top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data Analytics for Management, Banking and Finance : Theories and Application
Data Analytics for Management, Banking and Finance : Theories and Application
Autore Saâdaoui Foued
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer, , 2023
Descrizione fisica 1 online resource (338 pages)
Disciplina 006.312
Altri autori (Persone) ZhaoYichuan
RabbouchHana
ISBN 3-031-36570-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- List of Chapter Reviewers -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- A Survey of Machine Learning Methodologies for Loan Evaluation in Peer-to-Peer (P2P) Lending -- 1 Introduction -- 1.1 Definition -- 1.2 Lending Process -- 1.3 Benefits of P2P Lending -- 1.4 Risks of P2P Lending -- 2 P2P Platforms -- 2.1 The United Kingdom -- 2.2 The United States -- 2.3 Other Countries -- 2.4 The US Business Model -- 3 Loan Evaluation -- 3.1 Evaluation by P2P Lending Platforms -- 3.2 Evaluation by Individual Lenders -- 3.3 Evaluation Suggestions by Researchers -- 4 Application of Machine Learning Models -- 4.1 Methodologies for Credit Scoring -- 4.2 Methodologies for Profit Scoring -- 4.3 Methodologies Integrating Credit Scoring and Profit Scoring -- 4.4 Methodologies for Recommendation and Portfolio Construction -- 4.5 Methodologies Related with Funding Success -- 4.6 Methodologies Regarding Platform Stability -- 4.7 Methodologies Regarding Prepayment -- 4.8 Methodologies Estimating Loss Given Default -- 4.9 Fraud Detection Methodologies -- 5 P2P Challenges -- 5.1 P2P Platform Failures -- 5.2 Recovery from the Post-default Loss -- 5.3 Business Downturn -- 5.4 Liquidity Risk -- 5.5 Fraud Risk -- 6 Summary -- References -- Explainable Machine Learning Models for Credit Risk Analysis: A Survey -- 1 Introduction -- 2 Background -- 3 Credit Risk Analysis with Explainable AI -- 3.1 Data Collection and Pre-processing -- 3.2 Model Training and Classification -- 3.3 Model Evaluations and Hyperparameter Tuning -- 3.4 Model Explainability -- 3.4.1 LIME -- 3.4.2 SHAP -- 3.4.3 Anchors -- 3.4.4 ProtoDash -- 3.4.5 Integrated Gradients -- 3.4.6 Other Approaches -- 4 Discussion -- 5 Conclusion -- References -- Data Analytics Incorporated with Machine Learning Approaches in Finance -- 1 Introduction.
2 Applications in Finance Domain -- 2.1 Banking -- 2.2 Stock Trading/Multi Commodities Trading -- 2.3 Local or Global Marketing/Retailing -- 2.4 Portfolio Management/Optimization -- 2.5 Macroeconomics Prediction -- 2.6 Insurance -- 2.7 Financial Distress -- 2.8 Stock Market Prediction -- 2.9 Decentralized Finance -- 3 Conclusion -- References -- Estimation and Inference in Financial Volatility Networks -- 1 Introduction -- 2 Estimation and Inference in Financial Volatility Networks -- 2.1 Networked Volatility Estimation -- 2.2 Inference -- 3 Application to European Debt Markets -- 3.1 Econometric Analysis -- 4 Conclusion -- References -- Multiresolution Data Analytics for Financial Time Series Using MATLAB -- 1 Introduction -- 2 Financial Time Series -- 3 Wavelet Analysis -- 3.1 Background -- 3.2 Properties of Wavelet Functions -- 3.3 Discrete Wavelet Transform of a Time Series -- 3.4 Wavelets in Economics, Banking, and Finance -- 3.5 Implementation -- 4 Empirical Mode Decomposition (EMD) -- 4.1 Definition -- 4.2 Properties -- 4.3 EMD for Financial Data -- 4.4 Implementation -- 5 Discussion and Future Work -- 6 Conclusion -- References -- A Risk-Based Trading System Using Algorithmic Trading and Deep Learning Models -- 1 Introduction -- 2 Proposed Model -- 2.1 LSTM Model -- 2.1.1 Forget Gate -- 2.1.2 Input Gate -- 2.1.3 Output Gate -- 2.2 Input Feature Selection -- 2.2.1 Random Forest -- 2.2.2 Permutation -- 2.2.3 Clustering -- 2.3 Prediction Model -- 2.4 The Proposed Algorithmic Trading Strategy -- 2.4.1 Select a New Signal -- 2.4.2 Comparison of Percentage Changes -- 2.4.3 Trend Forecasting -- 3 Data Description and Features Selection -- 4 Computational Results -- 4.1 Implementation of Proposed Prediction Models -- 4.2 Implementation of the Proposed Algorithmic Trading Strategies -- 5 Conclusion -- References.
Financial Contagion During COVID-19 Crisis: Intraday Analysis Using VAR-VECM Models -- 1 Introduction -- 2 Data and Methodology -- 2.1 Data -- 2.2 Methodology -- 3 Empirical Results -- 4 Conclusion -- A.1 Appendix -- References -- Nonlinear ARDL Analysis of Real Effective Exchange Rate's Asymmetric Impact on FDI Inflows in Tunisia -- 1 Introduction -- 2 Literature Review -- 3 Nonlinear ARDL Model: Theoretical Framework -- 4 Analysis of the Impact of Real Effective Exchange Rate on Foreign Direct Investment Inflows -- 4.1 Model Specification -- 4.2 Empirical Results -- 5 Conclusion -- References -- Evaluating Turkish Banks' Complaint Management Performance Using Multi-Criteria Decision Analysis -- 1 Introduction -- 2 Conceptual Framework -- 2.1 Consumer Complaint Behavior -- 2.2 Complaint Management -- 2.3 CCB in Banking Market -- 3 Material and Methods -- 3.1 Fuzzy Analytical Hierarchy Process (FAHP) -- 3.2 TOPSIS -- 4 Findings -- 5 Discussion and Conclusion -- A.1 Appendix 1: Decision Matrix -- References -- Financial Cycle, Stress, and Policy Roles in Small Open Economy: Spillover Index Approach -- 1 Introduction -- 2 Literature Review -- 3 Methodology Description -- 4 Empirical Results -- 4.1 Data Description -- 4.2 Main Results -- 4.3 Robustness Checking -- 5 Conclusion -- A.1 -- B.1 Appendix 2: Software to Estimate Spillover Indices and Codes -- References -- Performance of Cryptocurrencies Under a Sentiment Analysis Approach in the Time of COVID-19 -- 1 Introduction -- 2 Literature Review and Theoretical Framework -- 3 Data -- 4 Methodology and Empirical Evidence -- 5 Concluding Remarks -- References -- Determinants of Non-Performing Loans: Evidence from Indian Banks -- 1 Introduction -- 2 Review of Literature -- 3 Data and Methodology -- 4 Empirical Results -- 5 Conclusion -- References.
Natural Resources, Conflicts, Terrorism, and Finance: Insights from a Descriptive Data Analysis -- 1 Introduction -- 2 The Importance of Energy Systems in the World -- 3 Natural Resources, Conflicts, and Finance -- 4 Natural Resources and Terrorist Acts -- 4.1 Theoretical Basis -- 4.2 Links Between Energy, Conflicts, and Terrorism -- 4.2.1 The Energy System as a Stimulus of Conflicts and Terrorism -- 4.2.2 Securing and Controlling System Structure -- 4.3 The Energy System as a Means in a Conflict -- 4.4 The Energy System as a Cause of Conflict -- 4.5 Conceptual Framework -- 4.6 Characteristics of the Energy System -- 5 Interaction Between Renewable Energy Systems and Conflicts -- 6 Conclusion -- References -- Determinants of Profitability in Islamic Banks: The Kingdom of Saudi Arabia Market -- 1 Introduction -- 2 Literature Review -- 3 Islamic Banking in Saudi Arabia -- 4 The Data -- 5 Empirical Results -- 5.1 Results of Unit Root Tests -- 5.2 Dynamic Panel ARDL -- 5.3 Empirical Results of Dynamic Panel ARDL -- 6 Conclusion -- References -- Trading Rules and Value at Risk: Is There a Linkage? -- 1 Introduction -- 2 Suggestions for More Accurate Value-at-Risk Estimations: A Theoretical Framework -- 3 Empirical Results -- 3.1 Descriptive Statistics -- 3.2 Value at Risk: Could the TA Be Beneficial? -- 4 Discussion and Thoughts for Further Contributions -- 5 Conclusions -- References -- Index.
Record Nr. UNINA-9910746289003321
Saâdaoui Foued  
Cham : , : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modern statistical methods for health research / / edited by Yichuan Zhao and (Din) Ding-Geng Chen
Modern statistical methods for health research / / edited by Yichuan Zhao and (Din) Ding-Geng Chen
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (506 pages)
Disciplina 610.21
Collana Emerging Topics in Statistics and Biostatistics Ser.
Soggetto topico Medical statistics
Big data
Estadística mèdica
Biometria
Dades massives
Soggetto genere / forma Llibres electrònics
ISBN 3-030-72437-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Part I: Health Data Analysis and Applications to EHR Data (Chaps. 1 -5) -- Part II: Clinical Trials, FDR, and Applications in Health Science (Chaps. 6 -10) -- Part III: Big Data Analytics and Its Applications (Chaps. 11 -15) -- Part IV: Survival Analysis and Functional Data Analysis (Chaps. 16 -18) -- Part V: Statistical Modeling in Genomic Studies (Chaps. 19 -21) -- Contents -- About the Editors -- -- -- List of Contributors -- -- List of Chapter Reviewers -- Part I Health Data Analysis and Applications to EHR Data -- The Effective Sample Size of EHR-Derived Cohorts Under Biased Sampling -- 1 Introduction -- 2 Methods -- 2.1 Notation and Definitions -- 2.2 Bias and Mean-Squared Error of the Simple Random Sample and the EHR-Based Sample -- 2.3 Effective Sample Size of the EHR-Derived Cohort -- 2.4 Simulation Study Design -- 3 Results -- 4 Discussion -- References -- Non-Gaussian Models for Object Motion Analysis with Time-Lapse Fluorescence Microscopy Images -- 1 Introduction -- 2 Method -- 2.1 Particle Tracking Framework -- 2.2 Object Segmentation -- 2.3 Observation and Dynamics Models -- Ellipsoid Model -- Voxel-Based Model -- 2.4 Multiple Object Tracking Management -- 3 Experiments and Results -- 3.1 Validation with Artificial Data -- 3.2 Bacteria Motility Analysis -- 3.3 Tumor Spheroid Study -- 4 Conclusions -- References -- Alternative Capture-Recapture Point and Interval Estimators Based on Two Surveillance Streams -- 1 Introduction -- 2 Methods -- 2.1 The LP Conditions and Their Central Role -- 2.2 Some Cautionary Notes on Alternatives to the LP Estimator -- 2.3 Loglinear Models and a Perspective on the Use of Covariates -- 2.4 A Rationale for Renewed Statistical Interest Under the LP Conditions -- 2.5 Review of Classical Point Estimators in the Two-Capture Case.
2.6 A Class of Estimators Including LP and Chap as Special Cases -- 2.7 A New Estimator Targeting Median Bias as a Criterion -- 2.8 New Alternatives to the Chapman Estimator Aimed at Reduced Mean Bias -- 2.9 Closed-Form Confidence Interval Estimation in the Two-Capture Case -- 2.10 An Adapted Bayesian Credible Interval Approach -- 3 Motivating Example Data and Results -- 4 Simulation Studies -- 5 Discussion -- References -- A Uniform Shrinkage Prior in Spatiotemporal Poisson Models for Count Data -- 1 Introduction -- 2 Derivation of a USP for the Variance Components in GLMM with Proper CAR and Its Properties -- 2.1 Derivation of the USP -- 2.2 Motivation of the Derived USP -- 2.3 Analytical Properties of the Derived USP -- 3 Application to the Leptospirosis Data -- 4 Simulation Study -- 5 Discussion -- References -- A Review of Multiply Robust Estimation with Missing Data -- 1 Introduction -- 2 Basic Setups -- 3 Multiply Robust Estimation Procedure -- 3.1 Calibration Approach -- 3.2 Projection Approach -- 3.3 Multiple Imputation Approach -- 4 Simulation Study -- 5 Real Application -- 6 Discussion -- References -- Part II Clinical Trials, FDR, and Applications in Health Science -- Approaches to Combining Phase II Proof-of-Conceptand Dose-Finding Trials -- 1 Introduction -- 2 Two Studies-Phase IIa (Proof-of-Concept) and Phase IIb (Dose-Finding) -- 3 A Single Study with Combined Objectives (PoC and DF) -- 3.1 Single Fixed Design -- 3.2 Two-Stage Phase IIa/IIb Adaptive Designs -- 4 Sample Size Comparison and Discussion -- 5 Concluding Remarks -- References -- Designs of Early Phase Cancer Trials with Drug Combinations -- 1 Introduction -- 2 Designs for Phase I Clinical Trials -- 2.1 Phase I Model-based Designs for Drug Combinations -- Model -- Prior and Posterior Distributions -- Trial Design -- Design Operating Characteristics -- Results.
2.2 Attributing Dose-Limiting Toxicities -- Model -- Trial Design -- Results -- 2.3 Adding a Baseline Covariate -- Model -- Prior and Posterior Distributions -- Trial Design -- Results -- 3 Designs for Phase I-II Clinical Trials -- 3.1 Binary Endpoint -- Model -- Trial Design -- Results -- 3.2 Survival Endpoint -- Introduction -- Model -- Trial Design -- Results -- 4 Discussion -- References -- Controlling the False Discovery Rate of Grouped Hypotheses -- 1 Introduction -- 2 Modeling and Sequential Framework -- 2.1 Notation and Models -- 2.2 A General Framework for Grouped Multiple Testing Procedures -- 3 Procedures for Group Multiple Testing -- 3.1 Conditional Local FDR (CLfdr) -- 3.2 Group-Weighted Benjamini-Hochberg (GBH) -- 3.3 Weighting Fixed Cutoff (WFC) -- 3.4 Structure-Adaptive Benjamini-Hochberg (SABHA) -- 3.5 Independent Hypothesis Weighting (IHWc) -- 3.6 Adaptive p-Value Thresholding (AdaPT) -- 3.7 Linear and Nonlinear Rankings -- 4 Simulation -- 4.1 Results -- 5 Application -- 6 Conclusions and Discussions -- Appendix -- A.1 Two-Parameter AdaPT -- A.2 EM Steps -- A.3 Initialization -- References -- Classic Linear Mediation Analysis of Complex Survey Data Using Balanced Repeated Replication -- 1 Introduction -- 2 Technical Details -- 2.1 Mediation Model -- 2.2 Complex Surveys Using BRR -- 2.3 Mediation Incorporating BRR -- Point Estimate -- Standard Error Estimate -- Significance Test -- 3 SAS Macro and Illustration -- 3.1 Components of %MediationBRR -- 3.2 Application to PISA: A Single-Mediator Model -- 3.3 Application to TUS-CPS: A Multi-Mediator Model -- 4 Discussion -- Appendix -- References -- A Review of Bayesian Optimal Experimental Design on DifferentModels -- 1 Introduction -- 1.1 Pseudo-Bayesian Optimal Design -- 1.2 Fully Bayesian Optimal Design -- 2 Bayesian Designs for Linear Models.
3 Bayesian Designs for Generalized Linear Models -- 4 Bayesian Designs for Nonlinear Models -- 4.1 Bayesian Optimal Designs for PKPD Models -- 4.2 Bayesian Optimal Designs for Biological and Chemical Models -- 5 Conclusions -- References -- Part III Big Data Analytics and Its Applications -- A Selective Review on Statistical Techniques for Big Data -- 1 Introduction -- 2 Randomized Numerical Linear Algebra -- 2.1 Random Projection -- 2.2 Nonuniform Random Sampling -- 3 Information-Based Optimal Subdata Selection -- 4 Informative Subsampling -- 4.1 Optimal Subsampling -- 4.2 Local Case-Control Subsampling -- 5 Divide-and-Conquer and Updating Methods -- 5.1 Divide-and-Conquer Methods -- 5.2 Updating Methods -- Online Updating Methods -- Stochastic Gradient Descent -- 6 Summary and Discussion -- References -- A Selective Overview of Recent Advances in Spectral Clustering and Their Applications -- 1 Introduction -- 2 Spectral Clustering -- 2.1 The Similarity Matrix -- 2.2 Unnormalized Spectral Clustering -- 2.3 Normalized Spectral Clustering -- 2.4 Equivalence to Weighted Kernel k-Means -- 2.5 Selecting the Total Number of Clusters -- General Clustering-Independent Criteria -- Cluster Selection Criteria Specific to Spectral Clustering -- 3 New Developments of Spectral Clustering -- 3.1 Spectral Biclustering -- 3.2 Multi-View Spectral Clustering -- 3.3 High-Order Spectral Clustering -- 3.4 Constrained Spectral Clustering -- 3.5 Evolutionary Spectral Clustering -- PCQ -- PCM -- Determining the Weight Parameter α -- 3.6 Incremental Spectral Clustering -- 3.7 Sparse Spectral Clustering -- 4 Discussion -- References -- A Review on Modern Computational Optimal Transport Methods with Applications in Biomedical Research -- 1 Introduction -- 2 Background of the Optimal Transport Problem -- 3 Regularization-Based Optimal Transport Methods.
3.1 Computational Cost for OT Problems -- 3.2 Sinkhorn Distance -- 3.3 Sinkhorn Algorithms with the Nyström Method -- 4 Projection-Based Optimal Transport Methods -- 4.1 Random Projection OT Method -- 4.2 Projection Pursuit OT Method -- 5 Applications in Biomedical Research -- 5.1 Identify Development Trajectories in Reprogramming -- 5.2 Data Augmentation for Biomedical Data -- References -- Variable Selection Approaches in High-Dimensional Space -- 1 Introduction -- 2 Penalized Likelihood Approaches -- 2.1 Penalty Functions -- 2.2 Canonical Models in High Dimension -- Linear Regression Model -- Logistic Regression Model -- Proportional Hazards Model -- 2.3 Algorithm and Implementation -- Penalized Weighted Least Squares -- Penalized Likelihoods -- Tuning Parameter Selection -- 3 Feature Screening for Ultra-High-Dimensional Data -- 3.1 Sure Independence Screening -- Correlation Ranking -- Maximum Marginal Likelihoods -- 3.2 Iterative Sure Independence Screening -- 3.3 Reduction of False Positive Rate -- 4 Real Data Example -- 5 High-Dimensional Inference -- 6 Conclusion -- References -- Estimation Methods for Item Factor Analysis: An Overview -- 1 Introduction -- 2 IFA Models -- 2.1 Modeling Framework -- 2.2 Examples of IFA Models -- 2.3 Exploratory and Confirmatory Analyses -- 3 Estimation Methods -- 3.1 Estimation Based on Joint Likelihood -- 3.2 Estimation Based on Marginal Likelihood -- 3.3 Limited-Information Estimation -- 3.4 Spectral Method -- 4 Computer Implementations -- 5 Conclusions -- References -- Part IV Survival Analysis and Functional Data Analysis -- Functional Data Modeling and Hypothesis Testing for Longitudinal Alzheimer Genome-Wide Association Studies -- 1 Introduction -- 2 Functional Modeling of Longitudinal Phenotype Data and Estimation Procedure -- 2.1 Model Assumptions -- 2.2 Estimation Under the Full Model.
2.3 Estimation Under the Reduced Model.
Record Nr. UNISA-996466415503316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Modern Statistical Methods for Health Research / / edited by Yichuan Zhao, (Din) Ding-Geng Chen
Modern Statistical Methods for Health Research / / edited by Yichuan Zhao, (Din) Ding-Geng Chen
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (506 pages)
Disciplina 610.21
Collana Emerging Topics in Statistics and Biostatistics
Soggetto topico Biometry
Medicine - Research
Biology - Research
Biostatistics
Biomedical Research
Estadística mèdica
Biometria
Dades massives
Soggetto genere / forma Llibres electrònics
ISBN 3-030-72437-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Alternative Capture-Recapture Point and Interval Estimators Based on Two Surveillance Streams – Lyles, Wilkinson, Williamson, Chen, Taylor, Jambai, Kaiser -- 2. On-Gaussian Model Based Object Tracking Analysis with Time Lapse Fluorescence Microscopy Images – Marcus, Kong -- 3. Detecting Changepoint in Gene Expressions over Time: An Application to Childhood Obesity – Mathur, Sung -- 4. How “Big” Are EHR Data? The Effective Sample Size of EHR Data Under Biased Sampling – Hubbard -- 5. A Nested Clustering Method to Detect and Cluster Transgenerational DNA Methylation Sites via Beta Regressions – Wang, Zhang, Han, Arshad, Karmaus -- 6. Controlling the False Discovery Rate of Grouped Hypotheses – MacDonald, Wilson, Liang, Qin -- 7. Approaches to Combining Phase II Proof-of-Concept and Dose-Finding Trials – Ting -- 8. On the Multiply Robust Estimation with Missing Data – Chen, Haziza -- 9. Recent Advances in Spectral Clustering and Their Applications in Bioinformatics – Xue -- 10. Functional Data Modeling and Hypothesis Testing for Longitudinal Alzheimer Genome-Wide Association Studies – Li, Xu, Liu -- 11. Misuse of Classifiers in Biological Networks – Maharaj -- 12. A Selective Inference-based Two-stage Procedure for Clinical Safety Studies – Zhu, Guo -- 13. Inferring Stage of HCV Infections as Recent or Chronic by Machine Learning approach – Icer -- 14. Graphical Modeling of Multiple Biological Pathways in Genomic Studies – Cao, Zhang, Chen, Wang -- 15. Online Updating of Nonparametric Survival Estimator and Nonparametric Survival Test – Xue, Schifano, Hu -- 16. Mixed-Effects Negative Binomial Regression with Interval Censoring: A Simulation Study and Application to Precipitation and All-Cause Mortality Rates among Black South Africans over 1997-2013 – Landon, Lyles, Scovronick, Abadi, Bilotta, Hauer, Bell, Gribble -- 17. SAS Macros for Linear Mediation Analysis of Complex Survey Data Using Balanced Repeated Replication – Mai, Zhang -- 18. Joint Modeling of Multiple Skewed Longitudinal Processes with Excess of Zero and Time-to-Event: An Application to Fecundity Studies – Mirzaei, Kundu, Sundaram -- 19. Infectious Disease Epidemiology: Forecasting the Ongoing 2018-19 Ebola Epidemic in the Democratic Republic of Congo (DRC) Using Phenomenological Growth Models – Tariq, Chowell -- 20. Models and Estimation Methods for Item Factor Analysis: An Overview – Chen, Zhang.
Record Nr. UNINA-9910502593003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
New Advances in Statistics and Data Science / / edited by Ding-Geng Chen, Zhezhen Jin, Gang Li, Yi Li, Aiyi Liu, Yichuan Zhao
New Advances in Statistics and Data Science / / edited by Ding-Geng Chen, Zhezhen Jin, Gang Li, Yi Li, Aiyi Liu, Yichuan Zhao
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XXIII, 348 p. 74 illus., 41 illus. in color.)
Disciplina 005.7
Collana ICSA Book Series in Statistics
Soggetto topico Statistics 
Big data
Biostatistics
Statistical Theory and Methods
Big Data/Analytics
Statistics for Life Sciences, Medicine, Health Sciences
ISBN 3-319-69416-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1 Review and Theoretical Framework in Data Science -- Ch 1 Statistical Distances and Their Role in Robustness -- Ch 2 The Out-source Error in Multi-source Cross Validation-type Procedures -- Ch 3 -- Meta-Analysis for Rare Events as Binary Outcomes -- Ch 4 New Challenges and Strategies in Robust Optimal Design for Multicategory Logit Modelling -- Ch 5 Testing of Multivariate Spline Growth Model -- Part 2 Complex and Big Data Analysis -- Ch 6 Uncertainty Quantification Using the Neighbor Gaussian Process -- Ch 7 Tuning Parameter Selection in the LASSO with Unspecified Propensity -- Adaptive Filtering Increases Power to Detect Differently Expressed Genes -- Ch 9 Estimating Parameters in Complex Systems with Functional Outputs - A Wavelet-based Approximate Bayesian Computation Approach -- Ch 10 A maximum Likelihood Approach for Non-invasive Cancer Diagnosis Using Methylation Profiling of Cell-free DNA from Blood -- Part 3 Clinical Trials, Statistical Shape Analysis and Application -- Ch 11 A Simple and Efficient Statistical Approach for Designing an Early Phase II Clinical Trial - Ordinal Linear Contrast Test -- Ch 12 Landmark-constrained Statistical Shape Analysis of Elastic Curves and Surfaces -- Ch 13 Phylogeny-based kernels with Application to Microbiome Association Studies -- Ch 14 Accounting for Differential Error in Time-to-event Analyses using Imperfect Electronic Health Record-derived Endpoints -- Part 4 Statistical Modeling and Data Analysis -- Ch 15 Modeling Inter-trade Durations in the Limit Order market -- Ch 16 Assessment of Drug Interactions with Repeated Measurements -- Ch 17 Statistical Indices for Risk Tracking in Longitudinal Studies -- Ch 18 Statistical Analysis of Labor market Integration: A Mixture Regression Approach -- Ch 19 Bias Correction in Age-Cohort Models Using Eigen Analysis.
Record Nr. UNINA-9910255456003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
New Frontiers of Biostatistics and Bioinformatics / / edited by Yichuan Zhao, Ding-Geng Chen
New Frontiers of Biostatistics and Bioinformatics / / edited by Yichuan Zhao, Ding-Geng Chen
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (xxiv, 463 pages) : illustrations
Disciplina 570.15195
Collana ICSA Book Series in Statistics
Soggetto topico Statistics 
Big data
Biostatistics
Statistical Theory and Methods
Big Data/Analytics
Statistics for Life Sciences, Medicine, Health Sciences
ISBN 3-319-99389-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter1. Importance of Adjusting for Multi-Stage Design when Analyzing Data from Complex Surveys -- Chapter2. A selective overview of semiparametric mixture of regression models -- Chapter3. Estimating the Confidence Interval of Evolutionary Stochastic Process Mean from Wavelet based Bootstrapping -- Chapter4. A New Wavelet-Based Approach for Mass Spectrometry Data Classification -- Chapter5. Identification of Pathway-Modulating Genes using the Biomedical Literature Mining -- Chapter6. Equivalence tests in subgroup analyses -- Chapter7. Empirical Study on High-Dimensional Variable Selection and Prediction under Competing Risks -- Chapter8. Learning Gene Regulatory Networks with High-Dimensional Heterogeneous Data -- Chapter9. Discriminant Analysis and Normalization Methods for Next-generation Sequencing Data -- Chapter10. Rank-based Empirical Likelihood for Regression Models with Responses Missing at Random -- Chapter11. Nonparametric Estimation of a Hazard Rate Function with Right Truncated Data -- Chapter12. On the landmark survival model for dynamic prediction of event occurrence using longitudinal data -- Chapter13. Analysis of the High School Longitudinal Study to Evaluate Associations Among Mathematics Achievement, Mentorship and Student Participation in STEM Programs -- Chapter14. OptimalWeightedWilcoxon–Mann–Whitney Test for Prioritized Outcomes -- Chapter15. Wavelet-based profile monitoring using order-thresholding recursive CUSUM schemes -- Chapter16. Bayesian Nonparametric Spatially Smoothed Density Estimation -- Chapter17. Nonparametric Estimation of a Cumulative Hazard Function with Right Truncated Data -- Chapter18. Mammogram Diagnostics Using Robust Wavelet-based Estimator of Hurst Exponent -- Chapter19. Statistical Power and Bayesian Assurance in Clinical Trial Design -- Chapter20. Predicting Confidence Interval for the Proportion at the Time of Study Planning in Small Clinical Trials -- Chapter21. Performance evaluation of normalization approaches for metagenomic compositional data on differential abundance analysis -- Chapter22. Statistical Modeling for the Heart Disease Diag-nosis via Multiple Imputation.
Record Nr. UNINA-9910303453103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Modeling in Biomedical Research [[electronic resource] ] : Contemporary Topics and Voices in the Field / / edited by Yichuan Zhao, Ding-Geng (Din) Chen
Statistical Modeling in Biomedical Research [[electronic resource] ] : Contemporary Topics and Voices in the Field / / edited by Yichuan Zhao, Ding-Geng (Din) Chen
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XVIII, 491 p. 107 illus., 79 illus. in color.)
Disciplina 570.15195
Collana Emerging Topics in Statistics and Biostatistics
Soggetto topico Statistics 
Biostatistics
Big data
Data mining
Statistics for Life Sciences, Medicine, Health Sciences
Big Data/Analytics
Data Mining and Knowledge Discovery
ISBN 3-030-33416-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Part I: Next Generation Sequence Data Analysis -- 1. Modeling Species Specific Gene Expression Across Multiple Regions in the Brain -- 2. Classification of EEG Motion Artifact Signals Using Spatial ICA -- 3. Weighted K-means Clustering with Observation Weight for Single-cell Epigenomic Data -- 4. Discrete Multiple Testing in Detecting Differential Methylation Using Sequencing Data -- Part II: Deep Learning, Precision Medicine and Applications -- 5. Prediction of Functional Markers of Mass Cytometry Data via Deep Learning -- 6. Building Health Application Recommender System Using Partially Penalized Regression -- 7. Hierarchical Continuous Time Hidden Markov Model, with Application in Zero-Inflated Accelerometer Data -- Part III: Large Scale Data Analysis and its Applications -- 8. Privacy Preserving Feature Selection Via Voted Wrapper Method For Horizontally Distributed Medical Data -- 9. Improving Maize Trait through Modifying Combination of Genes -- 10. Molecular Basis of Food Classification in Traditional Chinese Medicine -- 11. Discovery Among Binary Biomarkers in Heterogeneous Populations -- Part IV: Biomedical Research and the Modelling -- 12. Heat Kernel Smoothing on Manifolds and Its Application to Hyoid Bone Growth Modeling -- 13. Optimal Projections in the Distance-Based Statistical Methods -- 14. Kernel Tests for One, Two, and K-Sample Goodness-Of-Fit: State of the Art and Implementation Considerations -- 15. Hierarchical Modeling of the Effect of Pre-exposure Prophylaxis on HIV in the US -- 16. Mathematical Model of Mouse Ventricular Myocytes Overexpressing Adenylyl Cyclase Type 5 -- Part V: Survival Analysis with Complex Data Structure and its Applications -- 17. Non-Parametric Maximum Likelihood Estimator for Case-Cohort and Nested Case-Control Designs with Competing Risks Data -- Authors: Jie-Huei Wang, Chun-Hao Pan, Yi-Hau Chen and I-Shou Chang -- 18. Variable Selection in Partially Linear Proportional Hazards Model with Grouped Covariates and a Diverging Number of Parameters -- 19. Inference of Transition Probabilities in Multi-state Models using Adaptive Inverse Probability Censoring Weighting Technique.
Record Nr. UNISA-996418264403316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Modeling in Biomedical Research : Contemporary Topics and Voices in the Field / / edited by Yichuan Zhao, Ding-Geng (Din) Chen
Statistical Modeling in Biomedical Research : Contemporary Topics and Voices in the Field / / edited by Yichuan Zhao, Ding-Geng (Din) Chen
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XVIII, 491 p. 107 illus., 79 illus. in color.)
Disciplina 570.15195
Collana Emerging Topics in Statistics and Biostatistics
Soggetto topico Biometry
Quantitative research
Data mining
Biostatistics
Data Analysis and Big Data
Data Mining and Knowledge Discovery
ISBN 3-030-33416-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Part I: Next Generation Sequence Data Analysis -- 1. Modeling Species Specific Gene Expression Across Multiple Regions in the Brain -- 2. Classification of EEG Motion Artifact Signals Using Spatial ICA -- 3. Weighted K-means Clustering with Observation Weight for Single-cell Epigenomic Data -- 4. Discrete Multiple Testing in Detecting Differential Methylation Using Sequencing Data -- Part II: Deep Learning, Precision Medicine and Applications -- 5. Prediction of Functional Markers of Mass Cytometry Data via Deep Learning -- 6. Building Health Application Recommender System Using Partially Penalized Regression -- 7. Hierarchical Continuous Time Hidden Markov Model, with Application in Zero-Inflated Accelerometer Data -- Part III: Large Scale Data Analysis and its Applications -- 8. Privacy Preserving Feature Selection Via Voted Wrapper Method For Horizontally Distributed Medical Data -- 9. Improving Maize Trait through Modifying Combination of Genes -- 10. Molecular Basis of Food Classification in Traditional Chinese Medicine -- 11. Discovery Among Binary Biomarkers in Heterogeneous Populations -- Part IV: Biomedical Research and the Modelling -- 12. Heat Kernel Smoothing on Manifolds and Its Application to Hyoid Bone Growth Modeling -- 13. Optimal Projections in the Distance-Based Statistical Methods -- 14. Kernel Tests for One, Two, and K-Sample Goodness-Of-Fit: State of the Art and Implementation Considerations -- 15. Hierarchical Modeling of the Effect of Pre-exposure Prophylaxis on HIV in the US -- 16. Mathematical Model of Mouse Ventricular Myocytes Overexpressing Adenylyl Cyclase Type 5 -- Part V: Survival Analysis with Complex Data Structure and its Applications -- 17. Non-Parametric Maximum Likelihood Estimator for Case-Cohort and Nested Case-Control Designs with Competing Risks Data -- Authors: Jie-Huei Wang, Chun-Hao Pan, Yi-Hau Chen and I-Shou Chang -- 18. Variable Selection in Partially Linear Proportional Hazards Model with Grouped Covariates and a Diverging Number of Parameters -- 19. Inference of Transition Probabilities in Multi-state Models using Adaptive Inverse Probability Censoring Weighting Technique.
Record Nr. UNINA-9910483548903321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistics in Precision Health : Theory, Methods and Applications / / edited by Yichuan Zhao, Ding-Geng Chen
Statistics in Precision Health : Theory, Methods and Applications / / edited by Yichuan Zhao, Ding-Geng Chen
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (0 pages)
Disciplina 615.7
Collana ICSA Book Series in Statistics
Soggetto topico Biometry
Quantitative research
Medicine
Biostatistics
Data Analysis and Big Data
Clinical Medicine
ISBN 3-031-50690-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I An Overview of Precision Health in the Big Data Era -- Overview of Precision Health: Past, Current, and Future -- A Selective Review of Individualized Decision Making -- Utilizing Wearable Devices to Improve Precision in Physical Activity Epidemiology: Sensors, Data and Analytic Methods -- Policy Learning for Individualized Treatment Regimes on Infinite Time Horizon -- Q-Learning Based Methods for Dynamic Treatment Regimes -- Personalized Medicine with Multiple Treatments -- Statistical Reinforcement Learning and Dynamic Treatment Regimes -- Part II New Advances in Statistical Methods of Precision Medicine and the Applications -- Integrative Learning to Combine Individualized Treatment Rules from Multiple Randomized Trials -- Adaptive Semi-supervised Learning for Optimal Treatment Regime Estimation with Application to EMR Data -- Estimation and Inference for Individualized Treatment Rules Using Efficient Augmentation and Relaxation Learning -- Subgroup Analysis Using Doubly Robust Semiparametric Procedures -- A Selective Overview of Fusion Penalized Learning in Latent Subgroup Analysis for Precision Medicine -- Part III Precision Medicine in Clinic Trials and the applications to EHR Data -- Mining for Health: A Comparison of Word Embedding Methods for Analysis of EHRs Data -- Adaptive Designs for Precision Medicine in Clinical Trials: A Review and Some Innovative Designs -- Maximum Likelihood Estimation and Design and Inference Considerations for Sequential Multiple Assignment Randomized Trials -- Precision Medicine Designs for Cancer Clinical Trials -- Part IV Precision Medicine in Survival Analysis and Genomic Studies -- Variant Selection and Aggregation of Genetic Association Studies in Precision Medicine -- Leveraging Functional Annotations Improves Cross-population Genetic Risk Prediction -- A Soft-Thresholding Operator for Sparse Time-Varying Effects in Survival Models -- Discovery of Gene-specific Time Effects on Survival -- Modeling and Optimizing Dynamic Treatment Regimens in Continuous Time.
Record Nr. UNINA-9910872199203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui