top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Data-driven analytics for sustainable buildings and cities : from theory to application / / Xingxing Zhang, editor
Data-driven analytics for sustainable buildings and cities : from theory to application / / Xingxing Zhang, editor
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (446 pages)
Disciplina 720.47
Collana Sustainable Development Goals Series
Soggetto topico Sustainable buildings - Data processing
Sustainable buildings - Statistical methods
Smart cities
ISBN 981-16-2778-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 The Evolving of Data-Driven Analytics for Buildings and Cities Towards Sustainability -- Abstract -- 1.1 Introduction -- 1.1.1 Background -- 1.1.2 Data-Driven Analytics for Sustainability Goals -- 1.2 Aim and Objectives -- 1.3 Motivations and Novelties -- 1.4 Structure and Contents -- References -- Energy in Buildings -- 2 Data-Driven Approaches for Prediction and Classification of Building Energy Consumption -- Abstract -- 2.1 Introduction -- 2.1.1 The Need for Energy Consumption Analysis -- 2.1.2 Advantage and Motivation -- 2.1.3 Usage of Building Energy and Performance Data -- 2.1.4 Proposed Methodologies for Building Energy Consumption -- 2.1.5 Data-Driven Approaches -- 2.1.6 Data-Driven Prediction Models -- 2.1.6.1 Artificial Neural Networks -- 2.1.6.2 Support Vector Machine -- 2.1.6.3 Statistical Regression -- 2.1.6.4 Decision Tree -- 2.1.6.5 Genetic Algorithms -- 2.1.7 Data-Driven Classification Approaches -- 2.1.7.1 K-Means Cluster -- 2.1.7.2 Self-organizing Map -- 2.1.7.3 Hierarchical Clustering -- 2.2 Practical Application of Data-Driven Approaches -- 2.2.1 R & -- D Works and Practical Applications -- 2.2.1.1 Prediction -- Prediction Application of ANNs -- Prediction Application of SVM -- Prediction Application of Statistical Regression -- Prediction Application of Decision Tree -- Prediction Application of Genetic Algorithms -- 2.2.1.2 Profile -- Profile Application of Cluster Method -- Profile Application of Regression -- 2.2.1.3 Energy Mapping -- 2.2.1.4 Benchmarking of Buildings -- 2.2.1.5 Retrofit of Buildings -- 2.2.2 Analyses of the Review Works -- 2.3 Opportunities for Further Works -- 2.4 Conclusion -- References -- 3 Prediction of Occupancy Level and Energy Consumption in Office Building Using Blind System Identification and Neural Networks -- Abstract -- 3.1 Introduction.
3.1.1 State of the Art -- 3.1.2 Statements of Contribution -- 3.2 Occupancy Estimation Methodologies -- 3.2.1 Frequentist Maximum Likelihood (ML) Approach -- 3.2.2 Bayesian Estimation Approach -- 3.2.3 Evaluation Criterion -- 3.3 Energy-Consumption Prediction Methodologies -- 3.3.1 Architecture of FFNN Model -- 3.3.2 Architecture of ELM Model -- 3.3.3 Architecture of Ensemble Model -- 3.3.4 Evaluation Criteria -- 3.4 Reference Room and Dataset -- 3.5 Parameter Selection Analysis -- 3.5.1 Principal Component Analysis -- 3.5.2 Effect of Structure Parameters of FFNN Model -- 3.6 Prediction Results -- 3.6.1 Occupancy-Estimation Results -- 3.6.2 Energy-Prediction Result with True Occupant Counts -- 3.6.3 Energy Prediction Result with Estimated Occupant Counts -- 3.6.4 Limitations -- 3.7 Conclusion -- References -- 4 Cluster Analysis for Occupant-Behaviour Based Electricity Load Patterns in Buildings: A Case Study in Shanghai Residences -- Abstract -- 4.1 Introduction -- 4.2 Cluster Concept -- 4.3 Case Study of Occupant Behaviour Patterns in Residential Buildings -- 4.3.1 Data Source -- 4.3.2 Methodology -- 4.3.3 Results and Analysis -- 4.3.3.1 Analysis of Daily Consumption -- 4.3.3.2 Analysis of Seasonal Consumption -- 4.3.3.3 Analysis of Weekly Consumption -- 4.4 Further Work -- 4.5 Conclusion -- References -- 5 A Data-Driven Model Predictive Control for Lighting System Based on Historical Occupancy in an Office Building: Methodology Development -- Abstract -- 5.1 Introduction -- 5.2 System Description and Research Methodology -- 5.2.1 Description of the Proposed Control System -- 5.2.2 Overall Methodology -- 5.2.2.1 Data Composition -- 5.2.2.2 Overall Methodology Elaboration -- 5.2.3 Data Acquisition and Processing -- 5.2.3.1 PIR Sensor Calibration -- 5.2.3.2 Noise Removal -- 5.2.3.3 Occupant Feedback -- 5.2.4 Model Predictive Control Method.
5.2.4.1 Multi-layer Perceptron Algorithm -- L-BFGS Method -- SGD Method -- ADAM Method -- 5.2.4.2 Temporal Sequential-Based ANN Method -- 5.2.5 Evaluation of Predictive Control -- 5.3 Case Study of an Office Building -- 5.3.1 Historical Occupancy Data -- 5.3.2 Control Method -- 5.3.3 Control Performance Comparison -- 5.4 Discussion and Further Work -- 5.5 Summary -- References -- 6 Tailoring Future Climate Data for Building Energy Simulation -- Abstract -- 6.1 Introduction -- 6.2 Methodology -- 6.2.1 Overview -- 6.2.2 Generation of Future Weather Using the Morphing Method -- 6.2.2.1 Typical Meteorological year (TMY) -- 6.2.2.2 Global Climate Model (GCM) Selection -- 6.2.2.3 Morphing Method -- 6.2.3 Investigation of Climate Change Impacts on NZEB Lifecycle Performance -- 6.2.3.1 NZEB System Sizing Using TMY Data -- 6.2.3.2 Performance Indicators -- Energy-Balance Indicator -- Thermal-Comfort Indicator -- Grid-Interaction Indicator -- 6.2.4 Evaluation of Different Mitigation Measures' Effectiveness on NZEB Performance -- 6.3 Study Platform -- 6.3.1 Climate Regions and Selected Cities -- 6.3.2 Building Model -- 6.3.3 Air-Conditioning System Model -- 6.3.4 Renewable Energy System Model -- 6.4 Results and Discussions -- 6.4.1 Future Weather Analysis -- 6.4.2 Climate Change Impacts on NZEB Lifecycle Performance -- 6.4.2.1 Climate Change Impacts on Energy Balance -- 6.4.2.2 Climate Change Impacts on Thermal Comfort -- 6.4.2.3 Climate Change Impacts on Grid Interaction -- 6.4.3 Different Mitigation Measures' Effectiveness on NZEB Performance -- 6.4.3.1 Effectiveness of Mitigation Measures on Energy Balance -- 6.4.3.2 Effectiveness of Mitigation Measures on Thermal Comfort -- 6.4.3.3 Effectiveness of Mitigation Measures on Grid Interaction -- 6.5 Conclusions -- References.
7 A Solar Photovoltaic/Thermal (PV/T) Concentrator for Building Application in Sweden Using Monte Carlo Method -- Abstract -- 7.1 Market Analysis of Swedish PV/T Industry -- 7.2 Development of Techno-Economic Model -- 7.2.1 Reference PV/T Concentrator -- 7.2.2 Energy Generation Model -- 7.2.3 Economical Evaluation Metrics -- 7.2.4 Key Input Parameters -- 7.2.5 Simulation Process -- 7.3 Sensitivity and Reliability Analysis -- 7.4 Optimization Analysis -- 7.4.1 Impact of Average Daily Solar Irradiance -- 7.4.2 Impact of Debt to Equity Ratio -- 7.4.3 Impact of Heating Price for Household -- 7.4.4 Impact of Concentrator Capital Price -- 7.4.5 Impact of Discount Rate -- 7.5 Future Work to Improve the Model -- 7.6 Summary -- References -- Thermal Comfort and Air Quality in Buildings -- 8 Influencing Factors for Occupants' Window-Opening Behaviour in an Office Building Through Logistic Regression and Pearson Correlation Approaches -- Abstract -- 8.1 Method of Study -- 8.1.1 Building Description -- 8.1.2 Measured Factors -- 8.1.3 Measuring Devices -- 8.2 Data Processing and Results Analysis -- 8.2.1 Environmental Factors -- 8.2.2 Outdoor Air Temperature -- 8.2.3 Indoor Air Temperature -- 8.2.4 Outdoor PM2.5 Concentrations -- 8.2.5 Correlation Analysis for All Factors -- 8.3 Non-environmental Factors -- 8.3.1 Seasonal Change -- 8.3.2 Time of Day -- 8.3.3 Personal Preference -- 8.4 Conclusions and Discussion -- References -- 9 Reinforcement Learning Methodologies for Controlling Occupant Comfort in Buildings -- Abstract -- 9.1 Overview of Comfort Control in Buildings -- 9.1.1 Background -- 9.1.2 Necessity of New Methods for the Building Control System (BCS) -- 9.1.3 Review Methods -- 9.2 Summary of Relevant Review Works and Their Indications -- 9.3 The Reinforcement Learning Method -- 9.3.1 Elements of Reinforcement Learning and MDPs.
9.3.2 Policies and Functions -- 9.3.3 Bellman Optimality Equation -- 9.3.4 Categorisation of RL Algorithms -- 9.3.5 Multi-agent Systems -- 9.4 Applications of Reinforcement Learning Methods for Comfort Control in Buildings -- 9.4.1 Comfort Factors -- 9.4.2 Thermal Comfort -- 9.4.2.1 IAQ -- 9.4.2.2 Lighting -- 9.4.2.3 Combinations of Factors -- 9.4.2.4 Algorithm Class -- 9.4.2.5 Value-Based -- 9.4.2.6 Actor-Critic -- 9.4.2.7 Exploration Versus Exploitation Strategies -- 9.4.3 Agent Perspectives -- 9.4.4 Physical Implementations -- 9.5 Discussions -- 9.6 Chapter Summary -- References -- 10 A Novel Reinforcement Learning Method for Improving Occupant Comfort via Window Opening and Closing -- Abstract -- 10.1 Introduction -- 10.2 Behaviours of Window Opening and Closing -- 10.2.1 Drivers of Window Opening and Closing -- 10.2.2 Occupant Comfort and Intelligent Controllers -- 10.2.3 Building Environment -- 10.3 RL and Algorithms -- 10.3.1 Markov Decision Processes -- 10.3.2 Policies and Value Functions -- 10.3.3 Q-learning and SARSA -- 10.4 Data and Methods -- 10.4.1 Data -- 10.4.2 Methods -- 10.5 Results -- 10.5.1 RNN Predictions -- 10.5.2 Performance of RL Agents -- 10.6 Conclusions -- References -- 11 Development of an Adaptation Table to Enhance the Accuracy of the Predicted Mean Vote Model -- Abstract -- 11.1 Introduction -- 11.2 Factors Contributing to the Discrepancies Between PMV and Thermal Sensation -- 11.2.1 Season -- 11.2.2 Climate -- 11.2.3 Building Type -- 11.2.4 Age Group -- 11.2.5 Gender -- 11.3 Methodology -- 11.3.1 Data Source and Sampling Technique -- 11.3.2 Analytical Methods for Categorical Variables -- 11.3.3 Analytical Methods to Quantify the Relationships -- 11.3.4 Workflow of the Methodology -- 11.4 Results -- 11.4.1 Accuracy of the PMV Model for TS Prediction -- 11.4.2 The Effect of Variables on the Discrepancy -- 11.4.2.1 Season.
11.4.2.2 Climate.
Record Nr. UNINA-9910767537603321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Future Urban Energy System for Buildings : The Pathway Towards Flexibility, Resilience and Optimization / / edited by Xingxing Zhang, Pei Huang, Yongjun Sun
Future Urban Energy System for Buildings : The Pathway Towards Flexibility, Resilience and Optimization / / edited by Xingxing Zhang, Pei Huang, Yongjun Sun
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (485 pages)
Disciplina 621.31924
Collana Sustainable Development Goals Series
Soggetto topico Human geography
Energy policy
Energy and state
Sustainability
Human Geography
Energy Policy, Economics and Management
Soggetto non controllato Energy Industries
Environmental Sciences
Human Geography
Business & Economics
Science
Social Science
ISBN 9789819912223
9789819912216
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The importance of urban energy system for buildings -- Integration of urban energy systems with renewable envelope solutions at building cluster level -- Urban solar mobility: from solar to buildings, vehicles, and storage -- Data centers as prosumers in urban energy systems -- Characteristics of urban energy system in positive energy districts -- Economic interactions between autonomous photovoltaic owners in a local energy market -- Electric vehicle smart charging characteristics on the power regulation abilities.
Record Nr. UNINA-9910767523903321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui