top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications of linear and nonlinear models : fixed effects, random effects, and total least squares / / Joseph L. Awange, Erik W. Grafarend, Silvelyn Zwanzig
Applications of linear and nonlinear models : fixed effects, random effects, and total least squares / / Joseph L. Awange, Erik W. Grafarend, Silvelyn Zwanzig
Autore Awange Joseph L. <1969->
Edizione [2nd ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (1127 pages)
Disciplina 550
Collana Springer geophysics
Soggetto topico Geophysics
Linear models (Statistics)
Mathematical models
Geofísica
Models lineals (Estadística)
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-94598-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Contents -- Preface to the First Edition -- Preface to the Second Edition -- Chapter 1 The First Problem of Algebraic Regression -- 1-1 Introduction -- 1-11 The Front Page Example -- 1-12 The Front Page Example: Matrix Algebra -- 1-13 The Front Page Example: MINOS, Horizontal Rank Partitioning -- 1-14 The Range R(f) and the Kernel N(f) -- 1-15 The Interpretation of MINOS -- 1-2 Minimum Norm Solution (MINOS) -- 1-21 A Discussion of the Metric of the Parameter Space X -- 1-22 An Alternative Choice of the Metric of the Parameter Space X -- 1-23 Gx-MINOS and Its Generalized Inverse -- 1-24 Eigenvalue Decomposition of Gx-MINOS: Canonical MINOS -- 1-3 Case Study -- 1-31 Fourier Series -- 1-32 Fourier-Legendre Series -- 1-33 Nyquist Frequency for Spherical Data -- 1-4 Special Nonlinear Models -- 1-41 Taylor Polynomials, Generalized Newton Iteration -- 1-42 Linearized Models with Datum Defect -- 1-5 Notes -- Chapter 2 The First Problem of Probabilistic Regression: The Bias Problem -- 2-1 Linear Uniformly Minimum Bias Estimator (LUMBE) -- 2-2 The Equivalence Theorem of Gx-MINOS and S-LUMBE -- 2-3 Example -- Chapter 3 The Second Problem of Algebraic Regression -- 3-1 Introduction -- 3-11 The Front Page Example -- 3-12 The Front Page Example in Matrix Algebra -- 3-13 Least Squares Solution of the Front Page Example by Means of Vertical Rank Partitioning -- 3-14 The RangeR(f) and the Kernel N(f), Interpretation of "LESS" by Three Partitionings -- 3-2 The Least Squares Solution: "LESS" -- 3-21 A Discussion of the Metric of the Parameter Space X -- 3-22 Alternative Choices of the Metric of the Observation Y -- 3-23 Gx-LESS and Its Generalized Inverse -- 3-24 Eigenvalue Decomposition of Gy-LESS: Canonical LESS -- 3-3 Case Study -- 3-31 Canonical Analysis of the Hat Matrix, Partial Redundancies, High Leverage Points.
3-32 Multilinear Algebra, "Join" and "Meet", the Hodge Star Operator -- 3-33 From A to B: Latent Restrictions, Grassmann Coordinates, Plücker Coordinates -- 3-34 From B to A: Latent Parametric Equations, Dual Grassmann Coordinates, Dual Plücker Coordinates -- 3-35 Break Points -- 3-4 Special Linear and Nonlinear Models: A Family of Means for Direct Observations -- 3-5 A Historical Note on C.F. Gauss and A.M. Legendre -- Chapter 4 The Second Problem of Probabilistic Regression -- 4-1 Introduction -- 4-11 The Front Page Example -- 4-12 Estimators of Type BLUUE and BIQUUE of the Front Page Example -- 4-13 BLUUE and BIQUUE of the Front Page Example, Sample Median, Median Absolute Deviation -- 4-14 Alternative Estimation Maximum Likelihood (MALE) -- 4-2 Setup of the Best Linear Uniformly Unbiased Estimator -- 4-21 The Best Linear Uniformly Unbiased Estimation ^ξ of ξ : Σy-BLUUE -- 4-22 The Equivalence Theorem of Gy-LESS and Σy-BLUUE -- 4-3 Setup of the Best Invariant Quadratic Uniformly Unbiased Estimator -- 4-31 Block Partitioning of the Dispersion Matrix and Linear Space Generated by Variance-Covariance Components -- 4-32 Invariant Quadratic Estimation of Variance-Covariance Components of Type IQE -- 4-33 Invariant Quadratic Uniformly Unbiased Estimations of Variance-Covariance Components of Type IQUUE -- 4-34 Invariant Quadratic Uniformly Unbiased Estimationsof One Variance Component (IQUUE) from Σy-BLUUE: HIQUUE -- 4-35 Invariant Quadratic Uniformly Unbiased Estimators of Variance Covariance Components of Helmert Type: HIQUUE Versus HIQE -- 4-36 Best Quadratic Uniformly Unbiased Estimations of One Variance Component: BIQUUE -- 4-37 Simultaneous Determination of First Moment and the Second Central Moment, Inhomogeneous Multilinear Estimation, the E - D Correspondence, Bayes Designwith Moment Estimations.
Chapter 5 The Third Problem of Algebraic Regression -- 5-1 Introduction -- 5-11 The Front Page Example -- 5-12 The Front Page Example in Matrix Algebra -- 5-13 Minimum Norm: Least Squares Solution of the Front Page Example by Means of Additive Rank Partitioning -- 5-14 Minimum Norm: Least Squares Solution of the Front Page Example by Means of Multiplicative Rank Partitioning -- 5-15 The Range R(f) and the Kernel N(f) Interpretation of "MINOLESS" by Three Partitionings -- 5-2 MINOLESS and Related Solutions Like Weighted Minimum Norm-Weighted Least Squares Solutions -- 5-21 The Minimum Norm-Least Squares Solution: "MINOLESS" -- 5-22 (Gx, Gy)-MINOS and Its Generalized Inverse -- 5-23 Eigenvalue Decomposition of (Gx, Gy)-MINOLESS -- 5-24 Notes -- 5-3 The Hybrid Approximation Solution: α-HAPS and Tykhonov-Phillips Regularization -- Chapter 6 The Third Problem of Probabilistic Regression -- 6-1 Setup of the Best Linear Minimum Bias Estimator of Type BLUMBE -- 6-11 Definitions, Lemmas and Theorems -- 6-12 The First Example: BLUMBE Versus BLE, BIQUUE Versus BIQE, Triangular Leveling Network -- 6-2 Setup of the Best Linear Estimators of Type hom BLE, hom S-BLE and hom a-BLE for Fixed Effects -- 6-3 Continuous Networks -- 6-31 Continuous Networks of Second Derivatives Type -- Chapter 7 Overdetermined System of Nonlinear Equations on Curved Manifolds -- 7-1 Introduction -- 7-2 Minimal Geodesic Distance: MINGEODISC -- 7-3 Special Models: From the Circular Normal Distribution to the Oblique Normal Distribution -- 7-31 A Historical Note of the von Mises Distribution -- 7-32 Oblique Map Projection -- 7-33 A Note on the Angular Metric -- 7-4 Case Study -- References -- Chapter 8 The Fourth Problem of Probabilistic Regression -- 8-1 The Random Effect Model -- 8-2 Examples.
Chapter 9 The Fifth Problem of Algebraic Regression: The System of Conditional Equations: Homogeneous and Inhomogeneous Equations: {By = Bi versus -c + By = Bi} -- 9-1 Gy-LESS of a System of a Inconsistent Homogeneous Conditional Equations -- 9-2 Solving a System of Inconsistent Inhomogeneous Conditional Equations -- 9-3 Examples -- Chapter 10 The Fifth Problem of Probabilistic Regression -- 10-1 Inhomogeneous General Linear Gauss-Markov Model (Fixed Effects and Random Effects) -- 10-2 Explicit Representations of Errors in the General Gauss-Markov Model with Mixed Effects -- 10-3 An Example for Collocation -- 10-4 Comments -- Chapter 11 The sixth problem of probabilistic regression -- 11-1 Introduction -- 11-2 The Errors-in-Variables Model and its Symmetry -- 11-3 Least Squares in Linear Errors-in-Variables Models -- 11-31 Naive Least Squares -- 11-32 Total Least Squares TLS -- 11-4 SIMEX and SYMEX -- 11-41 SIMEX -- 11-42 SYMEX -- 11-5 Datum Transformation -- 11-6 Nonlinear Errors-in-Variables Models -- Chapter 12 The Nonlinear Problem of the 3d Datum Transformation and the Procrustes Algorithm -- 12-1 The 3d Datum Transformation and the Procrustes Algorithm -- 12-2 The Variance: Covariance Matrix of the Error Matrix E -- 12-3 References -- Chapter 13 The Sixth Problem of Generalized Algebraic Regression -- 13-1 Variance-Covariance-Component Estimation in the Linear Model Ax + ε = y, y ∉ R(A) -- 13-2 Variance-Covariance-Component Estimation in the Linear Model Bε = By -c, By ∉ R(A) + c -- 13-3 Variance-Covariance-Component Estimation in theLinear Model Ax + ε + Bε = By -c, By ∉ R(A) + c -- 13-4 The Block Structure of Dispersion Matrix D{y} -- Chapter 14 Special Problems of Algebraic Regression and Stochastic Estimation -- 14-1 The Multivariate Gauss-Markov Model: A Special Problem of Probabilistic Regression -- 14-2 n-Way Classification Models.
14-21 A First Example: 1-Way Classification -- 14-22 A Second Example: 2-Way Classification Without Interaction -- 14-23 A Third Example: 2-Way Classification with Interaction -- 14-24 Higher Classifications with Interaction -- 14-3 Dynamical Systems -- Chapter 15 Systems of equations: Hybrid algebraic-numeric solutions -- 15-1 Algebraic, numeric, and hybrid algebraic-numeric -- 15-2 Algebraic solutions: Background -- 15-3 Nonlinear systems of equations: Algebraic methods -- 15-31 Nonlinear Gauss-Markov model: Algebraic solution -- 15-32 Adjustment of the combinatorial subsets -- 15-4 Examples -- 15-5 Hybrid algebraic-numeric methods -- 15-6 Notes -- Chapter 16 Integer Least Squares -- 16-1 Introductory remarks -- 16-2 Model for Positioning -- 16-3 Mixed Integer Linear Model -- 16-4 Integer Least Squares -- 16-41 Simple Rounding Solution -- 16-42 Main Steps -- 16-43 The Closest Vector Problem (CVP) -- 16-44 Reduction -- 16-45 Gram-Schmidt Method -- 16-46 The LLL Algorithm -- 16-47 Babai's Rounding Technique -- Chapter 17 Bayesian Inference -- 17-1 Introduction -- 17-2 Principle of Bayesian Analysis -- 17-21 Sequential Analysis -- 17-22 Hierarchical Bayes Models -- 17-23 Choice of Prior -- 17-24 Bayesian Inference -- 17-3 Univariate Linear Model -- 17-31 Model Assumptions -- 17-32 Normal-inverse-gamma Distribution -- 17-33 Noninformative Prior -- 17-34 Conjugate Prior -- 17-35 Regularized Estimators -- 17-4 Mixed Model -- 17-41 Prior Distribution -- 17-42 Posterior Distribution -- 17-5 Multivariate Linear Model -- 17-51 Normal-inverse-Wishart Distribution -- 17-52 Noninformative Prior -- 17-53 Informative Prior -- 17-6 Computer Intensive Methods -- 17-61 Independent Monte Carlo (MC) -- 17-62 Importance Sampling -- 17-63 Markov Chain Monte Carlo -- 17-64 Gibbs Sampling -- 17-65 Rejection Algorithm -- 17-66 Approximative Bayesian Computation (ABC).
Appendix A Tensor Algebra, Linear Algebra, Matrix Algebra, Multilinear Algebra.
Record Nr. UNISA-996495171203316
Awange Joseph L. <1969->  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Applications of Linear and Nonlinear Models : Fixed Effects, Random Effects, and Total Least Squares / / by Erik W. Grafarend, Silvelyn Zwanzig, Joseph L. Awange
Applications of Linear and Nonlinear Models : Fixed Effects, Random Effects, and Total Least Squares / / by Erik W. Grafarend, Silvelyn Zwanzig, Joseph L. Awange
Autore Awange Joseph L. <1969->
Edizione [2nd ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (1127 pages)
Disciplina 550
550.015118
Collana Springer Geophysics
Soggetto topico Geology
Algebras, Linear
Statistics
Surveying
Linear Algebra
Statistical Theory and Methods
Geofísica
Models lineals (Estadística)
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 9783030945985
3030945987
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The First Problem of Algebraic Regression -- The First problem of probabilistic regression - the bias problem -- The second problem of algebraic regression - inconsistent system of linear observational equations -- The second problem of probabilistic regression- special Gauss-Markov model without datum defect - Setup of BLUUE for the moments of first order and of BIQUUE for the central moment of second order -- The third problem of probabilistic regression - special Gauss - Markov model with datum problem -Setup of BLUMBE and BLE for the moments of first order and of BIQUUE and BIQE for the central moment of second order.
Record Nr. UNINA-9910616381603321
Awange Joseph L. <1969->  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui