top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Automatic modulation classification : principles, algorithms, and applications / / Zhechen Zhu and Asoke K. Nand
Automatic modulation classification : principles, algorithms, and applications / / Zhechen Zhu and Asoke K. Nand
Autore Zhu Zhechen
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (194 p.)
Disciplina 621.3815/36
Soggetto topico Modulation (Electronics)
ISBN 1-118-90650-0
1-118-90652-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; About the Authors; Preface; List of Abbreviations; List of Symbols; Chapter 1 Introduction; 1.1 Background; 1.2 Applications ofAMC; 1.2.1 Military Applications; 1.2.2 Civilian Applications; 1.3 Field Overview and Book Scope; 1.4 Modulation and Communication System Basics; 1.4.1 Analogue Systems and Modulations; 1.4.2 Digital Systems and Modulations; 1.4.3 Received Signal with Channel Effects; 1.5 Conclusion; References; Chapter 2 Signal Models for Modulation Classification; 2.1 Introduction; 2.2 Signal Model inAWGNChannel
2.2.1 Signal Distribution of I-Q Segments2.2.2 Signal Distribution of Signal Phase; 2.2.3 Signal Distribution of Signal Magnitude; 2.3 Signal Models in Fading Channel; 2.4 Signal Models in Non-Gaussian Channel; 2.4.1 Middleton ́s Class A Model; 2.4.2 Symmetric Alpha Stable Model; 2.4.3 Gaussian Mixture Model; 2.5 Conclusion; References; Chapter 3 Likelihood-based Classifiers; 3.1 Introduction; 3.2 Maximum Likelihood Classifiers; 3.2.1 Likelihood Function inAWGNChannels; 3.2.2 Likelihood Function in Fading Channels; 3.2.3 Likelihood Function in Non-Gaussian Noise Channels
3.2.4 Maximum Likelihood Classification Decision Making3.3 Likelihood Ratio Test for Unknown Channel Parameters; 3.3.1 Average Likelihood Ratio Test; 3.3.2 Generalized Likelihood Ratio Test; 3.3.3 Hybrid Likelihood Ratio Test; 3.4 Complexity Reduction; 3.4.1 Discrete Likelihood Ratio Test and Lookup Table; 3.4.2 Minimum Distance Likelihood Function; 3.4.3 Non-Parametric Likelihood Function; 3.5 Conclusion; References; Chapter 4 Distribution Test-based Classifier; 4.1 Introduction; 4.2 Kolmogorov-Smirnov Test Classifier; 4.2.1 The KS Test for Goodness of Fit
4.2.2 One-sample KS Test Classifier4.2.3 Two-sample KS Test Classifier; 4.2.4 Phase Difference Classifier; 4.3 Cramer-Von Mises Test Classifier; 4.4 Anderson-Darling Test Classifier; 4.5 Optimized Distribution Sampling Test Classifier; 4.5.1 Sampling Location Optimization; 4.5.2 Distribution Sampling; 4.5.3 Classification Decision Metrics; 4.5.4 Modulation Classification Decision Making; 4.6 Conclusion; References; Chapter 5 Modulation Classification Features; 5.1 Introduction; 5.2 Signal Spectral-based Features; 5.2.1 Signal Spectral-based Features; 5.2.2 Spectral-based Features Specialities
5.2.3 Spectral-based Features Decision Making5.2.4 Decision Threshold Optimization; 5.3 Wavelet Transform-based Features; 5.4 High-order Statistics-based Features; 5.4.1 High-order Moment-based Features; 5.4.2 High-order Cumulant-based Features; 5.5 Cyclostationary Analysis-based Features; 5.6 Conclusion; References; Chapter 6 Machine Learning for Modulation Classification; 6.1 Introduction; 6.2 K-Nearest Neighbour Classifier; 6.2.1 Reference Feature Space; 6.2.2 Distance Definition; 6.2.3 K-Nearest Neighbour Decision; 6.3 Support Vector Machine Classifier
6.4 Logistic Regression for Feature Combination
Record Nr. UNINA-9910132305003321
Zhu Zhechen  
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Automatic modulation classification : principles, algorithms, and applications / / Zhechen Zhu and Asoke K. Nand
Automatic modulation classification : principles, algorithms, and applications / / Zhechen Zhu and Asoke K. Nand
Autore Zhu Zhechen
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (194 p.)
Disciplina 621.3815/36
Soggetto topico Modulation (Electronics)
ISBN 1-118-90650-0
1-118-90652-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; About the Authors; Preface; List of Abbreviations; List of Symbols; Chapter 1 Introduction; 1.1 Background; 1.2 Applications ofAMC; 1.2.1 Military Applications; 1.2.2 Civilian Applications; 1.3 Field Overview and Book Scope; 1.4 Modulation and Communication System Basics; 1.4.1 Analogue Systems and Modulations; 1.4.2 Digital Systems and Modulations; 1.4.3 Received Signal with Channel Effects; 1.5 Conclusion; References; Chapter 2 Signal Models for Modulation Classification; 2.1 Introduction; 2.2 Signal Model inAWGNChannel
2.2.1 Signal Distribution of I-Q Segments2.2.2 Signal Distribution of Signal Phase; 2.2.3 Signal Distribution of Signal Magnitude; 2.3 Signal Models in Fading Channel; 2.4 Signal Models in Non-Gaussian Channel; 2.4.1 Middleton ́s Class A Model; 2.4.2 Symmetric Alpha Stable Model; 2.4.3 Gaussian Mixture Model; 2.5 Conclusion; References; Chapter 3 Likelihood-based Classifiers; 3.1 Introduction; 3.2 Maximum Likelihood Classifiers; 3.2.1 Likelihood Function inAWGNChannels; 3.2.2 Likelihood Function in Fading Channels; 3.2.3 Likelihood Function in Non-Gaussian Noise Channels
3.2.4 Maximum Likelihood Classification Decision Making3.3 Likelihood Ratio Test for Unknown Channel Parameters; 3.3.1 Average Likelihood Ratio Test; 3.3.2 Generalized Likelihood Ratio Test; 3.3.3 Hybrid Likelihood Ratio Test; 3.4 Complexity Reduction; 3.4.1 Discrete Likelihood Ratio Test and Lookup Table; 3.4.2 Minimum Distance Likelihood Function; 3.4.3 Non-Parametric Likelihood Function; 3.5 Conclusion; References; Chapter 4 Distribution Test-based Classifier; 4.1 Introduction; 4.2 Kolmogorov-Smirnov Test Classifier; 4.2.1 The KS Test for Goodness of Fit
4.2.2 One-sample KS Test Classifier4.2.3 Two-sample KS Test Classifier; 4.2.4 Phase Difference Classifier; 4.3 Cramer-Von Mises Test Classifier; 4.4 Anderson-Darling Test Classifier; 4.5 Optimized Distribution Sampling Test Classifier; 4.5.1 Sampling Location Optimization; 4.5.2 Distribution Sampling; 4.5.3 Classification Decision Metrics; 4.5.4 Modulation Classification Decision Making; 4.6 Conclusion; References; Chapter 5 Modulation Classification Features; 5.1 Introduction; 5.2 Signal Spectral-based Features; 5.2.1 Signal Spectral-based Features; 5.2.2 Spectral-based Features Specialities
5.2.3 Spectral-based Features Decision Making5.2.4 Decision Threshold Optimization; 5.3 Wavelet Transform-based Features; 5.4 High-order Statistics-based Features; 5.4.1 High-order Moment-based Features; 5.4.2 High-order Cumulant-based Features; 5.5 Cyclostationary Analysis-based Features; 5.6 Conclusion; References; Chapter 6 Machine Learning for Modulation Classification; 6.1 Introduction; 6.2 K-Nearest Neighbour Classifier; 6.2.1 Reference Feature Space; 6.2.2 Distance Definition; 6.2.3 K-Nearest Neighbour Decision; 6.3 Support Vector Machine Classifier
6.4 Logistic Regression for Feature Combination
Record Nr. UNINA-9910807452803321
Zhu Zhechen  
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui