The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao |
Autore | Mohammed Salah-Eldin <1946-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (120 p.) |
Disciplina | 519.2 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Stochastic partial differential equations
Stochastic integral equations Manifolds (Mathematics) Evolution equations |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0523-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""Â1.1 Basic concepts""; ""Â1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""Â1.3 Semilinear spde's: Lipschitz nonlinearity""; ""Â1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""Â2.1 Hyperbolicity of a stationary trajectory""; ""Â2.2 The nonlinear ergodic theorem""
""Â2.3 Proof of the local stable manifold theorem""""Â2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910480868803321 |
Mohammed Salah-Eldin <1946-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao |
Autore | Mohammed Salah-Eldin <1946-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (120 p.) |
Disciplina | 519.2 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Stochastic partial differential equations
Stochastic integral equations Manifolds (Mathematics) Evolution equations |
ISBN | 1-4704-0523-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""Â1.1 Basic concepts""; ""Â1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""Â1.3 Semilinear spde's: Lipschitz nonlinearity""; ""Â1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""Â2.1 Hyperbolicity of a stationary trajectory""; ""Â2.2 The nonlinear ergodic theorem""
""Â2.3 Proof of the local stable manifold theorem""""Â2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910788853603321 |
Mohammed Salah-Eldin <1946-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao |
Autore | Mohammed Salah-Eldin <1946-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (120 p.) |
Disciplina | 519.2 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Stochastic partial differential equations
Stochastic integral equations Manifolds (Mathematics) Evolution equations |
ISBN | 1-4704-0523-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""Â1.1 Basic concepts""; ""Â1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""Â1.3 Semilinear spde's: Lipschitz nonlinearity""; ""Â1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""Â2.1 Hyperbolicity of a stationary trajectory""; ""Â2.2 The nonlinear ergodic theorem""
""Â2.3 Proof of the local stable manifold theorem""""Â2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography"" |
Record Nr. | UNINA-9910827764203321 |
Mohammed Salah-Eldin <1946-> | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|