top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2014 3rd International Workshop on Evidential Assessment of Software Technologies : proceedings : May 26, 2014, Nanjing, China
2014 3rd International Workshop on Evidential Assessment of Software Technologies : proceedings : May 26, 2014, Nanjing, China
Autore Zhang He
Pubbl/distr/stampa [Place of publication not identified], : ACM, 2014
Descrizione fisica 1 online resource (62 pages)
Collana ACM Other conferences
Soggetto topico Engineering & Applied Sciences
Computer Science
ISBN 1-4503-2965-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti EAST 2014
Evidential Assessment of Software Technologies 2014
Proceedings of the 2014 3rd International Workshop on Evidential Assessment of Software Technologies
EAST '14
3rd International Workshop on Evidential Assessment of Software Technologies, Nanjing, China - May 26 - 26, 2014
Record Nr. UNINA-9910376382803321
Zhang He  
[Place of publication not identified], : ACM, 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2014 International Conference on Software and Systems Process : proceedings : May 26-28, 2014, Nanjing, China
2014 International Conference on Software and Systems Process : proceedings : May 26-28, 2014, Nanjing, China
Pubbl/distr/stampa [Place of publication not identified], : ACM, 2014
Descrizione fisica 1 online resource (199 pages)
Collana ACM Other conferences
Soggetto topico Engineering & Applied Sciences
Computer Science
ISBN 1-4503-2754-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti ICSSP 2014
International Conference on Software and Systems Process 2014
Proceedings of the 2014 International Conference on Software and System Process
ICSSP '14
International Conference on Software and Systems Process 2014 ,Nanjing, China - May 26 - 28, 2014
Record Nr. UNINA-9910376364903321
[Place of publication not identified], : ACM, 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elliptical Mirrors : Applications in Microscopy
Elliptical Mirrors : Applications in Microscopy
Autore Liu Jian
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2018
Descrizione fisica 1 online resource (182 pages)
Altri autori (Persone) LiuChenguang
WangYuhang
WangChao
TanJiubin
AiMin
ZhongCien
LiMengzhou
ZhangHe
WangTong
Collana IOP Series in Advances in Optics, Photonics and Optoelectronics Series
ISBN 0-7503-4660-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Series preface -- Preface -- Acknowledgement -- Editor biography -- Jian Liu -- List of contributors -- Chapter 1 Research and application of reflective microscopy -- 1.1 Introduction -- 1.2 Current situation of research on reflective microscopy -- 1.3 The current situation of application of reflective microscopy -- 1.4 Summary -- References -- Chapter 2 Apodization factor and linearly polarized light focusing properties of elliptical mirror -- 2.1 Introduction -- 2.2 Elliptical mirror model -- 2.3 Apodization factor -- 2.4 Apodization factor under different parametric variables -- 2.4.1 Apodization factor in terms of z -- 2.4.2 Apodization factor in terms of θ -- 2.5 Focusing properties based on the vector theory -- 2.5.1 Vector theories -- 2.5.2 Three-dimensional expression of the focused electric field -- 2.5.3 Numerical simulation of the focusing field -- 2.6 Comparison of focusing properties among elliptical mirror, parabolic mirror and lens -- 2.7 Summary -- References -- Chapter 3 Focusing characteristic of polarized light -- 3.1 Basic model of an elliptical mirror -- 3.2 Vector focus model of elliptical mirror with extra high aperture angle -- 3.2.1 Analysis of focusing characteristic of elliptical mirror under circularly polarized illumination -- 3.2.2 Analysis of focusing characteristics of the elliptical mirror under radially polarized illumination -- 3.3 Conclusion -- References -- Chapter 4 Imaging analysis of dipole vector in an elliptical mirror -- 4.1 Introduction -- 4.2 Imaging model of dipole vector in elliptical mirror -- 4.3 Imaging characteristics of the electric dipole in the elliptical mirror -- 4.4 Imaging characteristics of the electric dipole in a dual-lens system -- 4.5 Comparison on imaging characteristics of dipole in elliptical mirror, parabolic mirror and lens -- 4.6 Summary -- References.
Chapter 5 Scalar approximation for the focusing property of an elliptical mirror -- 5.1 Introduction -- 5.2 Influence factors of focusing property -- 5.2.1 Apodization factor -- 5.2.2 Polarization state -- 5.2.3 Wave aberration -- 5.3 Apodization factor of elliptical mirror -- 5.3.1 Apodization factor of thin lens -- 5.3.2 Apodization factor of the elliptical mirror with rotational symmetry -- 5.4 Analysis on focusing property of elliptical mirror -- 5.4.1 Focusing property of elliptical mirror with circular aperture -- 5.4.2 Focusing property of elliptical mirror with ring-shaped aperture -- 5.5 Comparative analysis on vector diffraction model -- 5.6 Summary -- References -- Chapter 6 Aberration analysis of an elliptical mirror with a high numerical aperture -- 6.1 Introduction -- 6.2 Analysis of geometrical aberration of elliptical mirror -- 6.2.1 Reflected ray formula of elliptical mirror -- 6.2.2 Analysis of the aberration coefficient of a single rotating elliptical mirror -- 6.3 Diffraction integral in the presence of aberration -- 6.3.1 Debye diffraction integral in the presence of aberration -- 6.3.2 Strehl intensity -- 6.4 Zernike circle polynomial expansion of aberration function -- 6.4.1 Transference theorem -- 6.4.2 Zernike circle polynomial -- 6.5 Primary aberration and its influence on the focusing characteristic of the elliptical mirror -- 6.5.1 Primary spherical aberration -- 6.5.2 Primary coma -- 6.5.3 Primary astigmatism -- 6.5.4 Field curvature and distortion -- 6.5.5 Aberration tolerance of elliptical mirror -- 6.6 Conclusion -- References -- Chapter 7 Three-dimensional transfer function -- 7.1 Introduction -- 7.2 Point spread function -- 7.2.1 Coherent transfer function -- 7.2.2 Optical transfer function of elliptical mirror -- 7.3 Three-dimensional transfer function of an elliptical reflective confocal microscopic system.
7.3.1 Coherent transfer function of elliptical reflective confocal microscopic system -- 7.3.2 Two-dimensional transfer function of the elliptical reflective confocal microscopic imaging system -- 7.4 Summary -- References -- Chapter 8 Design and application of an aspherical mirror -- 8.1 Introduction -- 8.2 Basic knowledge -- 8.2.1 Mathematical representation of aspherical surface -- 8.2.2 Taylor series -- 8.3 Design of reflective objective -- 8.3.1 Head design model -- 8.3.2 Aperture diaphragm and field diaphragm -- 8.4 Decoupled model based on the Taylor series expansion -- 8.4.1 Taylor series expansion of the Head polar coordinate model -- 8.4.2 Taylor series expansion of a quadric surface -- 8.4.3 Determination of reflective objective parameters -- 8.4.4 Derivation and truncation error of a high-order aspherical surface parameter -- 8.4.5 Effect of numerical aperture on a decoupled model -- 8.5 Design method based on an obscuration constraint -- 8.5.1 Analysis of the obscuration effect on a reflective objective -- 8.5.2 Obscuration constraint model -- 8.5.3 Design method based on obscuration constraint -- 8.6 Industrial application -- 8.6.1 Structural parameter calculation -- 8.6.2 Obscuration verification -- 8.6.3 Analysis of initial configuration imaging characteristics -- 8.6.4 Whole equipment and specific application -- 8.7 Summary -- References -- Chapter 9 Elliptical mirror applied in TIRF microscopy -- 9.1 Introduction -- 9.2 Background -- 9.3 Basic theory -- 9.4 Experiments -- 9.5 Summary -- References.
Record Nr. UNINA-9910861041103321
Liu Jian  
Bristol : , : Institute of Physics Publishing, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Managing Software Process Evolution : Traditional, Agile and Beyond – How to Handle Process Change / / edited by Marco Kuhrmann, Jürgen Münch, Ita Richardson, Andreas Rausch, He Zhang
Managing Software Process Evolution : Traditional, Agile and Beyond – How to Handle Process Change / / edited by Marco Kuhrmann, Jürgen Münch, Ita Richardson, Andreas Rausch, He Zhang
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XXVII, 332 p. 73 illus., 7 illus. in color.)
Disciplina 005.1
Soggetto topico Software engineering
Management information systems
Computer science
Software Engineering
Management of Computing and Information Systems
Software Management
ISBN 3-319-31545-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Low Ceremony Processes for Short Lifecycle Projects -- 2. The Right Degree of Agility in Rich Processes -- 3. Assessing Product Development Agility -- 4. Value-driven Process Management -- 5. Are we Ready for Disruptive Improvement? -- 6. Trials and Tribulations of the Global Software Engineering Process -- 7. The Route to Software Process Improvement in Small and Medium-sized Enterprises -- 8. Managing Software Process Evolution for Spacecraft from a Customer’s Perspective -- 9. Modeling Software Processes Using BPMN: When and When Not? -- 10. Software Processes Management by Method Engineering with MESP -- 11. Adapting Case Management Techniques to Achieve Software Process Flexibility -- 12. A Researcher’s Experiences in Supporting Industrial Software Process Improvement -- 13. Lessons Learned from Co-Evolution of Software Process and Model-Driven Engineering -- 14 Monitoring and Controlling Release Readiness by Learning across Projects -- 15. The Effects of Software Process Evolution to Technical Debt—Perceptions from Three Large Software Projects.
Record Nr. UNINA-9910254996203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering
Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering
Autore Lv Jian
Pubbl/distr/stampa [Place of publication not identified], : ACM, 2015
Descrizione fisica 1 online resource (305 pages)
Collana ACM Other conferences
Soggetto topico Computer Science
Engineering & Applied Sciences
ISBN 1-4503-3350-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti EASE '15
19th International Conference on Evaluation and Assessment in Software Engineering, Nanjing, China - April 27-29, 2015
Record Nr. UNINA-9910376603003321
Lv Jian  
[Place of publication not identified], : ACM, 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Technology of lunar soft lander / / Deng-Yun Yu, Ze-Zhou Sun, He Zhang
Technology of lunar soft lander / / Deng-Yun Yu, Ze-Zhou Sun, He Zhang
Autore Yu Deng-Yun
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (xxviii, 565 pages) : illustrations
Disciplina 629.47
Collana Space Technology Library
Soggetto topico Space vehicles - Design and construction
ISBN 981-15-6580-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword By Fanpei Lei -- Foreword By Peijian Ye -- Preface I -- Preface II -- Contents -- Acronyms -- 1 Introduction -- 1.1 Significance of and General Approaches to Lunar Exploration -- 1.1.1 Significance of Lunar Exploration -- 1.1.2 General Approaches to Lunar Exploration -- 1.2 Status of Lunar Lander Technology Development Outside China -- 1.2.1 Development of Lunar Lander Technology in the Soviet Union [1, 14] -- 1.2.2 Development of Lunar Lander Technology in the United States [1, 6−13] -- 1.3 China's Lunar Exploration Program -- 1.3.1 General Plan of CLEP -- 1.3.2 Brief Information on Chang'E Probes -- 1.4 Technical Challenges to Development of Lunar Lander [5, 14, 16] -- 1.5 Summary -- References -- 2 Environment Analysis of Lunar Soft Landing Exploration -- 2.1 Introduction -- 2.2 Lunar Radiation Environment -- 2.2.1 Galactic Cosmic Rays -- 2.2.2 Solar Energetic Particles -- 2.2.3 Plasma Environment in Lunar Orbit -- 2.3 Lunar Thermal Environment -- 2.3.1 Solar Radiation -- 2.3.2 Lunar Albedo -- 2.3.3 Lunar Radiation -- 2.3.4 Earth Albedo -- 2.3.5 Earth Radiation -- 2.4 Lunar Landform and Topography -- 2.4.1 Lunar Landform -- 2.4.2 Lunar Topography -- 2.5 Lunar Soil and Dust -- 2.5.1 Physical Properties -- 2.5.2 Mechanical Properties -- 2.5.3 Electromagnetic Properties -- 2.6 Other Lunar Environments -- 2.6.1 Lunar Gravity -- 2.6.2 Near Vacuum Environment of the Moon -- 2.6.3 Illumination Environment on the Lunar Surface -- 2.7 Summary -- References -- 3 System Design of Lunar Lander -- 3.1 Introduction -- 3.2 Principles of System Design -- 3.3 Mission Analysis -- 3.3.1 Analysis of Mission Characteristics -- 3.3.2 Analysis of Landing Site -- 3.3.3 Analysis of Flight Profile -- 3.3.4 Analysis of Environment Effects -- 3.3.5 Analysis of Payload Configuration -- 3.4 Trajectory Design -- 3.4.1 Overview of Flight Profile.
3.4.2 Constraints of Trajectory Design -- 3.4.3 Determination of Landing Window -- 3.4.4 Analysis of Circumlunar Orbit -- 3.4.5 Determination of LTO -- 3.4.6 Analysis of Launch Window -- 3.5 System Components and Specifications -- 3.5.1 System Components -- 3.5.2 Major System Specifications -- 3.5.3 Propellant Budget -- 3.6 System Configuration Design -- 3.6.1 Design Principles -- 3.6.2 System Configuration -- 3.7 Planning of TT& -- C Link -- 3.8 Design of Powered Descent and Soft Landing -- 3.8.1 Initial Status and Setup of Powered Descent -- 3.8.2 Process of Powered Descent and Soft Landing -- 3.8.3 Landing Cushion -- 3.8.4 Downloading of Descent Images -- 3.9 Analysis and Simulation of Landing Stability -- 3.10 Summary -- References -- 4 Structure and Mechanism Technology of Lunar Lander -- 4.1 Introduction -- 4.2 Structural and Mechanism Features of Lunar Lander -- 4.2.1 Structural Features of Lunar Lander -- 4.2.2 Mechanism Features of Lunar Lander -- 4.3 Design and Verification of Lunar Lander Structure -- 4.3.1 Structural Design -- 4.3.2 Structural Analysis of Lunar Lander -- 4.3.3 Structural Tests of Lunar Lander -- 4.4 Mechanism Design and Verification of Lunar Lander -- 4.4.1 Solar Panel Mechanism -- 4.4.2 Separation Mechanism for Lunar Rover -- 4.4.3 Transfer Mechanism for Lunar Rover -- 4.5 Summary -- References -- 5 Thermal Control Technology of Lunar Lander -- 5.1 Introduction -- 5.2 Current Status of Thermal Control Technology -- 5.3 Thermal Technical Characteristics -- 5.3.1 Design Constraints -- 5.3.2 Technical Characteristics -- 5.4 Design Methodology -- 5.4.1 Principles of Thermal Design -- 5.4.2 Design of Thermal Control -- 5.4.3 Thermal Analysis and Calculation -- 5.5 Typical Technologies -- 5.5.1 Variable Thermal Conductive Technology -- 5.5.2 Protection Technology for High-Temperature Engine.
5.5.3 RHU Application Technology -- 5.5.4 Two-Phase Fluid Loop Technology -- 5.6 Testing and Verification -- 5.6.1 Thermal Balance Test of Lunar Lander -- 5.6.2 VCHP Test -- 5.6.3 Vacuum Thermal Insulation Testing of High-Temperature Heat Shield -- 5.6.4 Two-Phase Fluid Loop Test -- 5.6.5 Flight Testing on Orbit -- 5.7 Summary -- References -- 6 Power Technology of Lunar Lander -- 6.1 Introduction -- 6.2 Status of Power Supply Technology Development -- 6.3 Mission Requirements and Characteristics -- 6.3.1 Functional Requirements -- 6.3.2 Performance Requirements -- 6.3.3 Mission Characteristics and Analysis -- 6.4 Design Methodology -- 6.4.1 Design Principles -- 6.4.2 Illumination Conditions -- 6.4.3 Lightweight Design -- 6.4.4 Analysis of Space Environmental Effects -- 6.4.5 Energy Balance Analysis -- 6.4.6 Analysis of Power System Architecture -- 6.5 Typical Technology -- 6.5.1 Design of Power Controller -- 6.5.2 Design of Battery Pack -- 6.5.3 Design of Solar Cell Circuits -- 6.5.4 Design of Hibernation and Awakening Control -- 6.5.5 Power Supply Reuse Between Probes -- 6.6 Testing and Verification -- 6.6.1 Contents of Verification -- 6.6.2 Verification of Hibernation and Awakening -- 6.6.3 Verification of Large Incident Angle for Solar Cells -- 6.6.4 Extreme Temperature Verification of Solar Cells Performance -- 6.7 Summary -- References -- 7 Guidance, Navigation and Control Technology of Lunar Lander -- 7.1 Introduction -- 7.2 Development of GNC Technology -- 7.3 Analysis of Technical Characteristics -- 7.4 Design Methodology -- 7.4.1 System Configuration -- 7.4.2 Operational Modes -- 7.4.3 Component Design -- 7.4.4 Software Design [7] -- 7.4.5 Autonomous Failure Diagnosis and Handling Logic Design -- 7.5 Typical Technology -- 7.5.1 Procedure of GNC Powered Descent Phase [8] -- 7.5.2 Powered Descent Trajectory Design.
7.5.3 Navigation Method for Powered Descent Phase -- 7.5.4 Guidance Law Design of Powered Descent Process -- 7.5.5 Hazard Detection and Safe Landing Area Selection Method [9] -- 7.5.6 Attitude Control Method for Powered Descent Process [10] -- 7.6 Testing and Verification -- 7.6.1 Key Navigation Sensors Calibration -- 7.6.2 GNC Subsystem Flight Testing -- 7.6.3 Hardware-in-the-Loop Test [11] -- 7.7 Summary -- References -- 8 Propulsion Technology of Lunar Lander -- 8.1 Introduction -- 8.2 Development Status [2, 3] -- 8.3 Design Constraints and Analysis -- 8.3.1 Configurational Constraints -- 8.3.2 Functional Requirements -- 8.3.3 Technical Specification Requirements [4] -- 8.3.4 Flight Environment -- 8.3.5 Long-Term Storage Environment on Lunar Surface -- 8.4 Propulsion Subsystem Design [5-7] -- 8.4.1 Fundamental Design Conditions -- 8.4.2 Determination of Major Specifications of Propulsion Subsystem -- 8.4.3 Design of Propellant Feed System [4] -- 8.4.4 Electronics Design of Propulsion Subsystem -- 8.4.5 AIT Design of Propulsion Subsystem -- 8.4.6 Major Components Design for Propulsion Subsystem -- 8.4.7 Ground Test and Propellant Filling of Propulsion Subsystem -- 8.5 Testing and Verification of Propulsion Subsystem -- 8.5.1 Subsystem Ground Hot Firing -- 8.5.2 Throttling Engine Test -- 8.5.3 Propellant Tank Test -- 8.5.4 Long-Term Pressure-Bearing Storage Test of Gas Tank -- 8.5.5 Propellant Filling Test -- 8.6 Summary -- References -- 9 OBDH Technology of Lunar Lander -- 9.1 Introduction -- 9.2 Development Status -- 9.3 Analysis of Technical Characteristics -- 9.3.1 Mission Analysis -- 9.3.2 Constraints -- 9.4 Design Methodology -- 9.4.1 Principles of Design -- 9.4.2 System Architecture and Configuration -- 9.4.3 Miniaturized and Integrated System Design -- 9.4.4 Bus Network Design -- 9.4.5 Information Management Design.
9.4.6 Design of Spacecraft Autonomous Management -- 9.4.7 Reliable Design of Highly-Integrated and Lightweight Devices -- 9.4.8 Software Design -- 9.5 Testing and Verification -- 9.5.1 Simulation and Test Environment for OBDH Subsystem -- 9.5.2 Content of Verification -- 9.6 Summary -- References -- 10 TT& -- C and Telecommunication Technology of Lunar Lander -- 10.1 Introduction -- 10.2 Development Status -- 10.3 Analysis of Technical Characteristics -- 10.3.1 Requirements -- 10.3.2 Mission Characteristics -- 10.3.3 Design Constraints -- 10.4 Design of Telemetry/Telecommand and Telecommunication Technology -- 10.4.1 Overview -- 10.4.2 Design Method -- 10.4.3 Telemetry/Telecommand and Telecommunication of Lunar Lander to Ground -- 10.4.4 Telecommunication Between Lunar Lander and Lunar Rover -- 10.5 Testing and Verification -- 10.5.1 Compact Field Test -- 10.5.2 Testing of Interface to Ground System -- 10.5.3 UHF Field Test -- 10.6 Summary -- References -- 11 Landing Gear Technology of Lunar Lander -- 11.1 Introduction -- 11.2 Development Status -- 11.3 Configuration and Technical Features of Landing Gear System -- 11.4 Common Cushion Methods and Their Features -- 11.4.1 Cellular Material Deformation -- 11.4.2 Deformation of Thin-Walled Metal Tube -- 11.4.3 Hydraulic Damping -- 11.4.4 Tensile Deformation of Special Material -- 11.5 Design of Landing Gear Mechanism -- 11.5.1 Requirements Analysis -- 11.5.2 Design and Simulation -- 11.6 Testing and Verification -- 11.6.1 Performance Verification of Cushion Material -- 11.6.2 Friction Test of Deployment and Cushion -- 11.6.3 Performance Testing of Lunar Surface Sensing Probe -- 11.6.4 Cushion Performance Test and Verification of Single Set of Landing Gear Mechanism -- 11.6.5 Simulation Verification of Combined Cushion Performance for Landing Gear Subsystem -- 11.7 Summary -- References.
12 Integration and Assembly Technology of Lunar Lander.
Record Nr. UNISA-996466742003316
Yu Deng-Yun  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Technology of lunar soft lander / / Deng-Yun Yu, Ze-Zhou Sun, He Zhang
Technology of lunar soft lander / / Deng-Yun Yu, Ze-Zhou Sun, He Zhang
Autore Yu Deng-Yun
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (xxviii, 565 pages) : illustrations
Disciplina 629.47
Collana Space Technology Library
Soggetto topico Space vehicles - Design and construction
ISBN 981-15-6580-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword By Fanpei Lei -- Foreword By Peijian Ye -- Preface I -- Preface II -- Contents -- Acronyms -- 1 Introduction -- 1.1 Significance of and General Approaches to Lunar Exploration -- 1.1.1 Significance of Lunar Exploration -- 1.1.2 General Approaches to Lunar Exploration -- 1.2 Status of Lunar Lander Technology Development Outside China -- 1.2.1 Development of Lunar Lander Technology in the Soviet Union [1, 14] -- 1.2.2 Development of Lunar Lander Technology in the United States [1, 6−13] -- 1.3 China's Lunar Exploration Program -- 1.3.1 General Plan of CLEP -- 1.3.2 Brief Information on Chang'E Probes -- 1.4 Technical Challenges to Development of Lunar Lander [5, 14, 16] -- 1.5 Summary -- References -- 2 Environment Analysis of Lunar Soft Landing Exploration -- 2.1 Introduction -- 2.2 Lunar Radiation Environment -- 2.2.1 Galactic Cosmic Rays -- 2.2.2 Solar Energetic Particles -- 2.2.3 Plasma Environment in Lunar Orbit -- 2.3 Lunar Thermal Environment -- 2.3.1 Solar Radiation -- 2.3.2 Lunar Albedo -- 2.3.3 Lunar Radiation -- 2.3.4 Earth Albedo -- 2.3.5 Earth Radiation -- 2.4 Lunar Landform and Topography -- 2.4.1 Lunar Landform -- 2.4.2 Lunar Topography -- 2.5 Lunar Soil and Dust -- 2.5.1 Physical Properties -- 2.5.2 Mechanical Properties -- 2.5.3 Electromagnetic Properties -- 2.6 Other Lunar Environments -- 2.6.1 Lunar Gravity -- 2.6.2 Near Vacuum Environment of the Moon -- 2.6.3 Illumination Environment on the Lunar Surface -- 2.7 Summary -- References -- 3 System Design of Lunar Lander -- 3.1 Introduction -- 3.2 Principles of System Design -- 3.3 Mission Analysis -- 3.3.1 Analysis of Mission Characteristics -- 3.3.2 Analysis of Landing Site -- 3.3.3 Analysis of Flight Profile -- 3.3.4 Analysis of Environment Effects -- 3.3.5 Analysis of Payload Configuration -- 3.4 Trajectory Design -- 3.4.1 Overview of Flight Profile.
3.4.2 Constraints of Trajectory Design -- 3.4.3 Determination of Landing Window -- 3.4.4 Analysis of Circumlunar Orbit -- 3.4.5 Determination of LTO -- 3.4.6 Analysis of Launch Window -- 3.5 System Components and Specifications -- 3.5.1 System Components -- 3.5.2 Major System Specifications -- 3.5.3 Propellant Budget -- 3.6 System Configuration Design -- 3.6.1 Design Principles -- 3.6.2 System Configuration -- 3.7 Planning of TT& -- C Link -- 3.8 Design of Powered Descent and Soft Landing -- 3.8.1 Initial Status and Setup of Powered Descent -- 3.8.2 Process of Powered Descent and Soft Landing -- 3.8.3 Landing Cushion -- 3.8.4 Downloading of Descent Images -- 3.9 Analysis and Simulation of Landing Stability -- 3.10 Summary -- References -- 4 Structure and Mechanism Technology of Lunar Lander -- 4.1 Introduction -- 4.2 Structural and Mechanism Features of Lunar Lander -- 4.2.1 Structural Features of Lunar Lander -- 4.2.2 Mechanism Features of Lunar Lander -- 4.3 Design and Verification of Lunar Lander Structure -- 4.3.1 Structural Design -- 4.3.2 Structural Analysis of Lunar Lander -- 4.3.3 Structural Tests of Lunar Lander -- 4.4 Mechanism Design and Verification of Lunar Lander -- 4.4.1 Solar Panel Mechanism -- 4.4.2 Separation Mechanism for Lunar Rover -- 4.4.3 Transfer Mechanism for Lunar Rover -- 4.5 Summary -- References -- 5 Thermal Control Technology of Lunar Lander -- 5.1 Introduction -- 5.2 Current Status of Thermal Control Technology -- 5.3 Thermal Technical Characteristics -- 5.3.1 Design Constraints -- 5.3.2 Technical Characteristics -- 5.4 Design Methodology -- 5.4.1 Principles of Thermal Design -- 5.4.2 Design of Thermal Control -- 5.4.3 Thermal Analysis and Calculation -- 5.5 Typical Technologies -- 5.5.1 Variable Thermal Conductive Technology -- 5.5.2 Protection Technology for High-Temperature Engine.
5.5.3 RHU Application Technology -- 5.5.4 Two-Phase Fluid Loop Technology -- 5.6 Testing and Verification -- 5.6.1 Thermal Balance Test of Lunar Lander -- 5.6.2 VCHP Test -- 5.6.3 Vacuum Thermal Insulation Testing of High-Temperature Heat Shield -- 5.6.4 Two-Phase Fluid Loop Test -- 5.6.5 Flight Testing on Orbit -- 5.7 Summary -- References -- 6 Power Technology of Lunar Lander -- 6.1 Introduction -- 6.2 Status of Power Supply Technology Development -- 6.3 Mission Requirements and Characteristics -- 6.3.1 Functional Requirements -- 6.3.2 Performance Requirements -- 6.3.3 Mission Characteristics and Analysis -- 6.4 Design Methodology -- 6.4.1 Design Principles -- 6.4.2 Illumination Conditions -- 6.4.3 Lightweight Design -- 6.4.4 Analysis of Space Environmental Effects -- 6.4.5 Energy Balance Analysis -- 6.4.6 Analysis of Power System Architecture -- 6.5 Typical Technology -- 6.5.1 Design of Power Controller -- 6.5.2 Design of Battery Pack -- 6.5.3 Design of Solar Cell Circuits -- 6.5.4 Design of Hibernation and Awakening Control -- 6.5.5 Power Supply Reuse Between Probes -- 6.6 Testing and Verification -- 6.6.1 Contents of Verification -- 6.6.2 Verification of Hibernation and Awakening -- 6.6.3 Verification of Large Incident Angle for Solar Cells -- 6.6.4 Extreme Temperature Verification of Solar Cells Performance -- 6.7 Summary -- References -- 7 Guidance, Navigation and Control Technology of Lunar Lander -- 7.1 Introduction -- 7.2 Development of GNC Technology -- 7.3 Analysis of Technical Characteristics -- 7.4 Design Methodology -- 7.4.1 System Configuration -- 7.4.2 Operational Modes -- 7.4.3 Component Design -- 7.4.4 Software Design [7] -- 7.4.5 Autonomous Failure Diagnosis and Handling Logic Design -- 7.5 Typical Technology -- 7.5.1 Procedure of GNC Powered Descent Phase [8] -- 7.5.2 Powered Descent Trajectory Design.
7.5.3 Navigation Method for Powered Descent Phase -- 7.5.4 Guidance Law Design of Powered Descent Process -- 7.5.5 Hazard Detection and Safe Landing Area Selection Method [9] -- 7.5.6 Attitude Control Method for Powered Descent Process [10] -- 7.6 Testing and Verification -- 7.6.1 Key Navigation Sensors Calibration -- 7.6.2 GNC Subsystem Flight Testing -- 7.6.3 Hardware-in-the-Loop Test [11] -- 7.7 Summary -- References -- 8 Propulsion Technology of Lunar Lander -- 8.1 Introduction -- 8.2 Development Status [2, 3] -- 8.3 Design Constraints and Analysis -- 8.3.1 Configurational Constraints -- 8.3.2 Functional Requirements -- 8.3.3 Technical Specification Requirements [4] -- 8.3.4 Flight Environment -- 8.3.5 Long-Term Storage Environment on Lunar Surface -- 8.4 Propulsion Subsystem Design [5-7] -- 8.4.1 Fundamental Design Conditions -- 8.4.2 Determination of Major Specifications of Propulsion Subsystem -- 8.4.3 Design of Propellant Feed System [4] -- 8.4.4 Electronics Design of Propulsion Subsystem -- 8.4.5 AIT Design of Propulsion Subsystem -- 8.4.6 Major Components Design for Propulsion Subsystem -- 8.4.7 Ground Test and Propellant Filling of Propulsion Subsystem -- 8.5 Testing and Verification of Propulsion Subsystem -- 8.5.1 Subsystem Ground Hot Firing -- 8.5.2 Throttling Engine Test -- 8.5.3 Propellant Tank Test -- 8.5.4 Long-Term Pressure-Bearing Storage Test of Gas Tank -- 8.5.5 Propellant Filling Test -- 8.6 Summary -- References -- 9 OBDH Technology of Lunar Lander -- 9.1 Introduction -- 9.2 Development Status -- 9.3 Analysis of Technical Characteristics -- 9.3.1 Mission Analysis -- 9.3.2 Constraints -- 9.4 Design Methodology -- 9.4.1 Principles of Design -- 9.4.2 System Architecture and Configuration -- 9.4.3 Miniaturized and Integrated System Design -- 9.4.4 Bus Network Design -- 9.4.5 Information Management Design.
9.4.6 Design of Spacecraft Autonomous Management -- 9.4.7 Reliable Design of Highly-Integrated and Lightweight Devices -- 9.4.8 Software Design -- 9.5 Testing and Verification -- 9.5.1 Simulation and Test Environment for OBDH Subsystem -- 9.5.2 Content of Verification -- 9.6 Summary -- References -- 10 TT& -- C and Telecommunication Technology of Lunar Lander -- 10.1 Introduction -- 10.2 Development Status -- 10.3 Analysis of Technical Characteristics -- 10.3.1 Requirements -- 10.3.2 Mission Characteristics -- 10.3.3 Design Constraints -- 10.4 Design of Telemetry/Telecommand and Telecommunication Technology -- 10.4.1 Overview -- 10.4.2 Design Method -- 10.4.3 Telemetry/Telecommand and Telecommunication of Lunar Lander to Ground -- 10.4.4 Telecommunication Between Lunar Lander and Lunar Rover -- 10.5 Testing and Verification -- 10.5.1 Compact Field Test -- 10.5.2 Testing of Interface to Ground System -- 10.5.3 UHF Field Test -- 10.6 Summary -- References -- 11 Landing Gear Technology of Lunar Lander -- 11.1 Introduction -- 11.2 Development Status -- 11.3 Configuration and Technical Features of Landing Gear System -- 11.4 Common Cushion Methods and Their Features -- 11.4.1 Cellular Material Deformation -- 11.4.2 Deformation of Thin-Walled Metal Tube -- 11.4.3 Hydraulic Damping -- 11.4.4 Tensile Deformation of Special Material -- 11.5 Design of Landing Gear Mechanism -- 11.5.1 Requirements Analysis -- 11.5.2 Design and Simulation -- 11.6 Testing and Verification -- 11.6.1 Performance Verification of Cushion Material -- 11.6.2 Friction Test of Deployment and Cushion -- 11.6.3 Performance Testing of Lunar Surface Sensing Probe -- 11.6.4 Cushion Performance Test and Verification of Single Set of Landing Gear Mechanism -- 11.6.5 Simulation Verification of Combined Cushion Performance for Landing Gear Subsystem -- 11.7 Summary -- References.
12 Integration and Assembly Technology of Lunar Lander.
Record Nr. UNINA-9910484883603321
Yu Deng-Yun  
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui