Biofabrication for orthopedics : methods, techniques and applications |
Autore | Cui Wenguo |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (669 pages) |
Altri autori (Persone) |
ZhaoXin
LiuShen |
Soggetto genere / forma | Electronic books. |
ISBN |
9783527831357
9783527348893 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Foreword from Prof. Changsheng Liu -- Foreword from Prof. Yingze Zhang -- Foreword from Prof. Lianfu Deng -- Foreword from Prof. Cato T. Laurencin -- Preface -- Volume-1 -- Part I Biofabrication Techniques -- Chapter 1 Current Progress and Technological Challenges in Translational 3D Bioprinting -- 1.1 Introduction -- 1.2 Challenges in the 3D Bioprinting Process -- 1.2.1 Manufacturing Challenges -- 1.2.1.1 Choice of Bioink -- 1.2.1.2 Cell Selection and Optimization -- 1.2.1.3 Printing Resolution and Mechanical Stability -- 1.2.1.4 Design and Post‐processing -- 1.2.2 In Vitro Challenges -- 1.2.2.1 Cell Viability -- 1.2.2.2 Cell Differentiation -- 1.2.3 Clinical Challenges -- 1.2.3.1 Remodeling and Maturation -- 1.2.3.2 Immune Response -- 1.2.3.3 Vascularization -- 1.2.3.4 Innervation -- 1.3 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 2 Bioceramics for Promoting Bone Regeneration -- 2.1 Introduction -- 2.2 Types of Bioceramics -- 2.2.1 Bioactive Ceramics -- 2.2.2 Biodegradable Ceramics -- 2.2.2.1 Bioactive Glass -- 2.2.2.2 β‐Tricalcium Phosphate -- 2.2.2.3 Calcium Phosphate Cements -- 2.2.2.4 Silicate Bioceramics -- 2.3 Mechanical Properties -- 2.4 Biological Properties -- 2.4.1 Protein Adsorption -- 2.4.2 Immunomodulation -- 2.4.3 Vascularization -- 2.5 Summary -- Acknowledgments -- References -- Chapter 3 3D Printing and Bioprinting Strategies Applied Toward Orthopedics -- 3.1 Introduction -- 3.2 Biomaterial Inks -- 3.2.1 Hydrogel Biomaterial Inks -- 3.2.1.1 Collagens -- 3.2.1.2 Gelatin -- 3.2.1.3 Alginate -- 3.2.1.4 Hyaluronic Acid -- 3.2.2 Thermoplastic Polymeric Inks -- 3.2.2.1 PCL -- 3.2.2.2 PLA -- 3.2.2.3 Polyetheretherketone (PEEK) -- 3.2.3 Calcium Phosphate (CaP) Ceramic Inks -- 3.2.4 Supramolecular and Stimuli‐Responsive Inks.
3.3 3D Printing and Bioprinting Techniques -- 3.3.1 Extrusion‐Based (Bio)printing -- 3.3.2 Inkjet‐Based (Bio)printing -- 3.3.3 Light‐Based (Bio)printing -- 3.4 Current Challenges and Future Directions -- Acknowledgments -- References -- Chapter 4 Stem Cells and Their Application in Orthopedics -- 4.1 Introduction -- 4.2 Mesenchymal Stem Cells (MSCs) -- 4.2.1 Tissue Sources of MSCs -- 4.2.2 Isolation, Identification, and Expansion of MSCs -- 4.2.3 Current Cell Markers for MSC Identification -- 4.2.3.1 Differentiation of MSCs both In Vitro and In Vivo -- 4.3 MSC‐Derived Extracellular Vesicles (MSC‐EVs) and Exosomes -- 4.4 Clinical Application of Stem Cells in Orthopedics -- 4.4.1 Bone Defects, Non‐union, and Osteogenesis Imperfecta -- 4.4.1.1 Bone Non‐union and Defects -- 4.4.1.2 Osteogenesis Imperfecta (OI) -- 4.4.2 Osteochondral Defect and Osteoarthritis (OA) -- 4.4.3 Tendon and Ligament Injury -- 4.4.3.1 Rotator Cuff Tear -- 4.4.3.2 Anterior Cruciate Ligament (ACL) Reconstruction -- 4.4.4 Spine -- 4.4.4.1 Spinal Fusion -- 4.4.4.2 Spinal Cord Injuries (SCI) -- 4.5 Considerations of Stem Cells and Derivations for Clinical Usage -- 4.6 Conclusion -- Acknowledgments -- Abbreviations -- References -- Chapter 5 Electrospinning Techniques -- 5.1 Introduction -- 5.2 Different Types of Electrospinning Techniques -- 5.2.1 Traditional Electrospinning -- 5.2.2 Coaxial Electrospinning -- 5.2.3 Emulsion Electrospinning -- 5.2.4 Conjugated Electrospinning -- 5.2.5 Dynamic Liquid Electrospinning -- 5.2.6 Multi‐fluid Electrospinning -- 5.2.7 Electrospun Fibers Integrated with Post‐treatments -- 5.2.7.1 Coating Physical Components on the Fibers -- 5.2.7.2 Deposition of Electrosprayed Microparticles on the Fibers -- 5.2.7.3 Welding of Nanofibers -- 5.2.7.4 Remolding Electrospun Nanofibers to 3D Scaffolds -- 5.3 Typical Applications of Electrospun Fibers in Orthopedics. 5.3.1 Bone Tissue Repair -- 5.3.2 Vascularization -- 5.3.3 Cartilage Repair -- 5.3.4 Tendon and Ligament Repair -- 5.3.5 Repair of Tendon‐to‐Bone Interface -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 Joint Lubrication and Wear -- 6.1 Introduction -- 6.2 Natural Joint Structure -- 6.2.1 Role of Articular Cartilage -- 6.2.2 Regional Classification of Articular Cartilage -- 6.3 Joint Lubrication Mechanism -- 6.3.1 Tribological Theory -- 6.3.2 Hydration Lubrication -- 6.4 Joint Lubrication Behavior -- 6.4.1 Component -- 6.4.2 Lubrication Performance -- 6.5 Artificial Biolubricants -- 6.6 Artificial Joint Prosthesis -- 6.6.1 Metal Material -- 6.6.2 Polymer Material -- 6.6.3 Ceramic Material -- Acknowledgments -- References -- Chapter 7 Microfluidic Biotechnology for "Bone‐on‐a‐Chip" -- 7.1 Introduction -- 7.2 Basic Principles and Properties of Microfluidics -- 7.2.1 Fabrication of Microfluidic Devices via Soft Lithography -- 7.2.2 Fluid Controlling Components of Microfluidic Devices -- 7.2.2.1 Microvalves -- 7.2.2.2 Micropumps -- 7.2.2.3 Micromixers -- 7.2.2.4 Concentration Gradient -- 7.2.3 Cell/Tissue Culture in Microfluidic Devices -- 7.3 Microfluidic "Organ‐on‐a‐Chip" Technology -- 7.3.1 Organ-on-a-Chip: Overview -- 7.3.2 Biological Features of Organ‐on‐a‐Chip Devices -- 7.3.2.1 Tissue Barrier Functions -- 7.3.2.2 External Stimulation -- 7.3.2.3 Microvascular Network -- 7.3.3 Recent Advances in "Bone‐on‐a‐Chip" Technology -- 7.3.4 Mineralization and Osteogenesis -- 7.3.5 Osteochondral Tissue -- 7.3.6 Bone Marrow -- 7.3.7 Cancer -- 7.4 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 8 Bioactive Glasses in Orthopedics -- 8.1 First Bioactive Glass -- 8.2 Bioactive Glass Versatility -- 8.2.1 Osteogenesis -- 8.2.2 Angiogenesis -- 8.2.3 Antimicrobial Activity -- 8.3 Alternative Bioactive Glasses. 8.4 Bioactive Glasses in Composites and Hybrid Materials -- 8.4.1 Materials Used as Organic Phase in Composites or Hybrid Devices for Bone Repair -- 8.4.1.1 Natural Polymers -- 8.4.1.2 Synthetic Polymers -- 8.4.2 Composite Materials -- 8.4.2.1 Bioactive Glasses Used in Composites -- 8.4.2.2 Bioactive Glass Influence on Cell Behavior In Vitro -- 8.4.2.3 Composites' Fabrication Methods -- 8.4.3 Hybrid Materials -- 8.4.4 Composites in Clinics -- 8.5 Conclusion -- Acknowledgments -- References -- Volume-2 -- Part II Biomedical Applications in Orthopedics -- Chapter 9 3D Printing for Orthopedics -- 9.1 Overview of 3D Printing Technology -- 9.2 Bone Tissue Engineering and 3D Printing -- 9.3 Cartilage Tissue Engineering and 3D Printing -- 9.4 Structural Requirements of 3D Printing -- 9.4.1 Pore Size -- 9.4.2 Porosity -- 9.4.3 Pore Structure -- 9.5 Biomaterials for 3D Printing -- 9.5.1 Metal -- 9.5.2 Bioceramics -- 9.5.3 Polymer Materials -- 9.6 Application of 3D Printing in Cell Printing and Orthopedic Tissue Engineering -- 9.6.1 Inkjet 3D Printing -- 9.6.2 Extrusion‐Based 3D Bioprinting -- 9.6.3 Laser‐Assisted Printing -- 9.7 Future Prospects -- Acknowledgments -- References -- Chapter 10 Bone Implants (Bone Regeneration and Bone Cancer Treatments) -- 10.1 Bone Regeneration -- 10.1.1 Introduction -- 10.1.2 Biological Characteristics of Bone -- 10.1.2.1 Bone Biology -- 10.1.2.2 Osteogenesis and Bone Healing (Biomineralization) -- 10.1.3 Role of Implants for Bone Regeneration -- 10.1.3.1 Providing Structural Support -- 10.1.3.2 Regulating Stem Cell Behaviors -- 10.1.3.3 Activating Gene‐Associated Therapy -- 10.1.3.4 Application of Orthobiologics -- 10.1.3.5 Generating Stimulus Responses for Bone Healing -- 10.1.3.6 Converging Multiple Synergistic Strategies -- 10.1.4 Concluding Remarks and Future Outlook -- 10.2 Bone Cancer Treatments. 10.2.1 Clinical Approach to Bone Cancer -- 10.2.1.1 Introduction -- 10.2.1.2 Traditional Approaches -- 10.2.1.3 Surgery -- 10.2.1.4 Chemotherapy -- 10.2.1.5 Radiotherapy -- 10.2.1.6 Molecular Targetede Therapy -- 10.2.1.7 Other Therapy -- 10.2.2 State‐of‐the‐Art Nanotechnology -- 10.2.2.1 Nanotechnology for Bone Cancer Therapy -- 10.2.2.2 Cytotoxic Agents -- 10.2.2.3 Drug Delivery Platform -- 10.2.2.4 Phototherapy -- 10.2.2.5 Gene Therapy -- 10.2.2.6 Summary and Future Direction -- 10.2.3 Biofabrication for Bone Cancer Treatments -- 10.2.3.1 Introduction -- 10.2.3.2 Application in Bone Cancer Treatments -- 10.2.3.3 Summary and Future Direction -- Acknowledgments -- References -- Chapter 11 Bionic Fixation: Design, Biomechanics, and Clinical Application -- 11.1 Bionics and Medical Bionics -- 11.2 Structural Bionics in the Field of Orthopedics and Traumatology -- 11.2.1 Elastic Bionic Fixation Device for Distal Tibiofibular Syndesmosis -- 11.2.2 Minimally Invasive Adjustable Plate for Pelvic Fractures -- 11.2.3 Bionic Implants for Intertrochanteric Fracture of the Femur -- 11.2.4 Bionic Fixation of Calcaneal Fracture -- 11.3 Bionic Materials -- 11.3.1 Application and Designation of New Composite Materials -- 11.3.2 Bionic Design -- 11.4 Future Perspectives and Current Limitations -- Acknowledgments -- References -- Chapter 12 Cartilage Injury and Repair -- 12.1 Introduction -- 12.2 Pathology of Cartilage Injury -- 12.3 Clinical Characteristics of Cartilage Injury -- 12.4 Evaluation of Cartilage Injuries -- 12.4.1 Arthroscopic Evaluation of Cartilage Injury -- 12.4.2 Histopathology Evaluation of Cartilage Injury -- 12.4.3 Magnetic Resonance Imaging (MRI) Assessment of Cartilage Injury -- 12.5 Clinical Strategies of Cartilage Repair -- 12.5.1 Debridement, Cartilage Shaving, and Joint Lavage -- 12.5.2 Bone Marrow Stimulation and Augmentation. 12.5.3 Osteochondral Autografts and Allografts. |
Record Nr. | UNINA-9910595701103321 |
Cui Wenguo | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biofabrication for orthopedics : methods, techniques and applications / / Wenguo Cui, Xin Zhao, and Shen Liu |
Autore | Cui Wenguo |
Pubbl/distr/stampa | New York, NY : , : John Wiley & Sons, Inc., , [2022] |
Descrizione fisica | 1 online resource (669 pages) |
Disciplina | 610.28 |
Soggetto topico |
Biomedical engineering
Tissue engineering |
ISBN |
3-527-83137-1
3-527-83135-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Foreword from Prof. Changsheng Liu -- Foreword from Prof. Yingze Zhang -- Foreword from Prof. Lianfu Deng -- Foreword from Prof. Cato T. Laurencin -- Preface -- Volume-1 -- Part I Biofabrication Techniques -- Chapter 1 Current Progress and Technological Challenges in Translational 3D Bioprinting -- 1.1 Introduction -- 1.2 Challenges in the 3D Bioprinting Process -- 1.2.1 Manufacturing Challenges -- 1.2.1.1 Choice of Bioink -- 1.2.1.2 Cell Selection and Optimization -- 1.2.1.3 Printing Resolution and Mechanical Stability -- 1.2.1.4 Design and Post‐processing -- 1.2.2 In Vitro Challenges -- 1.2.2.1 Cell Viability -- 1.2.2.2 Cell Differentiation -- 1.2.3 Clinical Challenges -- 1.2.3.1 Remodeling and Maturation -- 1.2.3.2 Immune Response -- 1.2.3.3 Vascularization -- 1.2.3.4 Innervation -- 1.3 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 2 Bioceramics for Promoting Bone Regeneration -- 2.1 Introduction -- 2.2 Types of Bioceramics -- 2.2.1 Bioactive Ceramics -- 2.2.2 Biodegradable Ceramics -- 2.2.2.1 Bioactive Glass -- 2.2.2.2 β‐Tricalcium Phosphate -- 2.2.2.3 Calcium Phosphate Cements -- 2.2.2.4 Silicate Bioceramics -- 2.3 Mechanical Properties -- 2.4 Biological Properties -- 2.4.1 Protein Adsorption -- 2.4.2 Immunomodulation -- 2.4.3 Vascularization -- 2.5 Summary -- Acknowledgments -- References -- Chapter 3 3D Printing and Bioprinting Strategies Applied Toward Orthopedics -- 3.1 Introduction -- 3.2 Biomaterial Inks -- 3.2.1 Hydrogel Biomaterial Inks -- 3.2.1.1 Collagens -- 3.2.1.2 Gelatin -- 3.2.1.3 Alginate -- 3.2.1.4 Hyaluronic Acid -- 3.2.2 Thermoplastic Polymeric Inks -- 3.2.2.1 PCL -- 3.2.2.2 PLA -- 3.2.2.3 Polyetheretherketone (PEEK) -- 3.2.3 Calcium Phosphate (CaP) Ceramic Inks -- 3.2.4 Supramolecular and Stimuli‐Responsive Inks.
3.3 3D Printing and Bioprinting Techniques -- 3.3.1 Extrusion‐Based (Bio)printing -- 3.3.2 Inkjet‐Based (Bio)printing -- 3.3.3 Light‐Based (Bio)printing -- 3.4 Current Challenges and Future Directions -- Acknowledgments -- References -- Chapter 4 Stem Cells and Their Application in Orthopedics -- 4.1 Introduction -- 4.2 Mesenchymal Stem Cells (MSCs) -- 4.2.1 Tissue Sources of MSCs -- 4.2.2 Isolation, Identification, and Expansion of MSCs -- 4.2.3 Current Cell Markers for MSC Identification -- 4.2.3.1 Differentiation of MSCs both In Vitro and In Vivo -- 4.3 MSC‐Derived Extracellular Vesicles (MSC‐EVs) and Exosomes -- 4.4 Clinical Application of Stem Cells in Orthopedics -- 4.4.1 Bone Defects, Non‐union, and Osteogenesis Imperfecta -- 4.4.1.1 Bone Non‐union and Defects -- 4.4.1.2 Osteogenesis Imperfecta (OI) -- 4.4.2 Osteochondral Defect and Osteoarthritis (OA) -- 4.4.3 Tendon and Ligament Injury -- 4.4.3.1 Rotator Cuff Tear -- 4.4.3.2 Anterior Cruciate Ligament (ACL) Reconstruction -- 4.4.4 Spine -- 4.4.4.1 Spinal Fusion -- 4.4.4.2 Spinal Cord Injuries (SCI) -- 4.5 Considerations of Stem Cells and Derivations for Clinical Usage -- 4.6 Conclusion -- Acknowledgments -- Abbreviations -- References -- Chapter 5 Electrospinning Techniques -- 5.1 Introduction -- 5.2 Different Types of Electrospinning Techniques -- 5.2.1 Traditional Electrospinning -- 5.2.2 Coaxial Electrospinning -- 5.2.3 Emulsion Electrospinning -- 5.2.4 Conjugated Electrospinning -- 5.2.5 Dynamic Liquid Electrospinning -- 5.2.6 Multi‐fluid Electrospinning -- 5.2.7 Electrospun Fibers Integrated with Post‐treatments -- 5.2.7.1 Coating Physical Components on the Fibers -- 5.2.7.2 Deposition of Electrosprayed Microparticles on the Fibers -- 5.2.7.3 Welding of Nanofibers -- 5.2.7.4 Remolding Electrospun Nanofibers to 3D Scaffolds -- 5.3 Typical Applications of Electrospun Fibers in Orthopedics. 5.3.1 Bone Tissue Repair -- 5.3.2 Vascularization -- 5.3.3 Cartilage Repair -- 5.3.4 Tendon and Ligament Repair -- 5.3.5 Repair of Tendon‐to‐Bone Interface -- 5.4 Conclusion and Future Outlook -- References -- Chapter 6 Joint Lubrication and Wear -- 6.1 Introduction -- 6.2 Natural Joint Structure -- 6.2.1 Role of Articular Cartilage -- 6.2.2 Regional Classification of Articular Cartilage -- 6.3 Joint Lubrication Mechanism -- 6.3.1 Tribological Theory -- 6.3.2 Hydration Lubrication -- 6.4 Joint Lubrication Behavior -- 6.4.1 Component -- 6.4.2 Lubrication Performance -- 6.5 Artificial Biolubricants -- 6.6 Artificial Joint Prosthesis -- 6.6.1 Metal Material -- 6.6.2 Polymer Material -- 6.6.3 Ceramic Material -- Acknowledgments -- References -- Chapter 7 Microfluidic Biotechnology for "Bone‐on‐a‐Chip" -- 7.1 Introduction -- 7.2 Basic Principles and Properties of Microfluidics -- 7.2.1 Fabrication of Microfluidic Devices via Soft Lithography -- 7.2.2 Fluid Controlling Components of Microfluidic Devices -- 7.2.2.1 Microvalves -- 7.2.2.2 Micropumps -- 7.2.2.3 Micromixers -- 7.2.2.4 Concentration Gradient -- 7.2.3 Cell/Tissue Culture in Microfluidic Devices -- 7.3 Microfluidic "Organ‐on‐a‐Chip" Technology -- 7.3.1 Organ-on-a-Chip: Overview -- 7.3.2 Biological Features of Organ‐on‐a‐Chip Devices -- 7.3.2.1 Tissue Barrier Functions -- 7.3.2.2 External Stimulation -- 7.3.2.3 Microvascular Network -- 7.3.3 Recent Advances in "Bone‐on‐a‐Chip" Technology -- 7.3.4 Mineralization and Osteogenesis -- 7.3.5 Osteochondral Tissue -- 7.3.6 Bone Marrow -- 7.3.7 Cancer -- 7.4 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 8 Bioactive Glasses in Orthopedics -- 8.1 First Bioactive Glass -- 8.2 Bioactive Glass Versatility -- 8.2.1 Osteogenesis -- 8.2.2 Angiogenesis -- 8.2.3 Antimicrobial Activity -- 8.3 Alternative Bioactive Glasses. 8.4 Bioactive Glasses in Composites and Hybrid Materials -- 8.4.1 Materials Used as Organic Phase in Composites or Hybrid Devices for Bone Repair -- 8.4.1.1 Natural Polymers -- 8.4.1.2 Synthetic Polymers -- 8.4.2 Composite Materials -- 8.4.2.1 Bioactive Glasses Used in Composites -- 8.4.2.2 Bioactive Glass Influence on Cell Behavior In Vitro -- 8.4.2.3 Composites' Fabrication Methods -- 8.4.3 Hybrid Materials -- 8.4.4 Composites in Clinics -- 8.5 Conclusion -- Acknowledgments -- References -- Volume-2 -- Part II Biomedical Applications in Orthopedics -- Chapter 9 3D Printing for Orthopedics -- 9.1 Overview of 3D Printing Technology -- 9.2 Bone Tissue Engineering and 3D Printing -- 9.3 Cartilage Tissue Engineering and 3D Printing -- 9.4 Structural Requirements of 3D Printing -- 9.4.1 Pore Size -- 9.4.2 Porosity -- 9.4.3 Pore Structure -- 9.5 Biomaterials for 3D Printing -- 9.5.1 Metal -- 9.5.2 Bioceramics -- 9.5.3 Polymer Materials -- 9.6 Application of 3D Printing in Cell Printing and Orthopedic Tissue Engineering -- 9.6.1 Inkjet 3D Printing -- 9.6.2 Extrusion‐Based 3D Bioprinting -- 9.6.3 Laser‐Assisted Printing -- 9.7 Future Prospects -- Acknowledgments -- References -- Chapter 10 Bone Implants (Bone Regeneration and Bone Cancer Treatments) -- 10.1 Bone Regeneration -- 10.1.1 Introduction -- 10.1.2 Biological Characteristics of Bone -- 10.1.2.1 Bone Biology -- 10.1.2.2 Osteogenesis and Bone Healing (Biomineralization) -- 10.1.3 Role of Implants for Bone Regeneration -- 10.1.3.1 Providing Structural Support -- 10.1.3.2 Regulating Stem Cell Behaviors -- 10.1.3.3 Activating Gene‐Associated Therapy -- 10.1.3.4 Application of Orthobiologics -- 10.1.3.5 Generating Stimulus Responses for Bone Healing -- 10.1.3.6 Converging Multiple Synergistic Strategies -- 10.1.4 Concluding Remarks and Future Outlook -- 10.2 Bone Cancer Treatments. 10.2.1 Clinical Approach to Bone Cancer -- 10.2.1.1 Introduction -- 10.2.1.2 Traditional Approaches -- 10.2.1.3 Surgery -- 10.2.1.4 Chemotherapy -- 10.2.1.5 Radiotherapy -- 10.2.1.6 Molecular Targetede Therapy -- 10.2.1.7 Other Therapy -- 10.2.2 State‐of‐the‐Art Nanotechnology -- 10.2.2.1 Nanotechnology for Bone Cancer Therapy -- 10.2.2.2 Cytotoxic Agents -- 10.2.2.3 Drug Delivery Platform -- 10.2.2.4 Phototherapy -- 10.2.2.5 Gene Therapy -- 10.2.2.6 Summary and Future Direction -- 10.2.3 Biofabrication for Bone Cancer Treatments -- 10.2.3.1 Introduction -- 10.2.3.2 Application in Bone Cancer Treatments -- 10.2.3.3 Summary and Future Direction -- Acknowledgments -- References -- Chapter 11 Bionic Fixation: Design, Biomechanics, and Clinical Application -- 11.1 Bionics and Medical Bionics -- 11.2 Structural Bionics in the Field of Orthopedics and Traumatology -- 11.2.1 Elastic Bionic Fixation Device for Distal Tibiofibular Syndesmosis -- 11.2.2 Minimally Invasive Adjustable Plate for Pelvic Fractures -- 11.2.3 Bionic Implants for Intertrochanteric Fracture of the Femur -- 11.2.4 Bionic Fixation of Calcaneal Fracture -- 11.3 Bionic Materials -- 11.3.1 Application and Designation of New Composite Materials -- 11.3.2 Bionic Design -- 11.4 Future Perspectives and Current Limitations -- Acknowledgments -- References -- Chapter 12 Cartilage Injury and Repair -- 12.1 Introduction -- 12.2 Pathology of Cartilage Injury -- 12.3 Clinical Characteristics of Cartilage Injury -- 12.4 Evaluation of Cartilage Injuries -- 12.4.1 Arthroscopic Evaluation of Cartilage Injury -- 12.4.2 Histopathology Evaluation of Cartilage Injury -- 12.4.3 Magnetic Resonance Imaging (MRI) Assessment of Cartilage Injury -- 12.5 Clinical Strategies of Cartilage Repair -- 12.5.1 Debridement, Cartilage Shaving, and Joint Lavage -- 12.5.2 Bone Marrow Stimulation and Augmentation. 12.5.3 Osteochondral Autografts and Allografts. |
Record Nr. | UNINA-9910829946603321 |
Cui Wenguo | ||
New York, NY : , : John Wiley & Sons, Inc., , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Information Retrieval Technology [[electronic resource] ] : 12th Asia Information Retrieval Societies Conference, AIRS 2016, Beijing, China, November 30 – December 2, 2016, Proceedings / / edited by Shaoping Ma, Ji-Rong Wen, Yiqun Liu, Zhicheng Dou, Min Zhang, Yi Chang, Xin Zhao |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (XIII, 372 p. 61 illus.) |
Disciplina | 025.524 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Information storage and retrieval
Database management Application software Artificial intelligence Data mining Algorithms Information Storage and Retrieval Database Management Information Systems Applications (incl. Internet) Artificial Intelligence Data Mining and Knowledge Discovery Algorithm Analysis and Problem Complexity |
ISBN | 3-319-48051-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | IR models and theories -- Machine learning and data mining for IR -- IR applications and user modeling -- Personalization and recommendation -- IR evaluation. |
Record Nr. | UNISA-996465583703316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Information Retrieval Technology : 12th Asia Information Retrieval Societies Conference, AIRS 2016, Beijing, China, November 30 – December 2, 2016, Proceedings / / edited by Shaoping Ma, Ji-Rong Wen, Yiqun Liu, Zhicheng Dou, Min Zhang, Yi Chang, Xin Zhao |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (XIII, 372 p. 61 illus.) |
Disciplina | 025.524 |
Collana | Information Systems and Applications, incl. Internet/Web, and HCI |
Soggetto topico |
Information storage and retrieval
Database management Application software Artificial intelligence Data mining Algorithms Information Storage and Retrieval Database Management Information Systems Applications (incl. Internet) Artificial Intelligence Data Mining and Knowledge Discovery Algorithm Analysis and Problem Complexity |
ISBN | 3-319-48051-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | IR models and theories -- Machine learning and data mining for IR -- IR applications and user modeling -- Personalization and recommendation -- IR evaluation. |
Record Nr. | UNINA-9910484871503321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mathematical Principles in Bioinformatics [[electronic resource] /] / by Stephen S.-T. Yau, Xin Zhao, Kun Tian, Hongyu Yu |
Autore | Yau Stephen S. -T |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (177 pages) |
Disciplina | 570.285 |
Altri autori (Persone) |
ZhaoXin
TianKun YuHongyu |
Collana | Interdisciplinary Applied Mathematics |
Soggetto topico |
Bioinformatics
Mathematics Applications of Mathematics Bioinformàtica Aplicacions (Matemàtica) |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-48295-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- 1 Biological Overview -- 2 Bioinformatics Databases -- 3 Sequence Alignment -- 4 The Time-Frequency Spectral Analysis and Applications in Bioinformatics -- 5 Graphical Representation of Sequences and Its Application -- 6 The Development and Applications of the Natural Vector Method -- 7 Convex Hull Principle and Distinguishing Proteins from Arbitrary Amino Acid Sequences -- 8 New Features or Metric on Sequence Comparison -- References. |
Record Nr. | UNINA-9910800117303321 |
Yau Stephen S. -T | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Spacecraft Thermal Control Technologies / / by Jianyin Miao, Qi Zhong, Qiwei Zhao, Xin Zhao |
Autore | Miao Jianyin |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 |
Descrizione fisica | 1 online resource (XIV, 360 p.) : 229 illus., 20 illus. in color |
Disciplina | 629.477 |
Collana | Space Science and Technologies |
Soggetto topico |
Aerospace engineering
Astronautics Materials - Analysis Solar system Energy storage Thermodynamics Heat engineering Heat transfer Mass transfer Aerospace Technology and Astronautics Characterization and Analytical Technique Space Physics Mechanical and Thermal Energy Storage Engineering Thermodynamics, Heat and Mass Transfer |
ISBN | 981-15-4984-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Space Environment -- Design of Spacecraft Thermal Control Subsystem -- Typical Thermal Control Technologies for Spacecraft -- Typical Thermal Control Design Cases of Spacecraft -- Thermal Analysis Technology -- Spacecraft Thermal Testing. |
Record Nr. | UNINA-9910483779803321 |
Miao Jianyin | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|