top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Machining and Manufacturing Processes / / by Kaushik Kumar, Divya Zindani, J. Paulo Davim
Advanced Machining and Manufacturing Processes / / by Kaushik Kumar, Divya Zindani, J. Paulo Davim
Autore Kumar Kaushik
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (213 pages) : illustrations
Disciplina 671.35
Collana Materials Forming, Machining and Tribology
Soggetto topico Manufactures
Machinery
Electrochemistry
Manufacturing, Machines, Tools, Processes
Machinery and Machine Elements
ISBN 3-319-76075-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Automated Conventional Machining Techniques -- Non Conventional Machining Techniques -- Virtual Manufacturing.
Record Nr. UNINA-9910299946703321
Kumar Kaushik  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hybrid Micro-Machining Processes / / by Sumit Bhowmik, Divya Zindani
Hybrid Micro-Machining Processes / / by Sumit Bhowmik, Divya Zindani
Autore Bhowmik Sumit
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (VII, 70 p. 12 illus., 5 illus. in color.)
Disciplina 670
671.35
Collana SpringerBriefs in Applied Sciences and Technology
Soggetto topico Manufactures
Nanotechnology
Manufacturing, Machines, Tools, Processes
Nanotechnology and Microengineering
ISBN 3-030-13039-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Overview of Hybrid Micromachining Processes -- Laser Assisted Micromachining -- Magnetic Field-Assisted Micro-EDM -- Electrorheological Fluid-Assisted Micro-USM -- Other Assisted Hybrid Micromachining Processes -- Combined Variant of Hybrid Micromachining Processes.
Record Nr. UNINA-9910337632003321
Bhowmik Sumit  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Industry 4.0 : Developments towards the Fourth Industrial Revolution / / by Kaushik Kumar, Divya Zindani, J. Paulo Davim
Industry 4.0 : Developments towards the Fourth Industrial Revolution / / by Kaushik Kumar, Divya Zindani, J. Paulo Davim
Autore Kumar Kaushik
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XII, 59 p. 2 illus., 1 illus. in color.)
Disciplina 670
Collana Manufacturing and Surface Engineering
Soggetto topico Manufactures
Engineering economy
Computer-aided engineering
Electronic circuits
Information technology
Business—Data processing
Production management
Manufacturing, Machines, Tools, Processes
Engineering Economics, Organization, Logistics, Marketing
Computer-Aided Engineering (CAD, CAE) and Design
Circuits and Systems
IT in Business
Operations Management
ISBN 981-13-8165-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Intelligent Manufacturing -- Chapter 2: Process Planning in Era 4.0 -- Chapter 3: Requirements of Education and Qualification -- Chapter 4: Risk Management Implementation -- Chapter 5: Socio Economic Considerations -- Chapter 6: Sustainable Business Scenarios in 4.0 Era.
Record Nr. UNINA-9910350297003321
Kumar Kaushik  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mastering SolidWorks : Practical Examples / / by Kaushik Kumar, Divya Zindani, J. Paulo Davim
Mastering SolidWorks : Practical Examples / / by Kaushik Kumar, Divya Zindani, J. Paulo Davim
Autore Kumar Kaushik
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIV, 316 p. 613 illus., 591 illus. in color.)
Disciplina 620.00420285
620.00285
Collana Management and Industrial Engineering
Soggetto topico Applied mathematics
Engineering mathematics
Software engineering
Industrial engineering
Production engineering
Mathematical and Computational Engineering
Software Engineering
Industrial and Production Engineering
ISBN 3-030-38901-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Introduction to Sketching -- Basic Sketch Relations and Dimensioning -- Part Modelling Using Features -- Sketch Entities -- CUT Features -- Thin Features -- Introduction to Sheet Metal -- Advanced features in Sheet metal -- Assembly -- Assembly Continued -- Basics of Drawing -- To Create A Flanged Coupling -- To Create A Foot Step Bearing.
Record Nr. UNINA-9910377825403321
Kumar Kaushik  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials and Manufacturing Processes / / by Kaushik Kumar, Hridayjit Kalita, Divya Zindani, J. Paulo Davim
Materials and Manufacturing Processes / / by Kaushik Kumar, Hridayjit Kalita, Divya Zindani, J. Paulo Davim
Autore Kumar Kaushik
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (113 pages)
Disciplina 670
670.42
Collana Materials Forming, Machining and Tribology
Soggetto topico Manufactures
Metals
Materials
Machines, Tools, Processes
Metals and Alloys
Materials Engineering
ISBN 3-030-21066-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Materials -- Mechanical Behaviour of materials -- Casting -- Forming -- Welding -- Machining.
Record Nr. UNINA-9910337614103321
Kumar Kaushik  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medical Analytics for Clinical and Healthcare Applications
Medical Analytics for Clinical and Healthcare Applications
Autore Kalita Kanak
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (283 pages)
Disciplina 610.285
Altri autori (Persone) ZindaniDivya
GaneshNarayanan
GaoXiao-Zhi
Collana Machine Learning in Biomedical Science and Healthcare Informatics Series
Soggetto topico Medical informatics
ISBN 1-394-30148-0
1-394-30147-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Foundations of Medical Analytics -- Chapter 1 Exploring Trends in Depression and Anxiety Using Machine and Deep Learning Models -- 1.1 Introduction -- 1.2 Exploratory Data Analysis -- 1.2.1 Exploratory Data Analysis (EDA) -- 1.2.2 Interactive Visualizations with Plotly -- 1.2.3 Data Cleaning and Transformation -- 1.2.4 Chart Creation with Matplotlib and Seaborn -- 1.2.5 Documentation and Report Writing -- 1.3 Problem Statement and Motivation -- 1.4 Literature Survey -- 1.5 Data Visualization -- 1.5.1 Integration of Machine Learning-Powered Insights -- 1.5.2 Dynamic Time-Series Visualizations with Plotly -- 1.5.3 Fusion of Art and Data with Seaborn Styling -- 1.5.4 Ethical Considerations in Visual Storytelling -- 1.5.5 Seamless Collaboration Through Git Version Control -- 1.6 Overview of Dataset -- 1.6.1 Dataset Acquisition Links -- 1.6.2 Household Pulse Survey -- 1.7 Methodology -- 1.7.1 Data Selection and Attributes -- 1.7.2 Data Pre-Processing -- 1.8 Modules -- 1.8.1 Linear Regression -- 1.8.2 K-Means Clustering -- 1.8.3 Random Forest -- 1.8.4 Simple Convolutional Neural Network (CNN) -- 1.8.5 MobileNetV2 -- 1.8.6 Basic Visualizations -- 1.9 Results and Discussion -- 1.10 Conclusion -- References -- Part 2: Disease Detection and Diagnosis -- Chapter 2 An Innovative Framework for the Detection and Classification of Breast Cancer Disease Using Logistic Regression Compared with Back Propagation Neural Network -- 2.1 Introduction -- 2.2 Materials and Methods -- 2.2.1 Back Propagation Neural Network (BPNN) -- 2.2.2 Logistic Regression (LR) -- 2.2.3 Statistical Analysis -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusion -- References -- Chapter 3 An Approach to Conduct the Diabetes Prediction Using AdaBoost Algorithm Compared with Decision Tree Classifier Algorithm.
3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 AdaBoost Algorithm -- 3.2.1.1 Procedure for AdaBoost Algorithm -- 3.2.1.2 Decision Tree -- 3.2.1.3 Statistical Analysis -- 3.3 Results and Discussion -- 3.4 Conclusion -- References -- Chapter 4 Efficient Net V2-Based Pneumonia Detection: A Comparative Study with Transfer Learning Models -- 4.1 Introduction -- 4.2 Related Works -- 4.3 Materials and Methods -- 4.3.1 Dataset Details -- 4.3.2 CLAHE -- 4.3.3 Data Augmentation -- 4.3.4 Transfer Learning Models -- 4.3.4.1 VGG-16 -- 4.3.4.2 Xception -- 4.3.4.3 EfficientNetV2 -- 4.4 Results and Discussion -- 4.4.1 Ensemble Model -- 4.5 Conclusion and Future Work -- References -- Chapter 5 A Histogram Equalized Median Filtered SIFT-EfficientNet Based on Deep Learning Approach for Lung Disease Detection -- 5.1 Introduction -- 5.2 Related Works -- 5.3 Materials and Methods -- 5.3.1 Dataset -- 5.3.2 Methodology: HMS-E -- 5.3.3 Pre-Processing -- 5.3.4 Histogram Equalization -- 5.3.5 Median Filter -- 5.3.6 Feature Extraction -- 5.3.6.1 Detection of Scale-Space Extrema -- 5.3.6.2 Localization of Key Points -- 5.3.6.3 Generation of Key Point Descriptors -- 5.3.7 Deep Learning Model -- 5.3.7.1 EfficientNetB0 -- 5.4 Performance Measure -- 5.5 Results and Discussion -- 5.6 Conclusion and Future Work -- References -- Part 3: Predictive Analytics in Healthcare -- Chapter 6 Comparing the Efficiency of ResNet-50 and Convolutional Neural Networks for Facial Mask Detection -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.3 ResNet-50 Architecture -- 6.4 Convolutional Neural Networks (CNN) -- 6.5 Statistical Analysis -- 6.6 Results and Discussion -- 6.7 Conclusion -- References -- Chapter 7 Enhancing Accuracy in Predicting Knee Osteoarthritis Progression Using Kellgren-Lawrence Grade Compared with Deep Convolutional Neural Network -- 7.1 Introduction.
7.2 Materials and Methods -- 7.2.1 Kellgren-Lawrence Grade -- 7.2.2 Deep Convolutional Neural Network -- 7.2.3 Statistical Analysis -- 7.3 Results and Discussion -- 7.3.1 Accuracy and Loss Analysis -- 7.3.2 Group Statistical Analysis -- 7.3.3 Independent Sample T-Test Results -- 7.3.4 Performance Comparison -- 7.3.5 Discussion -- 7.4 Conclusion -- References -- Chapter 8 A Comparative Analysis of Support Vector Machine over K-Neighbors Classifier for Predicting Hospital Mortality with Improved Accuracy -- 8.1 Introduction -- 8.1.1 Integration of Present-On-Admission Indicators -- 8.1.2 Challenges in Implementing Machine Learning Models -- 8.1.3 Predicting in-Hospital Mortality in ICU Patients -- 8.1.4 Machine Learning Algorithms in Mortality Prediction -- 8.1.5 Ethical and Operational Considerations -- 8.2 Materials and Methods -- 8.2.1 Software and Hardware Configuration -- 8.2.2 SVM Algorithm -- 8.2.3 K-Nearest Neighbor Algorithm -- 8.2.4 Statistical Analysis -- 8.3 Results and Discussion -- 8.3.1 Accuracy and Loss Analysis -- 8.3.2 Independent Sample T-Test Analysis -- 8.3.3 Comparison of SVM and KNN -- 8.3.4 Real-World Application and Implications -- 8.3.5 Limitations and Future Scope -- 8.4 Conclusion -- References -- Chapter 9 Asthma Prediction Using Vowel Inspiration: A Machine Learning Approach -- 9.1 Introduction -- 9.2 Literature Survey -- 9.3 Motivation and Background -- 9.4 Proposed Method -- 9.4.1 Vowel Inspiration -- 9.4.2 Voice Activity Detection -- 9.4.3 Inspiration Filtering -- 9.4.4 Feature Extraction -- 9.4.4.1 Pause Frequency -- 9.4.4.2 Average Phonation Time -- 9.4.4.3 Vocalization-to-Inhalation Ratio -- 9.4.4.4 Inspiration Sound Energy -- 9.4.5 Classification -- 9.4.6 Praat Parameters -- 9.4.6.1 Jitter -- 9.4.6.2 NHR -- 9.4.6.3 HNR -- 9.5 Discussion -- 9.5.1 Classification for First Method -- 9.5.1.1 Logistic Regression.
9.5.1.2 Naïve Bayes -- 9.5.1.3 K-Nearest Neighbor -- 9.5.1.4 Support Vector Machine -- 9.5.1.5 Decision Tree -- 9.5.1.6 Random Forest -- 9.5.1.7 Logistic Regression with Random Forest -- 9.5.2 Classification for Second Method -- 9.5.2.1 K-Nearest Neighbor with Classification Report -- 9.5.2.2 Logistic Regression with Discussion on Classification Report -- 9.5.2.3 Decision Tree with Discussion on Classification Report -- 9.5.2.4 Naïve Bayes with Discussion on Classification Report -- 9.6 Results -- 9.7 Conclusion -- References -- Part 4: Medical Data Analysis and Security -- Chapter 10 Improvement of Accuracy in Prevention of Medical Images from Security Threats Using Novel Lasso Regression in Comparison with K-Means Classifier -- 10.1 Introduction -- 10.2 Materials and Methods -- 10.2.1 Dataset Variables -- 10.2.2 Machine Learning Algorithms: Novel Lasso Regression and K-Means Classifiers -- 10.2.2.1 Novel Lasso Regression -- 10.2.2.2 K-Means Classifier -- 10.2.3 Statistical Analysis -- 10.3 Result -- 10.4 Discussion -- 10.5 Conclusion -- References -- Chapter 11 Renal Cancer Detection from Histopathological Images Using Deep Learning -- 11.1 Introduction -- 11.1.1 Motivation -- 11.2 Materials and Methods -- 11.2.1 Dataset Used -- 11.2.2 Models Used -- 11.3 Results and Discussions -- 11.3.1 High Classification Accuracy -- 11.3.2 Strong Performance on Classification Metrics -- 11.3.3 Fuhrman Grade Classification -- 11.4 Conclusion and Future Work -- References -- Chapter 12 A Novel Method to Predicting Tumor in Fallopian Tube Using DenseNet Over Linear Regression with Enhanced Efficiency -- 12.1 Introduction -- 12.2 Materials and Methods -- 12.2.1 DenseNet Algorithm -- 12.2.1.1 Pseudocode for DenseNet -- 12.2.2 Linear Regression -- 12.2.2.1 Pseudocode for Linear Regression -- 12.2.3 Statistical Analysis -- 12.3 Results and Discussion.
12.3.1 Accuracy and Loss Comparison -- 12.3.2 Statistical Analysis Results -- 12.3.3 Group Statistical Analysis -- 12.3.4 Discussion -- 12.3.5 DenseNet's Performance Advantages -- 12.3.6 Linear Regression's Limitations -- 12.3.7 Significance of Statistical Analysis -- 12.3.8 Limitations and Future Work -- 12.4 Conclusion -- References -- Chapter 13 Protected Medical Images Against Security Threats Using Lasso Regression and K-Means Algorithms -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.3 K-Means Classifier -- 13.4 Procedure for K-Means Classifier -- 13.5 Lasso Regression -- 13.6 Procedure for Lasso Regression -- 13.7 Statistical Analysis -- 13.8 Results -- 13.9 Discussion -- 13.10 Conclusion -- References -- Part 5: Emerging Trends and Technologies -- Chapter 14 Predicting the Factors Influencing Alcoholic Consumption of Teenagers Using an Optimized Random Forest Classifier in Comparison with Logistic Regression -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.3 Random Forest Classifier -- 14.4 Algorithm for Random Forest Classifier -- 14.5 Logistic Regression Classifier -- 14.6 Algorithm for Logistic Regression Classifier -- 14.7 Results -- 14.8 Discussion -- 14.9 Conclusion -- References -- Chapter 15 Harnessing Food Waste Potential: Advancing Protein Sequence Motif Analysis with Novel Cluster Sequence Analyzer Machine Learning Model -- 15.1 Introduction -- 15.1.1 Motif Regions -- 15.2 Suffix Tree -- 15.3 Clustering Algorithms in PPI -- 15.4 Classification Agorithms in PPI -- 15.5 CSA and PPI Interaction Results -- 15.6 Conclusion -- Bibliography -- Chapter 16 "Hi-Tech People, Digitized HR- Are We Missing the Humane Link?"-Use of People Analytics as an Effective HRM Tool in a Selected Healthcare Sector -- 16.1 Introduction -- 16.2 Research Background -- 16.3 Literature Review -- 16.4 Research Gaps -- 16.5 Research Methodology.
16.6 Objectives.
Record Nr. UNINA-9911022471703321
Kalita Kanak  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Micro and Nano Machining of Engineering Materials : Recent Developments / / edited by Kaushik Kumar, Divya Zindani, Nisha Kumari, J. Paulo Davim
Micro and Nano Machining of Engineering Materials : Recent Developments / / edited by Kaushik Kumar, Divya Zindani, Nisha Kumari, J. Paulo Davim
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (155 pages)
Disciplina 671.35
Collana Materials Forming, Machining and Tribology
Soggetto topico Nanotechnology
Manufactures
Nanotechnology and Microengineering
Manufacturing, Machines, Tools, Processes
ISBN 3-319-99900-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Nano-machining and Micro- machining using conventional machining techniques -- Nano-machining and Micro- machining using non conventional machining techniques -- Materials in micro machining and nano machining -- Tools and processes for micro machining and nano machining -- Management of micro machining and nano machining processes -- Micro machining and nano machining enterprises -- Healthcare technologies and Environmental systems -- Advanced micro/ nanomachining processes -- Design of Micro and Nano sized products such as Microfluidic systems, Micro pumps, Micro engines etc -- Nanofinishing processes.
Record Nr. UNINA-9910337657203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui