Parameter Estimation of Permanent Magnet Synchronous Machines
| Parameter Estimation of Permanent Magnet Synchronous Machines |
| Autore | Zhu Zi Qiang |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (291 pages) |
| Disciplina | 621.46 |
| Altri autori (Persone) |
LiuKan
LiangDawei |
| Collana | IEEE Press Series on Control Systems Theory and Applications Series |
| Soggetto topico |
Parameter estimation
Permanent magnet motors |
| ISBN |
1-394-28045-9
1-394-28044-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half Title Page -- Title Page -- Copyright -- Contents -- Authors -- Preface -- List of Abbreviations -- List of Symbols -- Chapter 1: General Introduction -- 1.1 Introduction -- 1.2 Permanent Magnet Machines -- 1.3 Basic Equations and Machine Parameters -- 1.3.1 Fundamental Mathematical Model for PMSMs -- 1.3.2 Mathematical Model Considering Magnetic Saturation, Thermal Effect, and Iron Loss -- 1.3.2.1 Influence of Magnetic Saturation -- 1.3.2.2 Influence of Temperature -- 1.3.2.3 Influence of Iron Loss -- 1.4 Drives and Control Strategies -- 1.4.1 Drive System of PMSM -- 1.4.2 Space Vector Pulse Width Modulation -- 1.5 Outline of Parameter Estimation Techniques -- 1.5.1 Offline Parameter Estimation -- 1.5.2 Online Parameter Estimation -- 1.6 Scope of This Book -- References -- Chapter 2: Critical Issues with Online Parameter Estimation -- 2.1 Rank-Deficient Problem -- 2.1.1 Rank-Deficient Issue -- 2.1.2 Experimental Analysis and Results -- 2.2 Non-linearity of VSI -- 2.2.1 Modelling of VSI Non-linearity -- 2.2.1.1 VSI Modelling in abc Stationary Reference Frame -- 2.2.1.2 VSI Modelling in dq Rotating Reference Frame -- 2.2.2 VSI Non-linearity Estimation and Compensation -- 2.2.2.1 Estimation of VSI Non-linearity -- 2.2.2.2 Online Compensation of VSI Non-linearity -- 2.2.3 Influences of VSI Non-linearity on Parameter Estimation -- 2.3 Ill-Conditioned Problem -- 2.4 Summary -- References -- Chapter 3: Online Estimation of Rotor Flux Linkage with the Aid of Thermocouples in Stator Windings -- 3.1 Introduction -- 3.2 Online Estimation of Rotor Flux Linkage with the Aid of Thermocouples in Stator Windings -- 3.2.1 Online Estimation of Rotor Flux Linkage -- 3.2.2 Thermal Condition Monitoring of Rotor PM -- 3.3 Summary -- References -- Chapter 4: Online Parameter Estimation Based on Current Injections -- 4.1 Introduction.
4.2 Multi-parameter Estimation Based on Current Injection and Error Analysis -- 4.2.1 Designed Parameter Estimation Scheme -- 4.2.2 Error Analysis -- 4.2.3 Experimental Results -- 4.3 Winding Resistance and Rotor Flux Linkage Estimation Based on Current Injection under Constant Torque/Speed Control -- 4.3.1 Designed Parameter Estimation Scheme -- 4.3.2 Error Analysis and Experimental Validation -- 4.4 Summary -- References -- Chapter 5: Online Parameter Estimation Based on Position Offset Injection -- 5.1 Introduction -- 5.2 Phasor Analysis of Rotor Position Offset in PMSMs -- 5.3 Position Offset-based Estimation with id = 0 Under Constant Torque/Speed Control -- 5.3.1 Designed Estimation Method -- 5.3.1.1 Estimation of Rotor PM Flux Linkage pm and Stator Winding Resistance Rs -- 5.3.1.2 Estimation of q-axis Inductance Lq -- 5.3.1.3 Estimation of d-axis Inductance Ld -- 5.3.2 Experimental and FEA Results -- 5.3.2.1 Experimental Results of Estimated pm and Rs -- 5.3.2.2 Experimental Results of Estimated Ld and Lq -- 5.4 Position Offset-based Estimation with id = 0 Under Variable Speed Control -- 5.4.1 Designed Estimation Method -- 5.4.2 Experimental and FEA Results -- 5.5 Position Offset-based Estimation with id ≠ 0 Under Constant Torque/Speed Control -- 5.5.1 Designed Estimation Method -- 5.5.1.1 Estimation of Rotor PM Flux Linkage pm and Inductances' Saliency Δ -- 5.5.1.2 Estimation of dq-axis Inductances -- 5.5.2 Experimental and FEA Results -- 5.6 Position Offset-based Estimation with id = 0 and id ≠ 0 Under Constant and Variable Speed Control -- 5.6.1 Designed Estimation Method -- 5.6.2 Experimental and FEA Results -- 5.7 Analysis of Amplitude of Position Offset Injection -- 5.8 Summary -- References -- Chapter 6: Online Parameter Estimation Under Variable Speed Control -- 6.1 Introduction. 6.2 Estimation of Stator Resistance, Inductances, and Rotor PM Flux Linkage -- 6.2.1 Identifiability Analysis and Influence of VSI Non-linearity -- 6.2.2 Improved Estimation Scheme -- 6.2.3 Experimental Results -- 6.3 Estimation of dq-axis Flux Linkage Maps with Uncertainties of Circuit Resistance and Inverter Non-linearity -- 6.3.1 Modelling of Cost Functions for Identification of Flux Linkages -- 6.3.2 Minimization of Cost Functions -- 6.3.3 Experimental Results -- 6.3.3.1 Data Recording and FE-predicted Flux Linkage Maps -- 6.3.3.2 Identification of dq-axis Flux Linkage Maps -- 6.3.3.3 Influence of Uncertain Circuit Resistance -- 6.3.3.4 Derivation of dq-axis Inductances -- 6.3.3.5 MTPA Current Trajectory Based on dq-axis Flux Linkage Maps -- 6.4 Summary -- References -- Chapter 7: Estimation of Magnetic Saturation and Cross-coupling Based on High-frequency Signal Injection -- 7.1 Introduction -- 7.2 Magnetic Saturation Modelling and Time Delay Effect in HF Signal Injection -- 7.2.1 Fundamental Mathematical Model -- 7.2.2 Time Delay Effect in HF Signal Injection Methods -- 7.3 HF Rotating Voltage Injection Method -- 7.4 HF Pulsating Voltage Injection Method -- 7.4.1 With the Aid of Position Estimator -- 7.4.2 Without the Aid of Position Estimator -- 7.5 Combined HF Rotating and Pulsating Voltage Injection Method -- 7.6 Experimental Results -- 7.6.1 Evaluation of Estimation Performance -- 7.6.2 Comparison with FE Results -- 7.6.3 Selection of Injected Voltage -- 7.7 Summary -- References -- Chapter 8: Offline and Multi-step Parameter Estimation Methods -- 8.1 Introduction -- 8.2 Parameter Estimation at Standstill by Square Voltage Injection -- 8.3 Parameter Estimation at Standstill by HF Current Injection -- 8.3.1 Estimation Based on Current Variations -- 8.3.2 Estimation Based on Zero-crossing Detection -- 8.4 Multi-step Parameter Estimation. 8.4.1 Two-step Estimation Method -- 8.4.2 Three-step Estimation Method -- 8.5 Summary -- References -- Chapter 9: Estimation of Mechanical Parameters -- 9.1 Introduction -- 9.2 Mechanical Parameter Estimation Methods -- 9.2.1 Acceleration/Deceleration-Based Method -- 9.2.2 MRAS Observer-Based Method -- 9.2.3 Fundamental Motion Equation-Based Estimation Method -- 9.2.4 Critical Issue of Torque Prediction -- 9.3 Experimental Results -- 9.3.1 Comparison Between Schemes I and III -- 9.3.2 Comparison Between Schemes II and III -- 9.3.3 Influence of Variation in Rotor PM Flux Linkage -- 9.3.4 Sensitivity Analysis of Sinusoidal Perturbation Signal -- 9.4 Design of PI Speed Regulator -- 9.5 Summary -- References -- Chapter 10: Modern Control and Optimization Theory-Based Parameter Estimation Algorithms -- 10.1 Introduction -- 10.2 Designed Parameter Estimation Scheme -- 10.3 Recursive Least-Squares -- 10.3.1 Basic Principle -- 10.3.2 Application to Parameter Estimation for PMSMs -- 10.4 Kalman Filter -- 10.4.1 Basic Principle -- 10.4.1.1 Conventional Kalman Filter -- 10.4.1.2 Extended Kalman Filters -- 10.4.2 Application to Parameter Estimation for PMSMs -- 10.5 Model Reference Adaptive System -- 10.5.1 Basic Principle -- 10.5.2 Application to Parameter Estimation for PMSMs -- 10.6 Adaline Neural Network -- 10.6.1 Basic Principle -- 10.6.2 Application to Parameter Estimation for PMSMs -- 10.7 Gradient-Based Methods -- 10.7.1 Basic Principle -- 10.7.1.1 Steepest Descent Method -- 10.7.1.2 Newton's Method -- 10.7.1.3 Gauss-Newton Method -- 10.7.2 Application to Parameter Estimation for PMSMs -- 10.8 Particle Swarm Optimization -- 10.8.1 Basic Principle -- 10.8.2 Application to Parameter Estimation for PMSMs -- 10.9 Genetic Algorithm -- 10.9.1 Basic Principle -- 10.9.2 Application to Parameter Estimation for PMSMs -- 10.10 Summary -- References. Chapter 11: Applications of Parameter Estimation -- 11.1 Introduction -- 11.2 Improvement in Control Performance -- 11.2.1 Design of PI Regulators for FOC -- 11.2.1.1 Parameter-Based PI Regulator Design -- 11.2.1.2 Parameter Estimation -- 11.2.1.3 Designed PI Regulators and Experimental Performance -- 11.2.2 Determination of MTPA Current Trajectory -- 11.3 Improvement in Sensorless Control -- 11.3.1 Improvement in Sensorless Control Performance -- 11.3.1.1 Extended Back-EMF-Based Method -- 11.3.1.2 High-frequency Signal Injection-Based Method -- 11.3.2 Application of Parameter Estimation Under Sensorless Control -- 11.3.2.1 Position-offset-Based Online Parameter Estimation Under Sensorless Control -- 11.3.2.2 Experimental Results -- 11.4 Precise Torque Estimation -- 11.4.1 HF Square Wave Voltage Injection Considering Cross-coupling Effect -- 11.4.2 Torque Estimation Based on Estimated HF Inductances -- 11.5 Thermal Condition Monitoring -- 11.6 Fault Diagnosis -- 11.6.1 Inter-turn Short-circuit Fault -- 11.6.2 Demagnetization Fault -- 11.7 Summary -- References -- Appendix A: Finite Element Calculation of Winding Inductances -- Appendix B: Specifications of Prototype Machines and Experimental Platforms -- Index -- EULA. |
| Record Nr. | UNINA-9911022472203321 |
Zhu Zi Qiang
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sensorless Control of Permanent Magnet Synchronous Machine Drives
| Sensorless Control of Permanent Magnet Synchronous Machine Drives |
| Autore | Zhu Zi Qiang |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (498 pages) |
| Altri autori (Persone) | WuXi Meng |
| Collana | IEEE Press Series on Control Systems Theory and Applications Series |
| ISBN |
1-394-19438-2
1-394-19437-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- List of Abbreviations -- List of Symbols -- Chapter 1 General Introduction -- 1.1 Introduction -- 1.2 Permanent Magnet Machines -- 1.2.1 Topologies -- 1.2.2 Drives -- 1.3 Basic Principle of PM BLAC (PMSM) Drives -- 1.3.1 Modeling -- 1.3.1.1 ABC Reference Frame -- 1.3.1.2 Stationary Reference Frame -- 1.3.1.3 Synchronous Reference Frame -- 1.3.2 Control Strategies -- 1.3.2.1 Space Vector PWM -- 1.3.2.2 Field-Oriented Control -- 1.3.2.3 Direct Torque Control -- 1.3.2.4 Model Predictive Control -- 1.4 Basic Principle of PM BLDC Drives -- 1.4.1 Modeling -- 1.4.2 Control Strategies -- 1.5 Comparison Between PM BLDC (PMSM) and BLAC Drives -- 1.5.1 Square-Wave Back-EMF Machine -- 1.5.2 Sine-Wave Back-EMF Machine -- 1.6 Sensorless Control Techniques and Applications -- 1.6.1 Classification -- 1.6.2 Applications -- 1.7 Scope of This Book -- References -- Chapter 2 Fundamental Model-Based Sensorless Control -- 2.1 Introduction -- 2.2 Flux-Linkage-Based Method -- 2.2.1 Flux-Linkage Method for Non-salient PMSMs -- 2.2.2 Active Flux-Linkage Method for Salient PMSMs -- 2.3 Back-EMF-Based Method -- 2.3.1 Back-EMF Method for Non-salient PMSMs -- 2.3.2 Extended Back-EMF Method for Salient PMSMs -- 2.3.2.1 In Synchronous Reference Frame -- 2.3.2.2 In Stationary Reference Frame -- 2.3.3 Comparison -- 2.3.3.1 Comparison Between Back-EMF and Flux-Linkage Methods -- 2.3.3.2 Comparison of Active Flux and Extended Back-EMF -- 2.4 Position Observer -- 2.4.1 Arctangent Method -- 2.4.2 Phase-Locked Loop -- 2.4.3 Simplified Extended Kalman Filter -- 2.4.4 Simulation Results -- 2.5 Summary -- References -- Chapter 3 Fundamental Model-Based Sensorless Control-Issues and Solutions -- 3.1 Introduction -- 3.2 Integration and Filter.
3.2.1 Initial Value -- 3.2.2 Drift -- 3.2.3 Delay -- 3.3 Back-EMF and Current Harmonics -- 3.3.1 Influence of Back-EMF Harmonics -- 3.3.2 Influence of Current Harmonics -- 3.4 Cross-Coupling Magnetic Saturation -- 3.4.1 Impact on Position Estimation -- 3.4.2 Sensorless Control Accounting for Cross-Coupling Inductance -- 3.5 Parameter Mismatch -- 3.5.1 Impact on Position Estimation -- 3.5.2 Position Correction Method Under Parameter Mismatches -- 3.5.2.1 q-Axis Injection for q-Axis Inductance Mismatch -- 3.5.2.2 d-Axis Injection for Resistance Mismatch -- 3.5.2.3 Amplitude Calculation Technique -- 3.5.2.4 Position Error Correction with LMS Algorithm -- 3.5.2.5 Experimental Results -- 3.6 Parameter Asymmetry -- 3.6.1 Asymmetric Modeling -- 3.6.1.1 Resistance Asymmetry -- 3.6.1.2 Inductance Asymmetry -- 3.6.1.3 Back-EMF Asymmetry -- 3.6.2 Impacts on Position Estimation -- 3.6.3 Harmonic Suppression -- 3.7 Summary -- References -- Chapter 4 Saliency Tracking-Based Sensorless Control Methods -- 4.1 Introduction -- 4.2 High-Frequency Model of PM Machines -- 4.2.1 Model in Synchronous Reference Frame -- 4.2.2 Model in Estimated Synchronous Reference Frame -- 4.2.3 Model in Stationary Reference Frame -- 4.3 High-Frequency Signal Injection in Estimated Synchronous Reference Frame -- 4.3.1 Pulsating Sinusoidal Signal -- 4.3.2 Pulsating Square-Wave Signal -- 4.4 High-Frequency Signal Injection in Stationary Reference Frame -- 4.4.1 Rotating Sinusoidal Signal -- 4.4.2 Pulsating Sinusoidal Signal -- 4.4.2.1 Mathematical Model -- 4.4.2.2 Ip Pre-detection and Compensation -- 4.4.2.3 Experiment Results -- 4.4.3 Pulsating Square-Wave Signal -- 4.4.3.1 Mathematical Model -- 4.4.3.2 IpSQ Pre-detection and Compensation -- 4.4.3.3 Experiment Results -- 4.5 Position Observer -- 4.5.1 Basic Structure -- 4.5.2 Influence of LPF. 4.5.3 Convergence Analysis -- 4.6 Other Saliency Tracking-Based Methods -- 4.6.1 Transient Voltage Vector-Based Method -- 4.6.2 PWM Excitation-Based Method -- 4.7 Summary -- References -- Chapter 5 Saliency Tracking-Based Sensorless Control Methods-Issues and Solutions -- 5.1 Introduction -- 5.2 Cross-Coupling Magnetic Saturation -- 5.2.1 Impact on Position Estimation -- 5.2.2 Compensation Scheme -- 5.2.2.1 Direct Compensation -- 5.2.2.2 Indirect Compensation -- 5.3 Machine Saliency and Load Effect -- 5.3.1 Machine Saliency Investigation -- 5.3.2 Machine Saliency Circle -- 5.4 Multiple Saliency Effect -- 5.5 Asymmetric Parameters -- 5.5.1 High-Frequency Models with Machine Inductance Asymmetry -- 5.5.2 Suppression of Position Errors Due to Inductance Asymmetry -- 5.5.3 Experimental Results -- 5.5.3.1 Position Estimation Under Inductance Asymmetry -- 5.5.3.2 The Second Harmonic Oscillating Error Suppression -- 5.6 Inverter Nonlinearity Effects -- 5.6.1 Mechanism -- 5.6.1.1 Deadtime -- 5.6.1.2 Parasitic Capacitance Effects -- 5.6.2 HF Voltage Distortion -- 5.6.3 HF Current Distortion -- 5.6.3.1 Rotating Signal Injection-Based Method -- 5.6.3.2 Pulsating Signal Injection-Based Method -- 5.6.3.3 Experiment Results -- 5.6.4 Compensation Scheme -- 5.6.4.1 Pre-compensation -- 5.6.4.2 Post-compensation -- 5.6.4.3 Comparison -- 5.7 Signal Processing Delay -- 5.8 Selection of Amplitude and Frequency for Injection Voltage Signal -- 5.8.1 Quantization Error in AD Conversion -- 5.8.2 Sensorless Safe Operation Area -- 5.8.3 Experimental Results of Determining Amplitude and Frequency -- 5.8.4 Sensorless Operation Performance -- 5.8.5 Pseudo-random Selection of Injection Signal -- 5.9 Transition Between Low Speed and High Speed -- 5.10 Summary -- References. Chapter 6 Saliency Tracking-Based Sensorless Control Method Using Zero Sequence Voltage -- 6.1 Introduction -- 6.2 Rotating Sinusoidal Signal Injection -- 6.2.1 Zero Sequence Voltage Model -- 6.2.2 Signal Demodulation -- 6.3 Conventional Pulsating Sinusoidal Signal Injection -- 6.4 Anti-rotating Pulsating Sinusoidal Signal Injection -- 6.4.1 Anti-rotating Signal Injection -- 6.4.2 Signal Demodulation -- 6.4.3 Cross-Saturation Effect -- 6.4.4 Experimental Results -- 6.4.4.1 Zero Sequence Voltage Model Verification -- 6.4.4.2 Steady- and Dynamic-State Position Estimation Performances -- 6.4.4.3 Robustness and Accuracy Comparison -- 6.5 Conventional Pulsating Square-Wave Signal Injection -- 6.6 Anti-rotating Pulsating Square-Wave Signal Injection -- 6.6.1 Anti-rotating Signal Injection -- 6.6.2 Signal Demodulation -- 6.6.3 Cross-Saturation Effect -- 6.6.4 Experimental Results -- 6.6.4.1 Zero Sequence Voltage Model Verification -- 6.6.4.2 Steady- and Dynamic-State Position Estimation Performance -- 6.6.4.3 Comparison to Square-Wave Injection Method with HF Current Sensing -- 6.7 Summary -- References -- Chapter 7 Sensorless Control of Dual Three-Phase PMSMs and Open-.Winding PMSMs -- 7.1 Introduction -- 7.2 Dual Three-Phase PMSMs -- 7.2.1 Modeling of DTP-PMSM Drive -- 7.2.1.1 Double dq Model -- 7.2.1.2 Vector Space Decomposition -- 7.2.2 HFSI Sensorless Control with Current Response -- 7.2.3 HFSI Sensorless Control with Voltage Response -- 7.2.3.1 Zero Sequence Voltage Measurement -- 7.2.3.2 Modeling of Dual Three-Phase PMSM -- 7.2.3.3 Pulsating Sinusoidal Signal Injection -- 7.2.3.4 Rotating Signal Injection Method -- 7.2.3.5 Experimental Results and Analysis for DTP-PMSM -- 7.2.4 Fundamental Model-Based Sensorless Control -- 7.2.4.1 Extended Back-EMF Model on DTP-PMSM -- 7.2.4.2 Parameter Mismatch Effect. 7.2.4.3 Parameter Mismatch Correction -- 7.2.4.4 Experimental Results -- 7.2.5 Third Harmonic Back-EMF-Based Sensorless Control -- 7.3 Open Winding PMSMs -- 7.3.1 Modeling of OW-PMSM Drive -- 7.3.2 Phase Shift-Based SVPWM for OW-PMSM -- 7.3.3 Zero Sequence Current-Based Sensorless Control -- 7.3.4 Nonparametric Zero Sequence Voltage-Based Sensorless Control -- 7.4 Summary -- References -- Chapter 8 Magnetic Polarity Identification -- 8.1 Introduction -- 8.2 Dual Voltage Pulses Injection-Based Method -- 8.3 d-Axis Current Injection-Based Method -- 8.3.1 HF Current Response -- 8.3.2 HF Zero Sequence Voltage Response -- 8.4 Secondary Harmonic-Based Method -- 8.4.1 Modeling of Secondary Harmonics -- 8.4.2 HF Current Response -- 8.4.3 HF Zero Sequence Voltage Response -- 8.4.4 Experiment Results -- 8.5 Summary -- References -- Chapter 9 Rotor Initial Position Estimation -- 9.1 Introduction -- 9.2 Magnetic Saturation Effect -- 9.3 Basic Pulse Injection Method Using Three Phase Currents -- 9.3.1 Pulse Excitation Configuration -- 9.3.2 Current Response Model -- 9.3.3 Initial Position Estimation -- 9.4 Improved Pulse Injection Method Using Three Phase Currents -- 9.4.1 Utilization of Three Phase Current Responses -- 9.4.2 Pulse Injection Sequence -- 9.4.3 Boundary Detection Strategy -- 9.4.4 Experiment Results -- 9.4.4.1 Estimation Example -- 9.4.4.2 Overall Rotor Initial Position Estimation Performance -- 9.4.4.3 Boundary Detection Performance -- 9.5 Pulse Injection Method Using DC-Link Voltage -- 9.5.1 Utilization of DC-Link Voltage Variation -- 9.5.2 Pulse Injection Process -- 9.5.3 Experiment Results -- 9.5.3.1 Estimation Example -- 9.5.3.2 Overall Estimation Performance -- 9.5.3.3 Comparison with Estimation Using Current Responses -- 9.6 Voltage Pulse Selection -- 9.6.1 Selection of Duration. 9.6.2 Selection of Magnitude. |
| Record Nr. | UNINA-9910830579803321 |
Zhu Zi Qiang
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sensorless Control of Permanent Magnet Synchronous Machine Drives
| Sensorless Control of Permanent Magnet Synchronous Machine Drives |
| Autore | Zhu Zi Qiang |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (498 pages) |
| Disciplina | 621.46 |
| Altri autori (Persone) | WuXi Meng |
| Collana | IEEE Press Series on Control Systems Theory and Applications Series |
| Soggetto topico |
Permanent magnet motors
Electric machinery, Synchronous |
| ISBN |
9781394194384
1394194382 9781394194377 1394194374 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- List of Abbreviations -- List of Symbols -- Chapter 1 General Introduction -- 1.1 Introduction -- 1.2 Permanent Magnet Machines -- 1.2.1 Topologies -- 1.2.2 Drives -- 1.3 Basic Principle of PM BLAC (PMSM) Drives -- 1.3.1 Modeling -- 1.3.1.1 ABC Reference Frame -- 1.3.1.2 Stationary Reference Frame -- 1.3.1.3 Synchronous Reference Frame -- 1.3.2 Control Strategies -- 1.3.2.1 Space Vector PWM -- 1.3.2.2 Field-Oriented Control -- 1.3.2.3 Direct Torque Control -- 1.3.2.4 Model Predictive Control -- 1.4 Basic Principle of PM BLDC Drives -- 1.4.1 Modeling -- 1.4.2 Control Strategies -- 1.5 Comparison Between PM BLDC (PMSM) and BLAC Drives -- 1.5.1 Square-Wave Back-EMF Machine -- 1.5.2 Sine-Wave Back-EMF Machine -- 1.6 Sensorless Control Techniques and Applications -- 1.6.1 Classification -- 1.6.2 Applications -- 1.7 Scope of This Book -- References -- Chapter 2 Fundamental Model-Based Sensorless Control -- 2.1 Introduction -- 2.2 Flux-Linkage-Based Method -- 2.2.1 Flux-Linkage Method for Non-salient PMSMs -- 2.2.2 Active Flux-Linkage Method for Salient PMSMs -- 2.3 Back-EMF-Based Method -- 2.3.1 Back-EMF Method for Non-salient PMSMs -- 2.3.2 Extended Back-EMF Method for Salient PMSMs -- 2.3.2.1 In Synchronous Reference Frame -- 2.3.2.2 In Stationary Reference Frame -- 2.3.3 Comparison -- 2.3.3.1 Comparison Between Back-EMF and Flux-Linkage Methods -- 2.3.3.2 Comparison of Active Flux and Extended Back-EMF -- 2.4 Position Observer -- 2.4.1 Arctangent Method -- 2.4.2 Phase-Locked Loop -- 2.4.3 Simplified Extended Kalman Filter -- 2.4.4 Simulation Results -- 2.5 Summary -- References -- Chapter 3 Fundamental Model-Based Sensorless Control-Issues and Solutions -- 3.1 Introduction -- 3.2 Integration and Filter.
3.2.1 Initial Value -- 3.2.2 Drift -- 3.2.3 Delay -- 3.3 Back-EMF and Current Harmonics -- 3.3.1 Influence of Back-EMF Harmonics -- 3.3.2 Influence of Current Harmonics -- 3.4 Cross-Coupling Magnetic Saturation -- 3.4.1 Impact on Position Estimation -- 3.4.2 Sensorless Control Accounting for Cross-Coupling Inductance -- 3.5 Parameter Mismatch -- 3.5.1 Impact on Position Estimation -- 3.5.2 Position Correction Method Under Parameter Mismatches -- 3.5.2.1 q-Axis Injection for q-Axis Inductance Mismatch -- 3.5.2.2 d-Axis Injection for Resistance Mismatch -- 3.5.2.3 Amplitude Calculation Technique -- 3.5.2.4 Position Error Correction with LMS Algorithm -- 3.5.2.5 Experimental Results -- 3.6 Parameter Asymmetry -- 3.6.1 Asymmetric Modeling -- 3.6.1.1 Resistance Asymmetry -- 3.6.1.2 Inductance Asymmetry -- 3.6.1.3 Back-EMF Asymmetry -- 3.6.2 Impacts on Position Estimation -- 3.6.3 Harmonic Suppression -- 3.7 Summary -- References -- Chapter 4 Saliency Tracking-Based Sensorless Control Methods -- 4.1 Introduction -- 4.2 High-Frequency Model of PM Machines -- 4.2.1 Model in Synchronous Reference Frame -- 4.2.2 Model in Estimated Synchronous Reference Frame -- 4.2.3 Model in Stationary Reference Frame -- 4.3 High-Frequency Signal Injection in Estimated Synchronous Reference Frame -- 4.3.1 Pulsating Sinusoidal Signal -- 4.3.2 Pulsating Square-Wave Signal -- 4.4 High-Frequency Signal Injection in Stationary Reference Frame -- 4.4.1 Rotating Sinusoidal Signal -- 4.4.2 Pulsating Sinusoidal Signal -- 4.4.2.1 Mathematical Model -- 4.4.2.2 Ip Pre-detection and Compensation -- 4.4.2.3 Experiment Results -- 4.4.3 Pulsating Square-Wave Signal -- 4.4.3.1 Mathematical Model -- 4.4.3.2 IpSQ Pre-detection and Compensation -- 4.4.3.3 Experiment Results -- 4.5 Position Observer -- 4.5.1 Basic Structure -- 4.5.2 Influence of LPF. 4.5.3 Convergence Analysis -- 4.6 Other Saliency Tracking-Based Methods -- 4.6.1 Transient Voltage Vector-Based Method -- 4.6.2 PWM Excitation-Based Method -- 4.7 Summary -- References -- Chapter 5 Saliency Tracking-Based Sensorless Control Methods-Issues and Solutions -- 5.1 Introduction -- 5.2 Cross-Coupling Magnetic Saturation -- 5.2.1 Impact on Position Estimation -- 5.2.2 Compensation Scheme -- 5.2.2.1 Direct Compensation -- 5.2.2.2 Indirect Compensation -- 5.3 Machine Saliency and Load Effect -- 5.3.1 Machine Saliency Investigation -- 5.3.2 Machine Saliency Circle -- 5.4 Multiple Saliency Effect -- 5.5 Asymmetric Parameters -- 5.5.1 High-Frequency Models with Machine Inductance Asymmetry -- 5.5.2 Suppression of Position Errors Due to Inductance Asymmetry -- 5.5.3 Experimental Results -- 5.5.3.1 Position Estimation Under Inductance Asymmetry -- 5.5.3.2 The Second Harmonic Oscillating Error Suppression -- 5.6 Inverter Nonlinearity Effects -- 5.6.1 Mechanism -- 5.6.1.1 Deadtime -- 5.6.1.2 Parasitic Capacitance Effects -- 5.6.2 HF Voltage Distortion -- 5.6.3 HF Current Distortion -- 5.6.3.1 Rotating Signal Injection-Based Method -- 5.6.3.2 Pulsating Signal Injection-Based Method -- 5.6.3.3 Experiment Results -- 5.6.4 Compensation Scheme -- 5.6.4.1 Pre-compensation -- 5.6.4.2 Post-compensation -- 5.6.4.3 Comparison -- 5.7 Signal Processing Delay -- 5.8 Selection of Amplitude and Frequency for Injection Voltage Signal -- 5.8.1 Quantization Error in AD Conversion -- 5.8.2 Sensorless Safe Operation Area -- 5.8.3 Experimental Results of Determining Amplitude and Frequency -- 5.8.4 Sensorless Operation Performance -- 5.8.5 Pseudo-random Selection of Injection Signal -- 5.9 Transition Between Low Speed and High Speed -- 5.10 Summary -- References. Chapter 6 Saliency Tracking-Based Sensorless Control Method Using Zero Sequence Voltage -- 6.1 Introduction -- 6.2 Rotating Sinusoidal Signal Injection -- 6.2.1 Zero Sequence Voltage Model -- 6.2.2 Signal Demodulation -- 6.3 Conventional Pulsating Sinusoidal Signal Injection -- 6.4 Anti-rotating Pulsating Sinusoidal Signal Injection -- 6.4.1 Anti-rotating Signal Injection -- 6.4.2 Signal Demodulation -- 6.4.3 Cross-Saturation Effect -- 6.4.4 Experimental Results -- 6.4.4.1 Zero Sequence Voltage Model Verification -- 6.4.4.2 Steady- and Dynamic-State Position Estimation Performances -- 6.4.4.3 Robustness and Accuracy Comparison -- 6.5 Conventional Pulsating Square-Wave Signal Injection -- 6.6 Anti-rotating Pulsating Square-Wave Signal Injection -- 6.6.1 Anti-rotating Signal Injection -- 6.6.2 Signal Demodulation -- 6.6.3 Cross-Saturation Effect -- 6.6.4 Experimental Results -- 6.6.4.1 Zero Sequence Voltage Model Verification -- 6.6.4.2 Steady- and Dynamic-State Position Estimation Performance -- 6.6.4.3 Comparison to Square-Wave Injection Method with HF Current Sensing -- 6.7 Summary -- References -- Chapter 7 Sensorless Control of Dual Three-Phase PMSMs and Open-.Winding PMSMs -- 7.1 Introduction -- 7.2 Dual Three-Phase PMSMs -- 7.2.1 Modeling of DTP-PMSM Drive -- 7.2.1.1 Double dq Model -- 7.2.1.2 Vector Space Decomposition -- 7.2.2 HFSI Sensorless Control with Current Response -- 7.2.3 HFSI Sensorless Control with Voltage Response -- 7.2.3.1 Zero Sequence Voltage Measurement -- 7.2.3.2 Modeling of Dual Three-Phase PMSM -- 7.2.3.3 Pulsating Sinusoidal Signal Injection -- 7.2.3.4 Rotating Signal Injection Method -- 7.2.3.5 Experimental Results and Analysis for DTP-PMSM -- 7.2.4 Fundamental Model-Based Sensorless Control -- 7.2.4.1 Extended Back-EMF Model on DTP-PMSM -- 7.2.4.2 Parameter Mismatch Effect. 7.2.4.3 Parameter Mismatch Correction -- 7.2.4.4 Experimental Results -- 7.2.5 Third Harmonic Back-EMF-Based Sensorless Control -- 7.3 Open Winding PMSMs -- 7.3.1 Modeling of OW-PMSM Drive -- 7.3.2 Phase Shift-Based SVPWM for OW-PMSM -- 7.3.3 Zero Sequence Current-Based Sensorless Control -- 7.3.4 Nonparametric Zero Sequence Voltage-Based Sensorless Control -- 7.4 Summary -- References -- Chapter 8 Magnetic Polarity Identification -- 8.1 Introduction -- 8.2 Dual Voltage Pulses Injection-Based Method -- 8.3 d-Axis Current Injection-Based Method -- 8.3.1 HF Current Response -- 8.3.2 HF Zero Sequence Voltage Response -- 8.4 Secondary Harmonic-Based Method -- 8.4.1 Modeling of Secondary Harmonics -- 8.4.2 HF Current Response -- 8.4.3 HF Zero Sequence Voltage Response -- 8.4.4 Experiment Results -- 8.5 Summary -- References -- Chapter 9 Rotor Initial Position Estimation -- 9.1 Introduction -- 9.2 Magnetic Saturation Effect -- 9.3 Basic Pulse Injection Method Using Three Phase Currents -- 9.3.1 Pulse Excitation Configuration -- 9.3.2 Current Response Model -- 9.3.3 Initial Position Estimation -- 9.4 Improved Pulse Injection Method Using Three Phase Currents -- 9.4.1 Utilization of Three Phase Current Responses -- 9.4.2 Pulse Injection Sequence -- 9.4.3 Boundary Detection Strategy -- 9.4.4 Experiment Results -- 9.4.4.1 Estimation Example -- 9.4.4.2 Overall Rotor Initial Position Estimation Performance -- 9.4.4.3 Boundary Detection Performance -- 9.5 Pulse Injection Method Using DC-Link Voltage -- 9.5.1 Utilization of DC-Link Voltage Variation -- 9.5.2 Pulse Injection Process -- 9.5.3 Experiment Results -- 9.5.3.1 Estimation Example -- 9.5.3.2 Overall Estimation Performance -- 9.5.3.3 Comparison with Estimation Using Current Responses -- 9.6 Voltage Pulse Selection -- 9.6.1 Selection of Duration. 9.6.2 Selection of Magnitude. |
| Record Nr. | UNINA-9911019733103321 |
Zhu Zi Qiang
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||