Approximations of a time-delay system3.6. Exercises; Chapter 4. Closed-Loop Systems; 4.1. Closed-loop stability; 4.1.1. Standard feedback system; 4.1.2. Closed-loop equations; 4.1.3. Stability of a closed-loop system; 4.1.4. Nyquist criterion; 4.1.5. Small gain theorem; 4.2. Robustness and performance; 4.2.1. Generalities; 4.2.2. Robustness margins; 4.2.3. Use of the Nichols chart; 4.2.4. Robustness against neglected dynamics; 4.2.5. Performance; 4.2.6. Sensitivity to measurement noise; 4.2.7. Loopshaping of L(s); 4.2.8. Degradation of robustness/performance trade-off 4.2.9. *Extension to the MIMOcase |
| Record Nr. | UNINA-9910829864903321 |
Bourlès Henri
|
||
| London, U.K., : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||