top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Emerging nanoelectronic devices / / An Chen, Globalfoundries, USA [and three others]
Emerging nanoelectronic devices / / An Chen, Globalfoundries, USA [and three others]
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : John Wiley & Sons Inc., , 2015
Descrizione fisica 1 online resource (573 pages) : illustrations (some color)
Disciplina 621.381
Soggetto topico Nanoelectronics
Nanoelectromechanical systems
Nanostructured materials
ISBN 1-118-95826-8
1-118-95825-X
1-322-31759-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title Page -- Copyright -- Dedication -- Preface -- List of Contributors -- Acronyms -- Part One: Introduction -- Chapter 1: The Nanoelectronics Roadmap -- 1.1 Introduction -- 1.2 Technology Scaling: Impact and Issues -- 1.3 Technology Scaling: Scaling Limits of Charge-based Devices -- 1.4 The International Technology Roadmap for Semiconductors -- 1.5 ITRS Emerging Research Devices International Technology Working Group -- 1.6 Guiding Performance Criteria -- 1.7 Selection of Nanodevices as Technology Entries -- 1.8 Perspectives -- References -- Chapter 2: What Constitutes a Nanoswitch? A Perspective -- 2.1 The Search for a Better Switch -- 2.2 Complementary Metal Oxide Semiconductor Switch: Why it Shows Gain -- 2.3 Switch Based on Magnetic Tunnel Junctions: Would it Show Gain? -- 2.4 Giant Spin Hall Effect: A Route to Gain -- 2.5 Other Possibilities for Switches with Gain -- 2.6 What do Alternative Switches Have to Offer? -- 2.7 Perspective -- 2.8 Summary -- Acknowledgments -- References -- Part Two: Nanoelectronic Memories -- Chapter 3: Memory Technologies: Status and Perspectives -- 3.1 Introduction: Baseline Memory Technologies -- 3.2 Essential Physics of Charge-based Memory -- 3.3 Dynamic Random Access Memory -- 3.4 Flash Memory -- 3.5 Static Random Access Memory -- 3.6 Summary and Perspective -- Appendix: Memory Array Interconnects -- Acknowledgments -- References -- Chapter 4: Spin Transfer Torque Random Access Memory -- 4.1 Chapter Overview -- 4.2 Spin Transfer Torque -- 4.3 STT-RAM Operation -- 4.4 STT-RAM with Perpendicular Anisotropy -- 4.5 Stack and Material Engineering for Jc Reduction -- 4.6 Ultra-Fast Switching of MTJs -- 4.7 Spin-Orbit Torques for Memory Application -- 4.8 Current Demonstrations for STT-RAM -- 4.9 Summary and Perspectives -- References -- Chapter 5: Phase Change Memory -- 5.1 Introduction.
5.2 Device Operation -- 5.3 Material Properties -- 5.4 Device and Material Scaling to the Nanometer Size -- 5.5 Multi-Bit Operation and 3D Integration -- 5.6 Applications -- 5.7 Future Outlook -- 5.8 Summary -- Acknowledgments -- References -- Chapter 6: Ferroelectric FET Memory -- 6.1 Introduction -- 6.2 Ferroelectric FET for Flash Memory Application -- 6.3 Ferroelectric FET for SRAM Application -- 6.4 System Consideration: SSD System with Fe-NAND Flash Memory -- 6.5 Perspectives and Summary -- References -- Chapter 7: Nano-Electro-Mechanical (NEM) Memory Devices -- 7.1 Introduction and Rationale for a Memory Based on NEM Switch -- 7.2 NEM Relay and Capacitor Memories -- 7.3 NEM-FET Memory -- 7.4 Carbon-based NEM Memories -- 7.5 Opportunities and Challenges for NEM Memories -- References -- Chapter 8: Redox-based Resistive Memory -- 8.1 Introduction -- 8.2 Physical Fundamentals of Redox Memories -- 8.3 Electrochemical Metallization Memory Cells -- 8.4 Valence Change Memory Cells -- 8.5 Performance -- 8.6 Summary -- References -- Chapter 9: Electronic Effect Resistive Switching Memories -- 9.1 Introduction -- 9.2 Charge Injection and Trapping -- 9.3 Mott Transition -- 9.4 Ferroelectric Resistive Switching -- 9.5 Perspectives -- 9.6 Summary -- References -- Chapter 10: Macromolecular Memory -- 10.1 Chapter Overview -- 10.2 Macromolecules -- 10.3 Elementary Physical Chemistry of Macromolecular Memory -- 10.4 Classes of Macromolecular Memory Materials and Their Performance -- 10.5 Perspectives -- 10.6 Summary -- Acknowledgments -- References -- Chapter 11: Molecular Transistors -- 11.1 Introduction -- 11.2 Experimental Approaches -- 11.3 Molecular Transistors -- 11.4 Molecular Design -- 11.5 Perspectives -- Acknowledgments -- References -- Chapter 12: Memory Select Devices -- 12.1 Introduction -- 12.2 Crossbar Array and Memory Select Devices.
12.3 Memory Select Device Options -- 12.4 Challenges of Memory Select Devices -- 12.5 Summary -- References -- Chapter 13: Emerging Memory Devices: Assessment and Benchmarking -- 13.1 Introduction -- 13.2 Common Emerging Memory Terminology and Metrics -- 13.3 Redox RAM -- 13.4 Emerging Ferroelectric Memories -- 13.5 Mott Memory -- 13.6 Macromolecular Memory -- 13.7 Carbon-based Resistive Switching Memory -- 13.8 Molecular Memory -- 13.9 Assessment and Benchmarking -- 13.10 Summary and Conclusions -- Acknowledgments -- References -- Part Three: Nanoelectronic Logic and Information Processing -- Chapter 14: Re-Invention of FET -- 14.1 Introduction -- 14.2 Historical and Future Trend of MOSFETs -- 14.3 Near-term Solutions -- 14.4 Long-term Solutions -- 14.5 Summary -- References -- Chapter 15: Graphene Electronics -- 15.1 Introduction -- 15.2 Properties of Graphene -- 15.3 Graphene MOSFETs for Mainstream Logic and RF Applications -- 15.4 Graphene MOSFETs for Nonmainstream Applications -- 15.5 Graphene NonMOSFET Transistors -- 15.6 Perspectives -- Acknowledgment -- References -- Chapter 16: Carbon Nanotube Electronics -- 16.1 Carbon Nanotubes - The Ideal Transistor Channel -- 16.2 Operation of the CNTFET -- 16.3 Important Aspects of CNTFETs -- 16.4 Scaling CNTFETs to the Sub-10 Nanometer Regime -- 16.5 Material Considerations -- 16.6 Perspective -- 16.7 Conclusion -- References -- Chapter 17: Spintronics -- 17.1 Introduction -- 17.2 Spin Transistors -- 17.3 Magnetic Logic Circuits -- 17.4 Summary -- References -- Chapter 18: NEMS Switch Technology -- 18.1 Electromechanical Switches for Digital Logic -- 18.2 Actuation Mechanisms -- 18.3 Electrostatic Switch Designs -- 18.4 Reliability and Scalability -- References -- Chapter 19: Atomic Switch -- 19.1 Chapter Overview -- 19.2 Historical Background of the Atomic Switch.
19.3 Fundamentals of Atomic Switches -- 19.4 Various Atomic Switches -- 19.5 Perspectives -- References -- Chapter 20: ITRS Assessment and Benchmarking of Emerging Logic Devices -- 20.1 Introduction -- 20.2 Overview of the ITRS Roadmap for Emerging Research Logic Devices -- 20.3 Recent Results for Selected Emerging Devices -- 20.4 Perspective -- 20.5 Summary -- Acknowledgments -- References -- Part Four: Concepts for Emerging Architectures -- Chapter 21: Nanomagnet Logic: A Magnetic Implementation of Quantum-dot Cellular Automata -- 21.1 Introduction -- 21.2 Technology Background -- 21.3 NML Circuit Design Based on Conventional, Boolean Logic Gates -- 21.4 Alternative Circuit Design Techniques and Architectures -- 21.5 Retrospective, Future Challenges, and Future Research Directions -- References -- Chapter 22: Explorations in Morphic Architectures -- 22.1 Introduction -- 22.2 Neuromorphic Architectures -- 22.3 Cellular Automata Architectures -- 22.4 Taxonomy of Computational Ability of Architectures -- 22.5 Summary -- References -- Chapter 23: Design Considerations for a Computational Architecture of Human Cognition -- 23.1 Introduction -- 23.2 Features of Biological Computation -- 23.3 Evolution of Behavior as a Basis for Cognitive Architecture Design -- 23.4 Considerations for a Cognitive Architecture -- 23.5 Emergent Cognition -- 23.6 Perspectives -- References -- Chapter 24: Alternative Architectures for NonBoolean Information Processing Systems -- 24.1 Introduction -- 24.2 Hierarchical Associative Memory Models -- 24.3 N-Tree Model -- 24.4 Summary and Conclusion -- Acknowledgments -- References -- Chapter 25: Storage Class Memory -- 25.1 Introduction -- 25.2 Traditional Storage: HDD and Flash Solid-state Drives -- 25.3 What is Storage Class Memory? -- 25.4 Target Specifications for SCM -- 25.5 Device Candidates for SCM.
25.6 Architectural Issues in SCM -- 25.7 Conclusions -- References -- Part Five: Summary, Conclusions, and Outlook for Nanoelectronic Devices -- Chapter 26: Outlook for Nanoelectronic Devices -- 26.1 Introduction -- 26.2 Quantitative Logic Benchmarking for Beyond CMOS Technologies -- 26.3 Survey-based Critical Assessment of Emerging Devices -- 26.4 Retrospective Assessment of ERD Tracked Technologies -- References -- Index -- End User License Agreement.
Record Nr. UNINA-9910208958203321
Chichester, West Sussex, United Kingdom : , : John Wiley & Sons Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging nanoelectronic devices / / An Chen, Globalfoundries, USA [and three others]
Emerging nanoelectronic devices / / An Chen, Globalfoundries, USA [and three others]
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, West Sussex, United Kingdom : , : John Wiley & Sons Inc., , 2015
Descrizione fisica 1 online resource (573 pages) : illustrations (some color)
Disciplina 621.381
Soggetto topico Nanoelectronics
Nanoelectromechanical systems
Nanostructured materials
ISBN 1-118-95826-8
1-118-95825-X
1-322-31759-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title Page -- Copyright -- Dedication -- Preface -- List of Contributors -- Acronyms -- Part One: Introduction -- Chapter 1: The Nanoelectronics Roadmap -- 1.1 Introduction -- 1.2 Technology Scaling: Impact and Issues -- 1.3 Technology Scaling: Scaling Limits of Charge-based Devices -- 1.4 The International Technology Roadmap for Semiconductors -- 1.5 ITRS Emerging Research Devices International Technology Working Group -- 1.6 Guiding Performance Criteria -- 1.7 Selection of Nanodevices as Technology Entries -- 1.8 Perspectives -- References -- Chapter 2: What Constitutes a Nanoswitch? A Perspective -- 2.1 The Search for a Better Switch -- 2.2 Complementary Metal Oxide Semiconductor Switch: Why it Shows Gain -- 2.3 Switch Based on Magnetic Tunnel Junctions: Would it Show Gain? -- 2.4 Giant Spin Hall Effect: A Route to Gain -- 2.5 Other Possibilities for Switches with Gain -- 2.6 What do Alternative Switches Have to Offer? -- 2.7 Perspective -- 2.8 Summary -- Acknowledgments -- References -- Part Two: Nanoelectronic Memories -- Chapter 3: Memory Technologies: Status and Perspectives -- 3.1 Introduction: Baseline Memory Technologies -- 3.2 Essential Physics of Charge-based Memory -- 3.3 Dynamic Random Access Memory -- 3.4 Flash Memory -- 3.5 Static Random Access Memory -- 3.6 Summary and Perspective -- Appendix: Memory Array Interconnects -- Acknowledgments -- References -- Chapter 4: Spin Transfer Torque Random Access Memory -- 4.1 Chapter Overview -- 4.2 Spin Transfer Torque -- 4.3 STT-RAM Operation -- 4.4 STT-RAM with Perpendicular Anisotropy -- 4.5 Stack and Material Engineering for Jc Reduction -- 4.6 Ultra-Fast Switching of MTJs -- 4.7 Spin-Orbit Torques for Memory Application -- 4.8 Current Demonstrations for STT-RAM -- 4.9 Summary and Perspectives -- References -- Chapter 5: Phase Change Memory -- 5.1 Introduction.
5.2 Device Operation -- 5.3 Material Properties -- 5.4 Device and Material Scaling to the Nanometer Size -- 5.5 Multi-Bit Operation and 3D Integration -- 5.6 Applications -- 5.7 Future Outlook -- 5.8 Summary -- Acknowledgments -- References -- Chapter 6: Ferroelectric FET Memory -- 6.1 Introduction -- 6.2 Ferroelectric FET for Flash Memory Application -- 6.3 Ferroelectric FET for SRAM Application -- 6.4 System Consideration: SSD System with Fe-NAND Flash Memory -- 6.5 Perspectives and Summary -- References -- Chapter 7: Nano-Electro-Mechanical (NEM) Memory Devices -- 7.1 Introduction and Rationale for a Memory Based on NEM Switch -- 7.2 NEM Relay and Capacitor Memories -- 7.3 NEM-FET Memory -- 7.4 Carbon-based NEM Memories -- 7.5 Opportunities and Challenges for NEM Memories -- References -- Chapter 8: Redox-based Resistive Memory -- 8.1 Introduction -- 8.2 Physical Fundamentals of Redox Memories -- 8.3 Electrochemical Metallization Memory Cells -- 8.4 Valence Change Memory Cells -- 8.5 Performance -- 8.6 Summary -- References -- Chapter 9: Electronic Effect Resistive Switching Memories -- 9.1 Introduction -- 9.2 Charge Injection and Trapping -- 9.3 Mott Transition -- 9.4 Ferroelectric Resistive Switching -- 9.5 Perspectives -- 9.6 Summary -- References -- Chapter 10: Macromolecular Memory -- 10.1 Chapter Overview -- 10.2 Macromolecules -- 10.3 Elementary Physical Chemistry of Macromolecular Memory -- 10.4 Classes of Macromolecular Memory Materials and Their Performance -- 10.5 Perspectives -- 10.6 Summary -- Acknowledgments -- References -- Chapter 11: Molecular Transistors -- 11.1 Introduction -- 11.2 Experimental Approaches -- 11.3 Molecular Transistors -- 11.4 Molecular Design -- 11.5 Perspectives -- Acknowledgments -- References -- Chapter 12: Memory Select Devices -- 12.1 Introduction -- 12.2 Crossbar Array and Memory Select Devices.
12.3 Memory Select Device Options -- 12.4 Challenges of Memory Select Devices -- 12.5 Summary -- References -- Chapter 13: Emerging Memory Devices: Assessment and Benchmarking -- 13.1 Introduction -- 13.2 Common Emerging Memory Terminology and Metrics -- 13.3 Redox RAM -- 13.4 Emerging Ferroelectric Memories -- 13.5 Mott Memory -- 13.6 Macromolecular Memory -- 13.7 Carbon-based Resistive Switching Memory -- 13.8 Molecular Memory -- 13.9 Assessment and Benchmarking -- 13.10 Summary and Conclusions -- Acknowledgments -- References -- Part Three: Nanoelectronic Logic and Information Processing -- Chapter 14: Re-Invention of FET -- 14.1 Introduction -- 14.2 Historical and Future Trend of MOSFETs -- 14.3 Near-term Solutions -- 14.4 Long-term Solutions -- 14.5 Summary -- References -- Chapter 15: Graphene Electronics -- 15.1 Introduction -- 15.2 Properties of Graphene -- 15.3 Graphene MOSFETs for Mainstream Logic and RF Applications -- 15.4 Graphene MOSFETs for Nonmainstream Applications -- 15.5 Graphene NonMOSFET Transistors -- 15.6 Perspectives -- Acknowledgment -- References -- Chapter 16: Carbon Nanotube Electronics -- 16.1 Carbon Nanotubes - The Ideal Transistor Channel -- 16.2 Operation of the CNTFET -- 16.3 Important Aspects of CNTFETs -- 16.4 Scaling CNTFETs to the Sub-10 Nanometer Regime -- 16.5 Material Considerations -- 16.6 Perspective -- 16.7 Conclusion -- References -- Chapter 17: Spintronics -- 17.1 Introduction -- 17.2 Spin Transistors -- 17.3 Magnetic Logic Circuits -- 17.4 Summary -- References -- Chapter 18: NEMS Switch Technology -- 18.1 Electromechanical Switches for Digital Logic -- 18.2 Actuation Mechanisms -- 18.3 Electrostatic Switch Designs -- 18.4 Reliability and Scalability -- References -- Chapter 19: Atomic Switch -- 19.1 Chapter Overview -- 19.2 Historical Background of the Atomic Switch.
19.3 Fundamentals of Atomic Switches -- 19.4 Various Atomic Switches -- 19.5 Perspectives -- References -- Chapter 20: ITRS Assessment and Benchmarking of Emerging Logic Devices -- 20.1 Introduction -- 20.2 Overview of the ITRS Roadmap for Emerging Research Logic Devices -- 20.3 Recent Results for Selected Emerging Devices -- 20.4 Perspective -- 20.5 Summary -- Acknowledgments -- References -- Part Four: Concepts for Emerging Architectures -- Chapter 21: Nanomagnet Logic: A Magnetic Implementation of Quantum-dot Cellular Automata -- 21.1 Introduction -- 21.2 Technology Background -- 21.3 NML Circuit Design Based on Conventional, Boolean Logic Gates -- 21.4 Alternative Circuit Design Techniques and Architectures -- 21.5 Retrospective, Future Challenges, and Future Research Directions -- References -- Chapter 22: Explorations in Morphic Architectures -- 22.1 Introduction -- 22.2 Neuromorphic Architectures -- 22.3 Cellular Automata Architectures -- 22.4 Taxonomy of Computational Ability of Architectures -- 22.5 Summary -- References -- Chapter 23: Design Considerations for a Computational Architecture of Human Cognition -- 23.1 Introduction -- 23.2 Features of Biological Computation -- 23.3 Evolution of Behavior as a Basis for Cognitive Architecture Design -- 23.4 Considerations for a Cognitive Architecture -- 23.5 Emergent Cognition -- 23.6 Perspectives -- References -- Chapter 24: Alternative Architectures for NonBoolean Information Processing Systems -- 24.1 Introduction -- 24.2 Hierarchical Associative Memory Models -- 24.3 N-Tree Model -- 24.4 Summary and Conclusion -- Acknowledgments -- References -- Chapter 25: Storage Class Memory -- 25.1 Introduction -- 25.2 Traditional Storage: HDD and Flash Solid-state Drives -- 25.3 What is Storage Class Memory? -- 25.4 Target Specifications for SCM -- 25.5 Device Candidates for SCM.
25.6 Architectural Issues in SCM -- 25.7 Conclusions -- References -- Part Five: Summary, Conclusions, and Outlook for Nanoelectronic Devices -- Chapter 26: Outlook for Nanoelectronic Devices -- 26.1 Introduction -- 26.2 Quantitative Logic Benchmarking for Beyond CMOS Technologies -- 26.3 Survey-based Critical Assessment of Emerging Devices -- 26.4 Retrospective Assessment of ERD Tracked Technologies -- References -- Index -- End User License Agreement.
Record Nr. UNINA-9910826903003321
Chichester, West Sussex, United Kingdom : , : John Wiley & Sons Inc., , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui