Scale-up [[electronic resource] ] : Modellübertragung in der Verfahrenstechnik / / Marko Zlokarnik |
Autore | Zlokarnik Marko <1931-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Weinheim [Germany] ; ; New York, : Wiley-VCH, c2005 |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina | 670.42 |
Soggetto topico |
Manufacturing processes
Dimensional analysis |
Soggetto genere / forma | Electronic books. |
ISBN |
3-527-66046-1
1-280-66339-1 9786613640321 3-527-66098-4 3-527-60765-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Title Page; Inhaltsverzeichnis; Beispiel 46: Dimensionierung von Reaktoren fuumalr katalytische Prozessein der Petrochemie; Beispiel 47: Dimensionierung eines Rohrreaktors mit Duumalsenmischerzur Durchfuumalhrung einer konkurrierenden Folgereaktion; Beispiel 48: Stofftransportlimitierung der Reaktionsgeschwindigkeitvon schnellen chemischen Reaktionen im heterogenenStoffsystem Gas/Fluumalssigkeit; Vorwort zur 1. Auflage; Vorwort zur 2. Auflage; Symbolverzeichnis; 1 Einfuumalhrungere; 2 Dimensionsanalyse; 2.1 Grundlage; 2.2 Was ist eine Dimension?; 2.3 Was ist eine physikalische Groumalbe?
2.4 Grundgroumalben und abgeleitete Groumalben Dimensionskonstanten; 2.5 Dimensionssysteme; 2.6 Dimensionshomogenitaumalt einer physikalischen Beziehung; Beispiel 1: Wovon haumalngt die Schwingungsperiode teta eines Pendels ab?; Beispiel 2 Wovon haumalngt die Falldauer teta eines Koumalrpers im homogenenGravitationsfeld ab (Gesetz des freien Falls)? Wovon haumalngt dieAusflubgeschwindigkeit v einer Fluumalssigkeit aus einem Gefaumalbmit Oumalffnung ab (Torricellische Ausflubformel)?; Beispiel 3: Zusammenhang zwischen der Groumalbe des Bratens undder Bratzeit; 2.7 Das pi-Theorem 3 Erarbeitung von pi-Saumaltzen mittels MatrizenumformungBeispiel 4: Druckverlust eines homogenen Fluids im geraden glatten Rohr(ohne Beruumalcksichtigung der Einlaufeffekte); 4 Mabstabsinvarianz des pi-Raumes - Grundlage der Modelluumalbertragung; Beispiel 5: Waumalrmeuumalbergang von geheizten Draaumalhten und Rohren anden Luftstrom....; 5 Wichtige Hinweise zur Aufstellung der Relevanzliste des Problems; 5.1 Behandlung von universellen physikalischen Konstanten; 5.2 Einfuumalhrung von Zwischengroumalben Beispiel 6: Mischzeit-Charakteristik bei Gemischen mit Dichte- und Viskositaumaltsunterschieden.....Beispiel 7: Flotationsvorgang bei der Druckentspannungsflotation; 6 Wichtige Aspekte bei der Modelluumalbertragung; 6.1 Modelluumalbertragung bei Nichtverfuumalgbarkeit von Modell-Stoffsystemen; Beispiel 8: Auslegungsunterlagen fuumalr mechanische Schaumzerstoumalrer...; 6.2 Modelluumalbertragung bei partieller Aumalhnlichkeit; Beispiel 9: Schleppwiderstand eines Schiffskoumalrpers Beispiel 10: Faustregeln beim Dimensionieren von Reaktionsapparaten:Volumenbezogene Ruuamlhrleistung und Lehrrohrgeschwindigkeitals Dimensionierungskriterien fuumalr Ruumalhrbehaumallter bzw. fuumalr Blasensaumalulen7 Vorlaumalufige Bestandsaufnahme; 7.1 Vorteile der Dimensionsanalyse; 7.2 Anwendbarkeitsbereich der Dimensionsanalyse; 7.3 Versuchstechnik bei der Modellouamlbertragung; 7.4 Versuchsdurchfuumalhrung unter Mabstabsaumalnderung; 8 Dimensionsanalytische Behandlung veraumalnderlicher Stoffgroumalben; 8.1 Wozu ist diese Betrachtung wichtig? 8.2 Dimensionslose Darstellung einer Stoff-Funktion |
Record Nr. | UNINA-9910143961903321 |
Zlokarnik Marko <1931-> | ||
Weinheim [Germany] ; ; New York, : Wiley-VCH, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Scale-up [[electronic resource] ] : Modellübertragung in der Verfahrenstechnik / / Marko Zlokarnik |
Autore | Zlokarnik Marko <1931-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Weinheim [Germany] ; ; New York, : Wiley-VCH, c2005 |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina | 670.42 |
Soggetto topico |
Manufacturing processes
Dimensional analysis |
ISBN |
3-527-66046-1
1-280-66339-1 9786613640321 3-527-66098-4 3-527-60765-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Title Page; Inhaltsverzeichnis; Beispiel 46: Dimensionierung von Reaktoren fuumalr katalytische Prozessein der Petrochemie; Beispiel 47: Dimensionierung eines Rohrreaktors mit Duumalsenmischerzur Durchfuumalhrung einer konkurrierenden Folgereaktion; Beispiel 48: Stofftransportlimitierung der Reaktionsgeschwindigkeitvon schnellen chemischen Reaktionen im heterogenenStoffsystem Gas/Fluumalssigkeit; Vorwort zur 1. Auflage; Vorwort zur 2. Auflage; Symbolverzeichnis; 1 Einfuumalhrungere; 2 Dimensionsanalyse; 2.1 Grundlage; 2.2 Was ist eine Dimension?; 2.3 Was ist eine physikalische Groumalbe?
2.4 Grundgroumalben und abgeleitete Groumalben Dimensionskonstanten; 2.5 Dimensionssysteme; 2.6 Dimensionshomogenitaumalt einer physikalischen Beziehung; Beispiel 1: Wovon haumalngt die Schwingungsperiode teta eines Pendels ab?; Beispiel 2 Wovon haumalngt die Falldauer teta eines Koumalrpers im homogenenGravitationsfeld ab (Gesetz des freien Falls)? Wovon haumalngt dieAusflubgeschwindigkeit v einer Fluumalssigkeit aus einem Gefaumalbmit Oumalffnung ab (Torricellische Ausflubformel)?; Beispiel 3: Zusammenhang zwischen der Groumalbe des Bratens undder Bratzeit; 2.7 Das pi-Theorem 3 Erarbeitung von pi-Saumaltzen mittels MatrizenumformungBeispiel 4: Druckverlust eines homogenen Fluids im geraden glatten Rohr(ohne Beruumalcksichtigung der Einlaufeffekte); 4 Mabstabsinvarianz des pi-Raumes - Grundlage der Modelluumalbertragung; Beispiel 5: Waumalrmeuumalbergang von geheizten Draaumalhten und Rohren anden Luftstrom....; 5 Wichtige Hinweise zur Aufstellung der Relevanzliste des Problems; 5.1 Behandlung von universellen physikalischen Konstanten; 5.2 Einfuumalhrung von Zwischengroumalben Beispiel 6: Mischzeit-Charakteristik bei Gemischen mit Dichte- und Viskositaumaltsunterschieden.....Beispiel 7: Flotationsvorgang bei der Druckentspannungsflotation; 6 Wichtige Aspekte bei der Modelluumalbertragung; 6.1 Modelluumalbertragung bei Nichtverfuumalgbarkeit von Modell-Stoffsystemen; Beispiel 8: Auslegungsunterlagen fuumalr mechanische Schaumzerstoumalrer...; 6.2 Modelluumalbertragung bei partieller Aumalhnlichkeit; Beispiel 9: Schleppwiderstand eines Schiffskoumalrpers Beispiel 10: Faustregeln beim Dimensionieren von Reaktionsapparaten:Volumenbezogene Ruuamlhrleistung und Lehrrohrgeschwindigkeitals Dimensionierungskriterien fuumalr Ruumalhrbehaumallter bzw. fuumalr Blasensaumalulen7 Vorlaumalufige Bestandsaufnahme; 7.1 Vorteile der Dimensionsanalyse; 7.2 Anwendbarkeitsbereich der Dimensionsanalyse; 7.3 Versuchstechnik bei der Modellouamlbertragung; 7.4 Versuchsdurchfuumalhrung unter Mabstabsaumalnderung; 8 Dimensionsanalytische Behandlung veraumalnderlicher Stoffgroumalben; 8.1 Wozu ist diese Betrachtung wichtig? 8.2 Dimensionslose Darstellung einer Stoff-Funktion |
Record Nr. | UNINA-9910831047303321 |
Zlokarnik Marko <1931-> | ||
Weinheim [Germany] ; ; New York, : Wiley-VCH, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Scale-up : Modellubertragung in der Verfahrenstechnik / / Marko Zlokarnik |
Autore | Zlokarnik Marko <1931-> |
Edizione | [2., vollstandig uberarbeitete und erweiterte Aufl.] |
Pubbl/distr/stampa | Weinheim [Germany] ; ; New York, : Wiley-VCH, c2005 |
Descrizione fisica | 1 online resource (297 p.) |
Disciplina | 670.42 |
Soggetto topico |
Manufacturing processes
Dimensional analysis |
ISBN |
3-527-66046-1
1-280-66339-1 9786613640321 3-527-66098-4 3-527-60765-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ger |
Nota di contenuto |
Title Page; Inhaltsverzeichnis; Beispiel 46: Dimensionierung von Reaktoren fuumalr katalytische Prozessein der Petrochemie; Beispiel 47: Dimensionierung eines Rohrreaktors mit Duumalsenmischerzur Durchfuumalhrung einer konkurrierenden Folgereaktion; Beispiel 48: Stofftransportlimitierung der Reaktionsgeschwindigkeitvon schnellen chemischen Reaktionen im heterogenenStoffsystem Gas/Fluumalssigkeit; Vorwort zur 1. Auflage; Vorwort zur 2. Auflage; Symbolverzeichnis; 1 Einfuumalhrungere; 2 Dimensionsanalyse; 2.1 Grundlage; 2.2 Was ist eine Dimension?; 2.3 Was ist eine physikalische Groumalbe?
2.4 Grundgroumalben und abgeleitete Groumalben Dimensionskonstanten; 2.5 Dimensionssysteme; 2.6 Dimensionshomogenitaumalt einer physikalischen Beziehung; Beispiel 1: Wovon haumalngt die Schwingungsperiode teta eines Pendels ab?; Beispiel 2 Wovon haumalngt die Falldauer teta eines Koumalrpers im homogenenGravitationsfeld ab (Gesetz des freien Falls)? Wovon haumalngt dieAusflubgeschwindigkeit v einer Fluumalssigkeit aus einem Gefaumalbmit Oumalffnung ab (Torricellische Ausflubformel)?; Beispiel 3: Zusammenhang zwischen der Groumalbe des Bratens undder Bratzeit; 2.7 Das pi-Theorem 3 Erarbeitung von pi-Saumaltzen mittels MatrizenumformungBeispiel 4: Druckverlust eines homogenen Fluids im geraden glatten Rohr(ohne Beruumalcksichtigung der Einlaufeffekte); 4 Mabstabsinvarianz des pi-Raumes - Grundlage der Modelluumalbertragung; Beispiel 5: Waumalrmeuumalbergang von geheizten Draaumalhten und Rohren anden Luftstrom....; 5 Wichtige Hinweise zur Aufstellung der Relevanzliste des Problems; 5.1 Behandlung von universellen physikalischen Konstanten; 5.2 Einfuumalhrung von Zwischengroumalben Beispiel 6: Mischzeit-Charakteristik bei Gemischen mit Dichte- und Viskositaumaltsunterschieden.....Beispiel 7: Flotationsvorgang bei der Druckentspannungsflotation; 6 Wichtige Aspekte bei der Modelluumalbertragung; 6.1 Modelluumalbertragung bei Nichtverfuumalgbarkeit von Modell-Stoffsystemen; Beispiel 8: Auslegungsunterlagen fuumalr mechanische Schaumzerstoumalrer...; 6.2 Modelluumalbertragung bei partieller Aumalhnlichkeit; Beispiel 9: Schleppwiderstand eines Schiffskoumalrpers Beispiel 10: Faustregeln beim Dimensionieren von Reaktionsapparaten:Volumenbezogene Ruuamlhrleistung und Lehrrohrgeschwindigkeitals Dimensionierungskriterien fuumalr Ruumalhrbehaumallter bzw. fuumalr Blasensaumalulen7 Vorlaumalufige Bestandsaufnahme; 7.1 Vorteile der Dimensionsanalyse; 7.2 Anwendbarkeitsbereich der Dimensionsanalyse; 7.3 Versuchstechnik bei der Modellouamlbertragung; 7.4 Versuchsdurchfuumalhrung unter Mabstabsaumalnderung; 8 Dimensionsanalytische Behandlung veraumalnderlicher Stoffgroumalben; 8.1 Wozu ist diese Betrachtung wichtig? 8.2 Dimensionslose Darstellung einer Stoff-Funktion |
Record Nr. | UNINA-9910877809403321 |
Zlokarnik Marko <1931-> | ||
Weinheim [Germany] ; ; New York, : Wiley-VCH, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Scale-up in chemical engineering [[electronic resource] /] / Marko Zlokarnik |
Autore | Zlokarnik Marko <1931-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, 2006 |
Descrizione fisica | 1 online resource (293 p.) |
Disciplina | 660 |
Soggetto topico |
Chemical processes - Simulation methods
Chemical engineering - Simulation methods |
ISBN |
1-280-72355-6
9786610723553 3-527-60815-X 3-527-60776-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Scale-Up in Chemical Engineering; Contents; Preface to the 1st Edition; Preface to the 2nd Edition; Symbols; 1 Introduction; 2 Dimensional Analysis; 2.1 The Fundamental Principle; 2.2 What is a Dimension?; 2.3 What is a Physical Quantity?; 2.4 Base and Derived Quantities, Dimensional Constants; 2.5 Dimensional Systems; 2.6 Dimensional Homogeneity of a Physical Content; Example 1: What determines the period of oscillation of a pendulum?
Example 2: What determines the duration of fall θ of a body in a homogeneous gravitational field (Law of Free Fall)? What determines the speed v of a liquid discharge out of a vessel with an opening? (Torricelli's formula)Example 3: Correlation between meat size and roasting time; 2.7 The Pi Theorem; 3 Generation of Pi-sets by Matrix Transformation; Example 4: The pressure drop of a homogeneous fluid in a straight, smooth pipe (ignoring the inlet effects); 4 Scale Invariance of the Pi-space - the Foundation of the Scale-up; Example 5: Heat transfer from a heated wire to an air stream 5 Important Tips Concerning the Compilation of the Problem Relevance List5.1 Treatment of Universal Physical Constants; 5.2 Introduction of Intermediate Quantities; Example 6: Homogenization of liquid mixtures with different densities and viscosities; Example 7: Dissolved air flotation process; 6 Important Aspects Concerning the Scale-up; 6.1 Scale-up Procedure for Unavailability of Model Material Systems; Example 8: Scale-up of mechanical foam breakers; 6.2 Scale-up Under Conditions of Partial Similarity; Example 9: Drag resistance of a ship's hull Example 10: Rules of thumb for scaling up chemical reactors: Volume-related mixing power and the superficial velocity as design criteria for mixing vessels and bubble columns7 Preliminary Summary of the Scale-up Essentials; 7.1 The Advantages of Using Dimensional Analysis; 7.2 Scope of Applicability of Dimensional Analysis; 7.3 Experimental Techniques for Scale-up; 7.4 Carrying out Experiments Under Changes of Scale; 8 Treatment of Physical Properties by Dimensional Analysis; 8.1 Why is this Consideration Important?; 8.2 Dimensionless Representation of a Material Function Example 11: Standard representation of the temperature dependence of the viscosityExample 12: Standard representation of the temperature dependence of density; Example 13: Standard representation of the particle strength for different materials in dependence on the particle diameter; Example 14: Drying a wet polymeric mass. Reference-invariant representation of the material function D(T, F); 8.3 Reference-invariant Representation of a Material Function; 8.4 Pi-space for Variable Physical Properties; Example 15: Consideration of the dependence μ(T) using the μ(w)/μ term Example 16: Consideration of the dependence ρ(T) by the Grashof number Gr |
Record Nr. | UNINA-9910831047103321 |
Zlokarnik Marko <1931-> | ||
Weinheim, : Wiley-VCH, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Scale-up in chemical engineering / / Marko Zlokarnik |
Autore | Zlokarnik Marko <1931-> |
Edizione | [2nd, completely rev. and extended ed.] |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH, 2006 |
Descrizione fisica | 1 online resource (293 p.) |
Disciplina | 660 |
Soggetto topico |
Chemical processes - Simulation methods
Chemical engineering - Simulation methods |
ISBN |
1-280-72355-6
9786610723553 3-527-60815-X 3-527-60776-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Scale-Up in Chemical Engineering; Contents; Preface to the 1st Edition; Preface to the 2nd Edition; Symbols; 1 Introduction; 2 Dimensional Analysis; 2.1 The Fundamental Principle; 2.2 What is a Dimension?; 2.3 What is a Physical Quantity?; 2.4 Base and Derived Quantities, Dimensional Constants; 2.5 Dimensional Systems; 2.6 Dimensional Homogeneity of a Physical Content; Example 1: What determines the period of oscillation of a pendulum?
Example 2: What determines the duration of fall θ of a body in a homogeneous gravitational field (Law of Free Fall)? What determines the speed v of a liquid discharge out of a vessel with an opening? (Torricelli's formula)Example 3: Correlation between meat size and roasting time; 2.7 The Pi Theorem; 3 Generation of Pi-sets by Matrix Transformation; Example 4: The pressure drop of a homogeneous fluid in a straight, smooth pipe (ignoring the inlet effects); 4 Scale Invariance of the Pi-space - the Foundation of the Scale-up; Example 5: Heat transfer from a heated wire to an air stream 5 Important Tips Concerning the Compilation of the Problem Relevance List5.1 Treatment of Universal Physical Constants; 5.2 Introduction of Intermediate Quantities; Example 6: Homogenization of liquid mixtures with different densities and viscosities; Example 7: Dissolved air flotation process; 6 Important Aspects Concerning the Scale-up; 6.1 Scale-up Procedure for Unavailability of Model Material Systems; Example 8: Scale-up of mechanical foam breakers; 6.2 Scale-up Under Conditions of Partial Similarity; Example 9: Drag resistance of a ship's hull Example 10: Rules of thumb for scaling up chemical reactors: Volume-related mixing power and the superficial velocity as design criteria for mixing vessels and bubble columns7 Preliminary Summary of the Scale-up Essentials; 7.1 The Advantages of Using Dimensional Analysis; 7.2 Scope of Applicability of Dimensional Analysis; 7.3 Experimental Techniques for Scale-up; 7.4 Carrying out Experiments Under Changes of Scale; 8 Treatment of Physical Properties by Dimensional Analysis; 8.1 Why is this Consideration Important?; 8.2 Dimensionless Representation of a Material Function Example 11: Standard representation of the temperature dependence of the viscosityExample 12: Standard representation of the temperature dependence of density; Example 13: Standard representation of the particle strength for different materials in dependence on the particle diameter; Example 14: Drying a wet polymeric mass. Reference-invariant representation of the material function D(T, F); 8.3 Reference-invariant Representation of a Material Function; 8.4 Pi-space for Variable Physical Properties; Example 15: Consideration of the dependence μ(T) using the μ(w)/μ term Example 16: Consideration of the dependence ρ(T) by the Grashof number Gr |
Record Nr. | UNINA-9910877809303321 |
Zlokarnik Marko <1931-> | ||
Weinheim, : Wiley-VCH, 2006 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Stirring [[electronic resource] ] : theory and practice / / Marko Zlokarnik |
Autore | Zlokarnik Marko <1931-> |
Pubbl/distr/stampa | Weinheim, : Chichester, : Wiley-VCH, c2001 |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 660.284292 |
Soggetto topico |
Mixing
Mixing machinery |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-76396-9
9786611763961 3-527-61270-X 3-527-61271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Stirring; Contents; Preface; Symbols; 1 Stirring, general; 1.1 Stirring operations; 1.2 Mixing equipment; 1.2.1 Mixing tanks and their fittings; 1.2.2 Stirrer types and their operating characteristics; 1.2.3 Nozzles and spargers; 1.2.4 Sealing of stirrer shafts; 1.3 Mechanical stress; 1.3.1 Stress on baffles; 1.3.2 Stress on stirrer heads; 1.3.3 Tank vibrations; 1.3.4 Wear of stirrer heads; 1.3.5 Shear stress on the particulate material beinig mixed; 1.4 Flow and Turbulence; 1.4.1 Introduction; 1.4.2 Statistical theory of turbulence; 1.4.2.1 Description of turbulent flow
1.4.2.2 Energy spectra1.4.3 Experimental determination of the flow Conditions and their mathematical modeling; 1.4.3.1 Homogeneous material systems; 1.4.3.2 Heterogeneous material systems G/L; 1.4.3.3 Heterogeneous material systems L / L; 1.4.4 Pumping capacity of stirrers; 1.4.5 Surface motion; 1.4.5.1 Vortex formation. Definition of geometric parameters; 1.4.5.2 Gas entrainment via vortex; 1.4.6 Micro-mixing and reactions; 1.4.6.1 Introduction; 1.4.6.2 Theoretical prediction of micro-mixing; 1.4.6.3 Chemical reactions for determining micro-mixing 1.4.6.4 Experimental determination of micro-mixing1.5 Short introduction to rheology; 1.5.1 Newtonian liquids; 1.5.2 Non-Newtonian liquids; 1.5.3 Dimensionless representation of material functions; 1.6 Short introduction to dimensional analysis and scale-up; 1.6.1 Introduction; 1.6.2 Dimensional analysis; 1.6.2.1 Fundamentals; 1.6.2.2 Dimensions and physical quantities; 1.6.2.3 Primary and secondary (Derived) quantities; dimensional constants; 1.6.2.4 Dimensional systems; 1.6.2.5 Dimensional homogeneity of a physical Content; 1.6.2.6 The pi-theorem 1.6.3 The Determination of a pi-Set by Matrix Calculation1.6.3.1 The Establishment of a Relevance List of the Problem; 1.6.3.2 Determination of the characteristic geometric parameter; 1.6.3.3 Constructing and solving of the dimensional matrix; 1.6.3.4 Determination of the process characteristics; 1.6.4 Fundamentals of the model theory and scale-up; 1.6.4.1 Model theory; 1.6.4.2 Model experiments and scale-up; 1.6.5 Remarks regarding the relevance list and experimental technique; 1.6.5.1 consideration of the acceleration due to gravity g; 1.6.5.2 Introduction of intermediate quantities 1.6.5.3 Dealing with material systems of unknown physical properties1.6.5.4 Experimental methods for scale-up; 1.6.6 Conclusions; 1.6.6.1 Short Summary of the Essentials of the Dimensional Analysis and Scale-Up; 1.6.6.2 Area of applicability of dimensional analysis; 2 Stirrer power; 2.1 Stirrer power in a homogeneous liquid; 2.1.1 Newtonian liquids; 2.1.2 Non-Newtonian liquids; 2.2 Stirrer power in Gassed Liquids; 2.2.1 Newtonian liquids; 2.2.2 Non-Newtonian liquids; 2.3 Flooding point; 3 Homogenization; 3.1 Definition of macro- and micro-mixing; 3.2 Definition of degree of mixing 3.3 Determination of the degree of mixing and the mixing time |
Record Nr. | UNINA-9910144328603321 |
Zlokarnik Marko <1931-> | ||
Weinheim, : Chichester, : Wiley-VCH, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Stirring [[electronic resource] ] : theory and practice / / Marko Zlokarnik |
Autore | Zlokarnik Marko <1931-> |
Pubbl/distr/stampa | Weinheim, : Chichester, : Wiley-VCH, c2001 |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 660.284292 |
Soggetto topico |
Mixing
Mixing machinery |
ISBN |
1-281-76396-9
9786611763961 3-527-61270-X 3-527-61271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Stirring; Contents; Preface; Symbols; 1 Stirring, general; 1.1 Stirring operations; 1.2 Mixing equipment; 1.2.1 Mixing tanks and their fittings; 1.2.2 Stirrer types and their operating characteristics; 1.2.3 Nozzles and spargers; 1.2.4 Sealing of stirrer shafts; 1.3 Mechanical stress; 1.3.1 Stress on baffles; 1.3.2 Stress on stirrer heads; 1.3.3 Tank vibrations; 1.3.4 Wear of stirrer heads; 1.3.5 Shear stress on the particulate material beinig mixed; 1.4 Flow and Turbulence; 1.4.1 Introduction; 1.4.2 Statistical theory of turbulence; 1.4.2.1 Description of turbulent flow
1.4.2.2 Energy spectra1.4.3 Experimental determination of the flow Conditions and their mathematical modeling; 1.4.3.1 Homogeneous material systems; 1.4.3.2 Heterogeneous material systems G/L; 1.4.3.3 Heterogeneous material systems L / L; 1.4.4 Pumping capacity of stirrers; 1.4.5 Surface motion; 1.4.5.1 Vortex formation. Definition of geometric parameters; 1.4.5.2 Gas entrainment via vortex; 1.4.6 Micro-mixing and reactions; 1.4.6.1 Introduction; 1.4.6.2 Theoretical prediction of micro-mixing; 1.4.6.3 Chemical reactions for determining micro-mixing 1.4.6.4 Experimental determination of micro-mixing1.5 Short introduction to rheology; 1.5.1 Newtonian liquids; 1.5.2 Non-Newtonian liquids; 1.5.3 Dimensionless representation of material functions; 1.6 Short introduction to dimensional analysis and scale-up; 1.6.1 Introduction; 1.6.2 Dimensional analysis; 1.6.2.1 Fundamentals; 1.6.2.2 Dimensions and physical quantities; 1.6.2.3 Primary and secondary (Derived) quantities; dimensional constants; 1.6.2.4 Dimensional systems; 1.6.2.5 Dimensional homogeneity of a physical Content; 1.6.2.6 The pi-theorem 1.6.3 The Determination of a pi-Set by Matrix Calculation1.6.3.1 The Establishment of a Relevance List of the Problem; 1.6.3.2 Determination of the characteristic geometric parameter; 1.6.3.3 Constructing and solving of the dimensional matrix; 1.6.3.4 Determination of the process characteristics; 1.6.4 Fundamentals of the model theory and scale-up; 1.6.4.1 Model theory; 1.6.4.2 Model experiments and scale-up; 1.6.5 Remarks regarding the relevance list and experimental technique; 1.6.5.1 consideration of the acceleration due to gravity g; 1.6.5.2 Introduction of intermediate quantities 1.6.5.3 Dealing with material systems of unknown physical properties1.6.5.4 Experimental methods for scale-up; 1.6.6 Conclusions; 1.6.6.1 Short Summary of the Essentials of the Dimensional Analysis and Scale-Up; 1.6.6.2 Area of applicability of dimensional analysis; 2 Stirrer power; 2.1 Stirrer power in a homogeneous liquid; 2.1.1 Newtonian liquids; 2.1.2 Non-Newtonian liquids; 2.2 Stirrer power in Gassed Liquids; 2.2.1 Newtonian liquids; 2.2.2 Non-Newtonian liquids; 2.3 Flooding point; 3 Homogenization; 3.1 Definition of macro- and micro-mixing; 3.2 Definition of degree of mixing 3.3 Determination of the degree of mixing and the mixing time |
Record Nr. | UNINA-9910830761003321 |
Zlokarnik Marko <1931-> | ||
Weinheim, : Chichester, : Wiley-VCH, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Stirring : theory and practice / / Marko Zlokarnik |
Autore | Zlokarnik Marko <1931-> |
Pubbl/distr/stampa | Weinheim, : Chichester, : Wiley-VCH, c2001 |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 660.284292 |
Soggetto topico |
Mixing
Mixing machinery |
ISBN |
1-281-76396-9
9786611763961 3-527-61270-X 3-527-61271-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Stirring; Contents; Preface; Symbols; 1 Stirring, general; 1.1 Stirring operations; 1.2 Mixing equipment; 1.2.1 Mixing tanks and their fittings; 1.2.2 Stirrer types and their operating characteristics; 1.2.3 Nozzles and spargers; 1.2.4 Sealing of stirrer shafts; 1.3 Mechanical stress; 1.3.1 Stress on baffles; 1.3.2 Stress on stirrer heads; 1.3.3 Tank vibrations; 1.3.4 Wear of stirrer heads; 1.3.5 Shear stress on the particulate material beinig mixed; 1.4 Flow and Turbulence; 1.4.1 Introduction; 1.4.2 Statistical theory of turbulence; 1.4.2.1 Description of turbulent flow
1.4.2.2 Energy spectra1.4.3 Experimental determination of the flow Conditions and their mathematical modeling; 1.4.3.1 Homogeneous material systems; 1.4.3.2 Heterogeneous material systems G/L; 1.4.3.3 Heterogeneous material systems L / L; 1.4.4 Pumping capacity of stirrers; 1.4.5 Surface motion; 1.4.5.1 Vortex formation. Definition of geometric parameters; 1.4.5.2 Gas entrainment via vortex; 1.4.6 Micro-mixing and reactions; 1.4.6.1 Introduction; 1.4.6.2 Theoretical prediction of micro-mixing; 1.4.6.3 Chemical reactions for determining micro-mixing 1.4.6.4 Experimental determination of micro-mixing1.5 Short introduction to rheology; 1.5.1 Newtonian liquids; 1.5.2 Non-Newtonian liquids; 1.5.3 Dimensionless representation of material functions; 1.6 Short introduction to dimensional analysis and scale-up; 1.6.1 Introduction; 1.6.2 Dimensional analysis; 1.6.2.1 Fundamentals; 1.6.2.2 Dimensions and physical quantities; 1.6.2.3 Primary and secondary (Derived) quantities; dimensional constants; 1.6.2.4 Dimensional systems; 1.6.2.5 Dimensional homogeneity of a physical Content; 1.6.2.6 The pi-theorem 1.6.3 The Determination of a pi-Set by Matrix Calculation1.6.3.1 The Establishment of a Relevance List of the Problem; 1.6.3.2 Determination of the characteristic geometric parameter; 1.6.3.3 Constructing and solving of the dimensional matrix; 1.6.3.4 Determination of the process characteristics; 1.6.4 Fundamentals of the model theory and scale-up; 1.6.4.1 Model theory; 1.6.4.2 Model experiments and scale-up; 1.6.5 Remarks regarding the relevance list and experimental technique; 1.6.5.1 consideration of the acceleration due to gravity g; 1.6.5.2 Introduction of intermediate quantities 1.6.5.3 Dealing with material systems of unknown physical properties1.6.5.4 Experimental methods for scale-up; 1.6.6 Conclusions; 1.6.6.1 Short Summary of the Essentials of the Dimensional Analysis and Scale-Up; 1.6.6.2 Area of applicability of dimensional analysis; 2 Stirrer power; 2.1 Stirrer power in a homogeneous liquid; 2.1.1 Newtonian liquids; 2.1.2 Non-Newtonian liquids; 2.2 Stirrer power in Gassed Liquids; 2.2.1 Newtonian liquids; 2.2.2 Non-Newtonian liquids; 2.3 Flooding point; 3 Homogenization; 3.1 Definition of macro- and micro-mixing; 3.2 Definition of degree of mixing 3.3 Determination of the degree of mixing and the mixing time |
Record Nr. | UNINA-9910877412903321 |
Zlokarnik Marko <1931-> | ||
Weinheim, : Chichester, : Wiley-VCH, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|