Data Analytics for Management, Banking and Finance : Theories and Application |
Autore | Saâdaoui Foued |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer, , 2023 |
Descrizione fisica | 1 online resource (338 pages) |
Disciplina | 006.312 |
Altri autori (Persone) |
ZhaoYichuan
RabbouchHana |
ISBN | 3-031-36570-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- List of Chapter Reviewers -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- A Survey of Machine Learning Methodologies for Loan Evaluation in Peer-to-Peer (P2P) Lending -- 1 Introduction -- 1.1 Definition -- 1.2 Lending Process -- 1.3 Benefits of P2P Lending -- 1.4 Risks of P2P Lending -- 2 P2P Platforms -- 2.1 The United Kingdom -- 2.2 The United States -- 2.3 Other Countries -- 2.4 The US Business Model -- 3 Loan Evaluation -- 3.1 Evaluation by P2P Lending Platforms -- 3.2 Evaluation by Individual Lenders -- 3.3 Evaluation Suggestions by Researchers -- 4 Application of Machine Learning Models -- 4.1 Methodologies for Credit Scoring -- 4.2 Methodologies for Profit Scoring -- 4.3 Methodologies Integrating Credit Scoring and Profit Scoring -- 4.4 Methodologies for Recommendation and Portfolio Construction -- 4.5 Methodologies Related with Funding Success -- 4.6 Methodologies Regarding Platform Stability -- 4.7 Methodologies Regarding Prepayment -- 4.8 Methodologies Estimating Loss Given Default -- 4.9 Fraud Detection Methodologies -- 5 P2P Challenges -- 5.1 P2P Platform Failures -- 5.2 Recovery from the Post-default Loss -- 5.3 Business Downturn -- 5.4 Liquidity Risk -- 5.5 Fraud Risk -- 6 Summary -- References -- Explainable Machine Learning Models for Credit Risk Analysis: A Survey -- 1 Introduction -- 2 Background -- 3 Credit Risk Analysis with Explainable AI -- 3.1 Data Collection and Pre-processing -- 3.2 Model Training and Classification -- 3.3 Model Evaluations and Hyperparameter Tuning -- 3.4 Model Explainability -- 3.4.1 LIME -- 3.4.2 SHAP -- 3.4.3 Anchors -- 3.4.4 ProtoDash -- 3.4.5 Integrated Gradients -- 3.4.6 Other Approaches -- 4 Discussion -- 5 Conclusion -- References -- Data Analytics Incorporated with Machine Learning Approaches in Finance -- 1 Introduction.
2 Applications in Finance Domain -- 2.1 Banking -- 2.2 Stock Trading/Multi Commodities Trading -- 2.3 Local or Global Marketing/Retailing -- 2.4 Portfolio Management/Optimization -- 2.5 Macroeconomics Prediction -- 2.6 Insurance -- 2.7 Financial Distress -- 2.8 Stock Market Prediction -- 2.9 Decentralized Finance -- 3 Conclusion -- References -- Estimation and Inference in Financial Volatility Networks -- 1 Introduction -- 2 Estimation and Inference in Financial Volatility Networks -- 2.1 Networked Volatility Estimation -- 2.2 Inference -- 3 Application to European Debt Markets -- 3.1 Econometric Analysis -- 4 Conclusion -- References -- Multiresolution Data Analytics for Financial Time Series Using MATLAB -- 1 Introduction -- 2 Financial Time Series -- 3 Wavelet Analysis -- 3.1 Background -- 3.2 Properties of Wavelet Functions -- 3.3 Discrete Wavelet Transform of a Time Series -- 3.4 Wavelets in Economics, Banking, and Finance -- 3.5 Implementation -- 4 Empirical Mode Decomposition (EMD) -- 4.1 Definition -- 4.2 Properties -- 4.3 EMD for Financial Data -- 4.4 Implementation -- 5 Discussion and Future Work -- 6 Conclusion -- References -- A Risk-Based Trading System Using Algorithmic Trading and Deep Learning Models -- 1 Introduction -- 2 Proposed Model -- 2.1 LSTM Model -- 2.1.1 Forget Gate -- 2.1.2 Input Gate -- 2.1.3 Output Gate -- 2.2 Input Feature Selection -- 2.2.1 Random Forest -- 2.2.2 Permutation -- 2.2.3 Clustering -- 2.3 Prediction Model -- 2.4 The Proposed Algorithmic Trading Strategy -- 2.4.1 Select a New Signal -- 2.4.2 Comparison of Percentage Changes -- 2.4.3 Trend Forecasting -- 3 Data Description and Features Selection -- 4 Computational Results -- 4.1 Implementation of Proposed Prediction Models -- 4.2 Implementation of the Proposed Algorithmic Trading Strategies -- 5 Conclusion -- References. Financial Contagion During COVID-19 Crisis: Intraday Analysis Using VAR-VECM Models -- 1 Introduction -- 2 Data and Methodology -- 2.1 Data -- 2.2 Methodology -- 3 Empirical Results -- 4 Conclusion -- A.1 Appendix -- References -- Nonlinear ARDL Analysis of Real Effective Exchange Rate's Asymmetric Impact on FDI Inflows in Tunisia -- 1 Introduction -- 2 Literature Review -- 3 Nonlinear ARDL Model: Theoretical Framework -- 4 Analysis of the Impact of Real Effective Exchange Rate on Foreign Direct Investment Inflows -- 4.1 Model Specification -- 4.2 Empirical Results -- 5 Conclusion -- References -- Evaluating Turkish Banks' Complaint Management Performance Using Multi-Criteria Decision Analysis -- 1 Introduction -- 2 Conceptual Framework -- 2.1 Consumer Complaint Behavior -- 2.2 Complaint Management -- 2.3 CCB in Banking Market -- 3 Material and Methods -- 3.1 Fuzzy Analytical Hierarchy Process (FAHP) -- 3.2 TOPSIS -- 4 Findings -- 5 Discussion and Conclusion -- A.1 Appendix 1: Decision Matrix -- References -- Financial Cycle, Stress, and Policy Roles in Small Open Economy: Spillover Index Approach -- 1 Introduction -- 2 Literature Review -- 3 Methodology Description -- 4 Empirical Results -- 4.1 Data Description -- 4.2 Main Results -- 4.3 Robustness Checking -- 5 Conclusion -- A.1 -- B.1 Appendix 2: Software to Estimate Spillover Indices and Codes -- References -- Performance of Cryptocurrencies Under a Sentiment Analysis Approach in the Time of COVID-19 -- 1 Introduction -- 2 Literature Review and Theoretical Framework -- 3 Data -- 4 Methodology and Empirical Evidence -- 5 Concluding Remarks -- References -- Determinants of Non-Performing Loans: Evidence from Indian Banks -- 1 Introduction -- 2 Review of Literature -- 3 Data and Methodology -- 4 Empirical Results -- 5 Conclusion -- References. Natural Resources, Conflicts, Terrorism, and Finance: Insights from a Descriptive Data Analysis -- 1 Introduction -- 2 The Importance of Energy Systems in the World -- 3 Natural Resources, Conflicts, and Finance -- 4 Natural Resources and Terrorist Acts -- 4.1 Theoretical Basis -- 4.2 Links Between Energy, Conflicts, and Terrorism -- 4.2.1 The Energy System as a Stimulus of Conflicts and Terrorism -- 4.2.2 Securing and Controlling System Structure -- 4.3 The Energy System as a Means in a Conflict -- 4.4 The Energy System as a Cause of Conflict -- 4.5 Conceptual Framework -- 4.6 Characteristics of the Energy System -- 5 Interaction Between Renewable Energy Systems and Conflicts -- 6 Conclusion -- References -- Determinants of Profitability in Islamic Banks: The Kingdom of Saudi Arabia Market -- 1 Introduction -- 2 Literature Review -- 3 Islamic Banking in Saudi Arabia -- 4 The Data -- 5 Empirical Results -- 5.1 Results of Unit Root Tests -- 5.2 Dynamic Panel ARDL -- 5.3 Empirical Results of Dynamic Panel ARDL -- 6 Conclusion -- References -- Trading Rules and Value at Risk: Is There a Linkage? -- 1 Introduction -- 2 Suggestions for More Accurate Value-at-Risk Estimations: A Theoretical Framework -- 3 Empirical Results -- 3.1 Descriptive Statistics -- 3.2 Value at Risk: Could the TA Be Beneficial? -- 4 Discussion and Thoughts for Further Contributions -- 5 Conclusions -- References -- Index. |
Record Nr. | UNINA-9910746289003321 |
Saâdaoui Foued | ||
Cham : , : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Modern statistical methods for health research / / edited by Yichuan Zhao and (Din) Ding-Geng Chen |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (506 pages) |
Disciplina | 610.21 |
Collana | Emerging Topics in Statistics and Biostatistics Ser. |
Soggetto topico |
Medical statistics
Big data Estadística mèdica Biometria Dades massives |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-72437-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Part I: Health Data Analysis and Applications to EHR Data (Chaps. 1 -5) -- Part II: Clinical Trials, FDR, and Applications in Health Science (Chaps. 6 -10) -- Part III: Big Data Analytics and Its Applications (Chaps. 11 -15) -- Part IV: Survival Analysis and Functional Data Analysis (Chaps. 16 -18) -- Part V: Statistical Modeling in Genomic Studies (Chaps. 19 -21) -- Contents -- About the Editors -- -- -- List of Contributors -- -- List of Chapter Reviewers -- Part I Health Data Analysis and Applications to EHR Data -- The Effective Sample Size of EHR-Derived Cohorts Under Biased Sampling -- 1 Introduction -- 2 Methods -- 2.1 Notation and Definitions -- 2.2 Bias and Mean-Squared Error of the Simple Random Sample and the EHR-Based Sample -- 2.3 Effective Sample Size of the EHR-Derived Cohort -- 2.4 Simulation Study Design -- 3 Results -- 4 Discussion -- References -- Non-Gaussian Models for Object Motion Analysis with Time-Lapse Fluorescence Microscopy Images -- 1 Introduction -- 2 Method -- 2.1 Particle Tracking Framework -- 2.2 Object Segmentation -- 2.3 Observation and Dynamics Models -- Ellipsoid Model -- Voxel-Based Model -- 2.4 Multiple Object Tracking Management -- 3 Experiments and Results -- 3.1 Validation with Artificial Data -- 3.2 Bacteria Motility Analysis -- 3.3 Tumor Spheroid Study -- 4 Conclusions -- References -- Alternative Capture-Recapture Point and Interval Estimators Based on Two Surveillance Streams -- 1 Introduction -- 2 Methods -- 2.1 The LP Conditions and Their Central Role -- 2.2 Some Cautionary Notes on Alternatives to the LP Estimator -- 2.3 Loglinear Models and a Perspective on the Use of Covariates -- 2.4 A Rationale for Renewed Statistical Interest Under the LP Conditions -- 2.5 Review of Classical Point Estimators in the Two-Capture Case.
2.6 A Class of Estimators Including LP and Chap as Special Cases -- 2.7 A New Estimator Targeting Median Bias as a Criterion -- 2.8 New Alternatives to the Chapman Estimator Aimed at Reduced Mean Bias -- 2.9 Closed-Form Confidence Interval Estimation in the Two-Capture Case -- 2.10 An Adapted Bayesian Credible Interval Approach -- 3 Motivating Example Data and Results -- 4 Simulation Studies -- 5 Discussion -- References -- A Uniform Shrinkage Prior in Spatiotemporal Poisson Models for Count Data -- 1 Introduction -- 2 Derivation of a USP for the Variance Components in GLMM with Proper CAR and Its Properties -- 2.1 Derivation of the USP -- 2.2 Motivation of the Derived USP -- 2.3 Analytical Properties of the Derived USP -- 3 Application to the Leptospirosis Data -- 4 Simulation Study -- 5 Discussion -- References -- A Review of Multiply Robust Estimation with Missing Data -- 1 Introduction -- 2 Basic Setups -- 3 Multiply Robust Estimation Procedure -- 3.1 Calibration Approach -- 3.2 Projection Approach -- 3.3 Multiple Imputation Approach -- 4 Simulation Study -- 5 Real Application -- 6 Discussion -- References -- Part II Clinical Trials, FDR, and Applications in Health Science -- Approaches to Combining Phase II Proof-of-Conceptand Dose-Finding Trials -- 1 Introduction -- 2 Two Studies-Phase IIa (Proof-of-Concept) and Phase IIb (Dose-Finding) -- 3 A Single Study with Combined Objectives (PoC and DF) -- 3.1 Single Fixed Design -- 3.2 Two-Stage Phase IIa/IIb Adaptive Designs -- 4 Sample Size Comparison and Discussion -- 5 Concluding Remarks -- References -- Designs of Early Phase Cancer Trials with Drug Combinations -- 1 Introduction -- 2 Designs for Phase I Clinical Trials -- 2.1 Phase I Model-based Designs for Drug Combinations -- Model -- Prior and Posterior Distributions -- Trial Design -- Design Operating Characteristics -- Results. 2.2 Attributing Dose-Limiting Toxicities -- Model -- Trial Design -- Results -- 2.3 Adding a Baseline Covariate -- Model -- Prior and Posterior Distributions -- Trial Design -- Results -- 3 Designs for Phase I-II Clinical Trials -- 3.1 Binary Endpoint -- Model -- Trial Design -- Results -- 3.2 Survival Endpoint -- Introduction -- Model -- Trial Design -- Results -- 4 Discussion -- References -- Controlling the False Discovery Rate of Grouped Hypotheses -- 1 Introduction -- 2 Modeling and Sequential Framework -- 2.1 Notation and Models -- 2.2 A General Framework for Grouped Multiple Testing Procedures -- 3 Procedures for Group Multiple Testing -- 3.1 Conditional Local FDR (CLfdr) -- 3.2 Group-Weighted Benjamini-Hochberg (GBH) -- 3.3 Weighting Fixed Cutoff (WFC) -- 3.4 Structure-Adaptive Benjamini-Hochberg (SABHA) -- 3.5 Independent Hypothesis Weighting (IHWc) -- 3.6 Adaptive p-Value Thresholding (AdaPT) -- 3.7 Linear and Nonlinear Rankings -- 4 Simulation -- 4.1 Results -- 5 Application -- 6 Conclusions and Discussions -- Appendix -- A.1 Two-Parameter AdaPT -- A.2 EM Steps -- A.3 Initialization -- References -- Classic Linear Mediation Analysis of Complex Survey Data Using Balanced Repeated Replication -- 1 Introduction -- 2 Technical Details -- 2.1 Mediation Model -- 2.2 Complex Surveys Using BRR -- 2.3 Mediation Incorporating BRR -- Point Estimate -- Standard Error Estimate -- Significance Test -- 3 SAS Macro and Illustration -- 3.1 Components of %MediationBRR -- 3.2 Application to PISA: A Single-Mediator Model -- 3.3 Application to TUS-CPS: A Multi-Mediator Model -- 4 Discussion -- Appendix -- References -- A Review of Bayesian Optimal Experimental Design on DifferentModels -- 1 Introduction -- 1.1 Pseudo-Bayesian Optimal Design -- 1.2 Fully Bayesian Optimal Design -- 2 Bayesian Designs for Linear Models. 3 Bayesian Designs for Generalized Linear Models -- 4 Bayesian Designs for Nonlinear Models -- 4.1 Bayesian Optimal Designs for PKPD Models -- 4.2 Bayesian Optimal Designs for Biological and Chemical Models -- 5 Conclusions -- References -- Part III Big Data Analytics and Its Applications -- A Selective Review on Statistical Techniques for Big Data -- 1 Introduction -- 2 Randomized Numerical Linear Algebra -- 2.1 Random Projection -- 2.2 Nonuniform Random Sampling -- 3 Information-Based Optimal Subdata Selection -- 4 Informative Subsampling -- 4.1 Optimal Subsampling -- 4.2 Local Case-Control Subsampling -- 5 Divide-and-Conquer and Updating Methods -- 5.1 Divide-and-Conquer Methods -- 5.2 Updating Methods -- Online Updating Methods -- Stochastic Gradient Descent -- 6 Summary and Discussion -- References -- A Selective Overview of Recent Advances in Spectral Clustering and Their Applications -- 1 Introduction -- 2 Spectral Clustering -- 2.1 The Similarity Matrix -- 2.2 Unnormalized Spectral Clustering -- 2.3 Normalized Spectral Clustering -- 2.4 Equivalence to Weighted Kernel k-Means -- 2.5 Selecting the Total Number of Clusters -- General Clustering-Independent Criteria -- Cluster Selection Criteria Specific to Spectral Clustering -- 3 New Developments of Spectral Clustering -- 3.1 Spectral Biclustering -- 3.2 Multi-View Spectral Clustering -- 3.3 High-Order Spectral Clustering -- 3.4 Constrained Spectral Clustering -- 3.5 Evolutionary Spectral Clustering -- PCQ -- PCM -- Determining the Weight Parameter α -- 3.6 Incremental Spectral Clustering -- 3.7 Sparse Spectral Clustering -- 4 Discussion -- References -- A Review on Modern Computational Optimal Transport Methods with Applications in Biomedical Research -- 1 Introduction -- 2 Background of the Optimal Transport Problem -- 3 Regularization-Based Optimal Transport Methods. 3.1 Computational Cost for OT Problems -- 3.2 Sinkhorn Distance -- 3.3 Sinkhorn Algorithms with the Nyström Method -- 4 Projection-Based Optimal Transport Methods -- 4.1 Random Projection OT Method -- 4.2 Projection Pursuit OT Method -- 5 Applications in Biomedical Research -- 5.1 Identify Development Trajectories in Reprogramming -- 5.2 Data Augmentation for Biomedical Data -- References -- Variable Selection Approaches in High-Dimensional Space -- 1 Introduction -- 2 Penalized Likelihood Approaches -- 2.1 Penalty Functions -- 2.2 Canonical Models in High Dimension -- Linear Regression Model -- Logistic Regression Model -- Proportional Hazards Model -- 2.3 Algorithm and Implementation -- Penalized Weighted Least Squares -- Penalized Likelihoods -- Tuning Parameter Selection -- 3 Feature Screening for Ultra-High-Dimensional Data -- 3.1 Sure Independence Screening -- Correlation Ranking -- Maximum Marginal Likelihoods -- 3.2 Iterative Sure Independence Screening -- 3.3 Reduction of False Positive Rate -- 4 Real Data Example -- 5 High-Dimensional Inference -- 6 Conclusion -- References -- Estimation Methods for Item Factor Analysis: An Overview -- 1 Introduction -- 2 IFA Models -- 2.1 Modeling Framework -- 2.2 Examples of IFA Models -- 2.3 Exploratory and Confirmatory Analyses -- 3 Estimation Methods -- 3.1 Estimation Based on Joint Likelihood -- 3.2 Estimation Based on Marginal Likelihood -- 3.3 Limited-Information Estimation -- 3.4 Spectral Method -- 4 Computer Implementations -- 5 Conclusions -- References -- Part IV Survival Analysis and Functional Data Analysis -- Functional Data Modeling and Hypothesis Testing for Longitudinal Alzheimer Genome-Wide Association Studies -- 1 Introduction -- 2 Functional Modeling of Longitudinal Phenotype Data and Estimation Procedure -- 2.1 Model Assumptions -- 2.2 Estimation Under the Full Model. 2.3 Estimation Under the Reduced Model. |
Record Nr. | UNISA-996466415503316 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Modern Statistical Methods for Health Research / / edited by Yichuan Zhao, (Din) Ding-Geng Chen |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (506 pages) |
Disciplina | 610.21 |
Collana | Emerging Topics in Statistics and Biostatistics |
Soggetto topico |
Biometry
Medicine - Research Biology - Research Biostatistics Biomedical Research Estadística mèdica Biometria Dades massives |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-72437-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Alternative Capture-Recapture Point and Interval Estimators Based on Two Surveillance Streams – Lyles, Wilkinson, Williamson, Chen, Taylor, Jambai, Kaiser -- 2. On-Gaussian Model Based Object Tracking Analysis with Time Lapse Fluorescence Microscopy Images – Marcus, Kong -- 3. Detecting Changepoint in Gene Expressions over Time: An Application to Childhood Obesity – Mathur, Sung -- 4. How “Big” Are EHR Data? The Effective Sample Size of EHR Data Under Biased Sampling – Hubbard -- 5. A Nested Clustering Method to Detect and Cluster Transgenerational DNA Methylation Sites via Beta Regressions – Wang, Zhang, Han, Arshad, Karmaus -- 6. Controlling the False Discovery Rate of Grouped Hypotheses – MacDonald, Wilson, Liang, Qin -- 7. Approaches to Combining Phase II Proof-of-Concept and Dose-Finding Trials – Ting -- 8. On the Multiply Robust Estimation with Missing Data – Chen, Haziza -- 9. Recent Advances in Spectral Clustering and Their Applications in Bioinformatics – Xue -- 10. Functional Data Modeling and Hypothesis Testing for Longitudinal Alzheimer Genome-Wide Association Studies – Li, Xu, Liu -- 11. Misuse of Classifiers in Biological Networks – Maharaj -- 12. A Selective Inference-based Two-stage Procedure for Clinical Safety Studies – Zhu, Guo -- 13. Inferring Stage of HCV Infections as Recent or Chronic by Machine Learning approach – Icer -- 14. Graphical Modeling of Multiple Biological Pathways in Genomic Studies – Cao, Zhang, Chen, Wang -- 15. Online Updating of Nonparametric Survival Estimator and Nonparametric Survival Test – Xue, Schifano, Hu -- 16. Mixed-Effects Negative Binomial Regression with Interval Censoring: A Simulation Study and Application to Precipitation and All-Cause Mortality Rates among Black South Africans over 1997-2013 – Landon, Lyles, Scovronick, Abadi, Bilotta, Hauer, Bell, Gribble -- 17. SAS Macros for Linear Mediation Analysis of Complex Survey Data Using Balanced Repeated Replication – Mai, Zhang -- 18. Joint Modeling of Multiple Skewed Longitudinal Processes with Excess of Zero and Time-to-Event: An Application to Fecundity Studies – Mirzaei, Kundu, Sundaram -- 19. Infectious Disease Epidemiology: Forecasting the Ongoing 2018-19 Ebola Epidemic in the Democratic Republic of Congo (DRC) Using Phenomenological Growth Models – Tariq, Chowell -- 20. Models and Estimation Methods for Item Factor Analysis: An Overview – Chen, Zhang. |
Record Nr. | UNINA-9910502593003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
New Advances in Statistics and Data Science / / edited by Ding-Geng Chen, Zhezhen Jin, Gang Li, Yi Li, Aiyi Liu, Yichuan Zhao |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XXIII, 348 p. 74 illus., 41 illus. in color.) |
Disciplina | 005.7 |
Collana | ICSA Book Series in Statistics |
Soggetto topico |
Statistics
Big data Biostatistics Statistical Theory and Methods Big Data/Analytics Statistics for Life Sciences, Medicine, Health Sciences |
ISBN | 3-319-69416-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part 1 Review and Theoretical Framework in Data Science -- Ch 1 Statistical Distances and Their Role in Robustness -- Ch 2 The Out-source Error in Multi-source Cross Validation-type Procedures -- Ch 3 -- Meta-Analysis for Rare Events as Binary Outcomes -- Ch 4 New Challenges and Strategies in Robust Optimal Design for Multicategory Logit Modelling -- Ch 5 Testing of Multivariate Spline Growth Model -- Part 2 Complex and Big Data Analysis -- Ch 6 Uncertainty Quantification Using the Neighbor Gaussian Process -- Ch 7 Tuning Parameter Selection in the LASSO with Unspecified Propensity -- Adaptive Filtering Increases Power to Detect Differently Expressed Genes -- Ch 9 Estimating Parameters in Complex Systems with Functional Outputs - A Wavelet-based Approximate Bayesian Computation Approach -- Ch 10 A maximum Likelihood Approach for Non-invasive Cancer Diagnosis Using Methylation Profiling of Cell-free DNA from Blood -- Part 3 Clinical Trials, Statistical Shape Analysis and Application -- Ch 11 A Simple and Efficient Statistical Approach for Designing an Early Phase II Clinical Trial - Ordinal Linear Contrast Test -- Ch 12 Landmark-constrained Statistical Shape Analysis of Elastic Curves and Surfaces -- Ch 13 Phylogeny-based kernels with Application to Microbiome Association Studies -- Ch 14 Accounting for Differential Error in Time-to-event Analyses using Imperfect Electronic Health Record-derived Endpoints -- Part 4 Statistical Modeling and Data Analysis -- Ch 15 Modeling Inter-trade Durations in the Limit Order market -- Ch 16 Assessment of Drug Interactions with Repeated Measurements -- Ch 17 Statistical Indices for Risk Tracking in Longitudinal Studies -- Ch 18 Statistical Analysis of Labor market Integration: A Mixture Regression Approach -- Ch 19 Bias Correction in Age-Cohort Models Using Eigen Analysis. |
Record Nr. | UNINA-9910255456003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
New Frontiers of Biostatistics and Bioinformatics / / edited by Yichuan Zhao, Ding-Geng Chen |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (xxiv, 463 pages) : illustrations |
Disciplina | 570.15195 |
Collana | ICSA Book Series in Statistics |
Soggetto topico |
Statistics
Big data Biostatistics Statistical Theory and Methods Big Data/Analytics Statistics for Life Sciences, Medicine, Health Sciences |
ISBN | 3-319-99389-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter1. Importance of Adjusting for Multi-Stage Design when Analyzing Data from Complex Surveys -- Chapter2. A selective overview of semiparametric mixture of regression models -- Chapter3. Estimating the Confidence Interval of Evolutionary Stochastic Process Mean from Wavelet based Bootstrapping -- Chapter4. A New Wavelet-Based Approach for Mass Spectrometry Data Classification -- Chapter5. Identification of Pathway-Modulating Genes using the Biomedical Literature Mining -- Chapter6. Equivalence tests in subgroup analyses -- Chapter7. Empirical Study on High-Dimensional Variable Selection and Prediction under Competing Risks -- Chapter8. Learning Gene Regulatory Networks with High-Dimensional Heterogeneous Data -- Chapter9. Discriminant Analysis and Normalization Methods for Next-generation Sequencing Data -- Chapter10. Rank-based Empirical Likelihood for Regression Models with Responses Missing at Random -- Chapter11. Nonparametric Estimation of a Hazard Rate Function with Right Truncated Data -- Chapter12. On the landmark survival model for dynamic prediction of event occurrence using longitudinal data -- Chapter13. Analysis of the High School Longitudinal Study to Evaluate Associations Among Mathematics Achievement, Mentorship and Student Participation in STEM Programs -- Chapter14. OptimalWeightedWilcoxon–Mann–Whitney Test for Prioritized Outcomes -- Chapter15. Wavelet-based profile monitoring using order-thresholding recursive CUSUM schemes -- Chapter16. Bayesian Nonparametric Spatially Smoothed Density Estimation -- Chapter17. Nonparametric Estimation of a Cumulative Hazard Function with Right Truncated Data -- Chapter18. Mammogram Diagnostics Using Robust Wavelet-based Estimator of Hurst Exponent -- Chapter19. Statistical Power and Bayesian Assurance in Clinical Trial Design -- Chapter20. Predicting Confidence Interval for the Proportion at the Time of Study Planning in Small Clinical Trials -- Chapter21. Performance evaluation of normalization approaches for metagenomic compositional data on differential abundance analysis -- Chapter22. Statistical Modeling for the Heart Disease Diag-nosis via Multiple Imputation. |
Record Nr. | UNINA-9910303453103321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Statistical Modeling in Biomedical Research [[electronic resource] ] : Contemporary Topics and Voices in the Field / / edited by Yichuan Zhao, Ding-Geng (Din) Chen |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XVIII, 491 p. 107 illus., 79 illus. in color.) |
Disciplina | 570.15195 |
Collana | Emerging Topics in Statistics and Biostatistics |
Soggetto topico |
Statistics
Biostatistics Big data Data mining Statistics for Life Sciences, Medicine, Health Sciences Big Data/Analytics Data Mining and Knowledge Discovery |
ISBN | 3-030-33416-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Part I: Next Generation Sequence Data Analysis -- 1. Modeling Species Specific Gene Expression Across Multiple Regions in the Brain -- 2. Classification of EEG Motion Artifact Signals Using Spatial ICA -- 3. Weighted K-means Clustering with Observation Weight for Single-cell Epigenomic Data -- 4. Discrete Multiple Testing in Detecting Differential Methylation Using Sequencing Data -- Part II: Deep Learning, Precision Medicine and Applications -- 5. Prediction of Functional Markers of Mass Cytometry Data via Deep Learning -- 6. Building Health Application Recommender System Using Partially Penalized Regression -- 7. Hierarchical Continuous Time Hidden Markov Model, with Application in Zero-Inflated Accelerometer Data -- Part III: Large Scale Data Analysis and its Applications -- 8. Privacy Preserving Feature Selection Via Voted Wrapper Method For Horizontally Distributed Medical Data -- 9. Improving Maize Trait through Modifying Combination of Genes -- 10. Molecular Basis of Food Classification in Traditional Chinese Medicine -- 11. Discovery Among Binary Biomarkers in Heterogeneous Populations -- Part IV: Biomedical Research and the Modelling -- 12. Heat Kernel Smoothing on Manifolds and Its Application to Hyoid Bone Growth Modeling -- 13. Optimal Projections in the Distance-Based Statistical Methods -- 14. Kernel Tests for One, Two, and K-Sample Goodness-Of-Fit: State of the Art and Implementation Considerations -- 15. Hierarchical Modeling of the Effect of Pre-exposure Prophylaxis on HIV in the US -- 16. Mathematical Model of Mouse Ventricular Myocytes Overexpressing Adenylyl Cyclase Type 5 -- Part V: Survival Analysis with Complex Data Structure and its Applications -- 17. Non-Parametric Maximum Likelihood Estimator for Case-Cohort and Nested Case-Control Designs with Competing Risks Data -- Authors: Jie-Huei Wang, Chun-Hao Pan, Yi-Hau Chen and I-Shou Chang -- 18. Variable Selection in Partially Linear Proportional Hazards Model with Grouped Covariates and a Diverging Number of Parameters -- 19. Inference of Transition Probabilities in Multi-state Models using Adaptive Inverse Probability Censoring Weighting Technique. |
Record Nr. | UNISA-996418264403316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Statistical Modeling in Biomedical Research : Contemporary Topics and Voices in the Field / / edited by Yichuan Zhao, Ding-Geng (Din) Chen |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XVIII, 491 p. 107 illus., 79 illus. in color.) |
Disciplina | 570.15195 |
Collana | Emerging Topics in Statistics and Biostatistics |
Soggetto topico |
Biometry
Quantitative research Data mining Biostatistics Data Analysis and Big Data Data Mining and Knowledge Discovery |
ISBN | 3-030-33416-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Part I: Next Generation Sequence Data Analysis -- 1. Modeling Species Specific Gene Expression Across Multiple Regions in the Brain -- 2. Classification of EEG Motion Artifact Signals Using Spatial ICA -- 3. Weighted K-means Clustering with Observation Weight for Single-cell Epigenomic Data -- 4. Discrete Multiple Testing in Detecting Differential Methylation Using Sequencing Data -- Part II: Deep Learning, Precision Medicine and Applications -- 5. Prediction of Functional Markers of Mass Cytometry Data via Deep Learning -- 6. Building Health Application Recommender System Using Partially Penalized Regression -- 7. Hierarchical Continuous Time Hidden Markov Model, with Application in Zero-Inflated Accelerometer Data -- Part III: Large Scale Data Analysis and its Applications -- 8. Privacy Preserving Feature Selection Via Voted Wrapper Method For Horizontally Distributed Medical Data -- 9. Improving Maize Trait through Modifying Combination of Genes -- 10. Molecular Basis of Food Classification in Traditional Chinese Medicine -- 11. Discovery Among Binary Biomarkers in Heterogeneous Populations -- Part IV: Biomedical Research and the Modelling -- 12. Heat Kernel Smoothing on Manifolds and Its Application to Hyoid Bone Growth Modeling -- 13. Optimal Projections in the Distance-Based Statistical Methods -- 14. Kernel Tests for One, Two, and K-Sample Goodness-Of-Fit: State of the Art and Implementation Considerations -- 15. Hierarchical Modeling of the Effect of Pre-exposure Prophylaxis on HIV in the US -- 16. Mathematical Model of Mouse Ventricular Myocytes Overexpressing Adenylyl Cyclase Type 5 -- Part V: Survival Analysis with Complex Data Structure and its Applications -- 17. Non-Parametric Maximum Likelihood Estimator for Case-Cohort and Nested Case-Control Designs with Competing Risks Data -- Authors: Jie-Huei Wang, Chun-Hao Pan, Yi-Hau Chen and I-Shou Chang -- 18. Variable Selection in Partially Linear Proportional Hazards Model with Grouped Covariates and a Diverging Number of Parameters -- 19. Inference of Transition Probabilities in Multi-state Models using Adaptive Inverse Probability Censoring Weighting Technique. |
Record Nr. | UNINA-9910483548903321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Statistics in Precision Health : Theory, Methods and Applications / / edited by Yichuan Zhao, Ding-Geng Chen |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (0 pages) |
Disciplina | 615.7 |
Collana | ICSA Book Series in Statistics |
Soggetto topico |
Biometry
Quantitative research Medicine Biostatistics Data Analysis and Big Data Clinical Medicine |
ISBN | 3-031-50690-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I An Overview of Precision Health in the Big Data Era -- Overview of Precision Health: Past, Current, and Future -- A Selective Review of Individualized Decision Making -- Utilizing Wearable Devices to Improve Precision in Physical Activity Epidemiology: Sensors, Data and Analytic Methods -- Policy Learning for Individualized Treatment Regimes on Infinite Time Horizon -- Q-Learning Based Methods for Dynamic Treatment Regimes -- Personalized Medicine with Multiple Treatments -- Statistical Reinforcement Learning and Dynamic Treatment Regimes -- Part II New Advances in Statistical Methods of Precision Medicine and the Applications -- Integrative Learning to Combine Individualized Treatment Rules from Multiple Randomized Trials -- Adaptive Semi-supervised Learning for Optimal Treatment Regime Estimation with Application to EMR Data -- Estimation and Inference for Individualized Treatment Rules Using Efficient Augmentation and Relaxation Learning -- Subgroup Analysis Using Doubly Robust Semiparametric Procedures -- A Selective Overview of Fusion Penalized Learning in Latent Subgroup Analysis for Precision Medicine -- Part III Precision Medicine in Clinic Trials and the applications to EHR Data -- Mining for Health: A Comparison of Word Embedding Methods for Analysis of EHRs Data -- Adaptive Designs for Precision Medicine in Clinical Trials: A Review and Some Innovative Designs -- Maximum Likelihood Estimation and Design and Inference Considerations for Sequential Multiple Assignment Randomized Trials -- Precision Medicine Designs for Cancer Clinical Trials -- Part IV Precision Medicine in Survival Analysis and Genomic Studies -- Variant Selection and Aggregation of Genetic Association Studies in Precision Medicine -- Leveraging Functional Annotations Improves Cross-population Genetic Risk Prediction -- A Soft-Thresholding Operator for Sparse Time-Varying Effects in Survival Models -- Discovery of Gene-specific Time Effects on Survival -- Modeling and Optimizing Dynamic Treatment Regimens in Continuous Time. |
Record Nr. | UNINA-9910872199203321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|