top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Extrinsic and intrinsic approaches to self-healing polymers and polymer composites / / Ming Qiu Zhang, Min Zhi Rong
Extrinsic and intrinsic approaches to self-healing polymers and polymer composites / / Ming Qiu Zhang, Min Zhi Rong
Autore Zhang Ming Qiu
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (355 pages)
Disciplina 620.192
Soggetto topico Polymers
Self-healing materials
Polymeric composites
ISBN 1-119-63000-2
1-119-62997-7
1-119-62999-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Basics of Self-Healing - State of the Art -- 1.1 Background -- 1.1.1 Adhesive Bonding for Healing Thermosetting Materials -- 1.1.2 Fusion Bonding for Healing Thermoplastic Materials -- 1.1.3 Bioinspired Self-Healing -- 1.2 Intrinsic Self-Healing -- 1.2.1 Self-Healing Based on Reversible Covalent Chemistry -- 1.2.1.1 Healing Based on General Reversible Covalent Reactions -- 1.2.1.2 Healing Based on Dynamic Reversible Covalent Reactions -- 1.2.2 Self-Healing Based on Supramolecular Interactions -- 1.2.2.1 Coordination Bonds -- 1.2.2.2 Ionic Associations -- 1.2.2.3 Hydrogen Bonds -- 1.2.2.4 Other Intermolecular Forces -- 1.2.2.5 Host-Guest Inclusion -- 1.3 Extrinsic Self-Healing -- 1.3.1 Self-Healing in Terms of Healant Loaded Pipelines -- 1.3.1.1 Hollow Tubes and Fibers -- 1.3.1.2 Three-Dimensional Microvascular Networks -- 1.3.2 Self-Healing in Terms of Healant Loaded Microcapsules -- 1.3.2.1 Methods of Microencapsulation -- 1.3.2.2 Healing Chemistries -- 1.4 Insights for Future Work -- References -- Chapter 2 Extrinsic Self-Healing via Addition Polymerization -- 2.1 Design and Selection of Healing System -- 2.2 Microencapsulation of Mercaptan and Epoxy by In-Situ Polymerization -- 2.2.1 Microencapsulation of Mercaptan -- 2.2.2 Microencapsulation of Epoxy -- 2.3 Filling Polymeric Tubes with Mercaptan and Epoxy -- 2.4 Characterization of Self-Healing Functionality -- 2.4.1 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant - Healing of Crack Due to Monotonic Fracture -- 2.4.2 Factors Related to Performance Improvement -- 2.4.3 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant - Healing of Fatigue Crack -- 2.4.4 Self-Healing Epoxy/Glass Fabric Composites with Embedded Dual Encapsulated Healant - Healing of Impact Damage.
2.4.5 Self-Healing Epoxy/Glass Fabric Composites with Self-Pressurized Healing System -- 2.5 Concluding Remarks -- References -- Chapter 3 Extrinsic Self-Healing Via Cationic Polymerization -- 3.1 Thermosetting -- 3.1.1 Microencapsulation of Epoxy by Ultraviolet Irradiation-Induced Interfacial Copolymerization -- 3.1.2 Encapsulation of Boron-Containing Curing Agent -- 3.1.2.1 Loading Boron-Containing Curing Agent onto Porous Media -- 3.1.2.2 Microencapsulation of Boron-Containing Curing Agent Via the Hollow Capsules Approach -- 3.1.3 Characterization of Self-Healing Functionality -- 3.1.3.1 Self-Healing Epoxy Materials with Embedded -- 3.1.3.2 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant -- 3.1.4 Preparation of Silica Walled Microcapsules Containing SbF5·HOC2H5/HOC2H5 -- 3.1.5 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and SbF5·HOC2H5/HOC2H5-Loaded Silica Capsules -- 3.1.6 Preparation of Silica Walled Microcapsules Containing TfOH -- 3.1.7 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and TfOH-Loaded Silica Capsules -- 3.2 Thermoplastics -- 3.2.1 Preparation of IBH/GMA-Loaded Microcapsules -- 3.2.2 Self-Healing PS Composites Filled with IBH/GMA-Loaded Microcapsules and NaBH4 Particles -- 3.3 Concluding Remarks -- References -- Chapter 4 Extrinsic Self-Healing via Anionic Polymerization -- 4.1 Preparation of Epoxy-Loaded Microcapsules and Latent Hardener -- 4.1.1 Microencapsulation of Epoxy by In-Situ Condensation -- 4.1.2 Preparation of Imidazole Latent Hardener -- 4.2 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and Latent Hardener -- 4.3 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener - Healing of Interlaminar Failure -- 4.4 Durability of Healing Ability.
4.5 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener - Healing of Impact Damage -- 4.6 Concluding Remarks -- References -- Chapter 5 Extrinsic Self-Healing Via Miscellaneous Reactions -- 5.1 Extrinsic Self-Healing Via Nucleophilic Addition and Ring-Opening Reactions -- 5.1.1 Microencapsulation of GMA by In-Situ Polymerization -- 5.1.2 Self-Healing Epoxy Materials with Embedded Single-Component Healant -- 5.2 Extrinsic Self-Healing Via Living Polymerization -- 5.2.1 Preparation of Living PMMA and Its Composites with GMA-Loaded Microcapsules -- 5.2.2 Self-Healing Performance of Living PMMA Composites Filled with GMA-Loaded Microcapsules -- 5.2.3 Preparation of GMA-Loaded Multilayered Microcapsules and their PS-Based Composites -- 5.2.4 Self-Healing Performance of PS Composites Filled with GMA-Loaded Multilayered Microcapsules -- 5.3 Extrinsic Self-Healing Via Free Radical Polymerization -- 5.3.1 Microencapsulation of Styrene and BPO -- 5.3.2 Self-Healing Performance of Epoxy Composites Filled with Dual Capsules -- 5.4 Concluding Remarks -- References -- Chapter 6 Intrinsic Self-Healing Via the Diels-Alder Reaction -- 6.1 Molecular Design and Synthesis -- 6.1.1 Synthesis of DGFA -- 6.1.2 Reversibility of DA Bonds and Crack Remendability of DGFA-Based Polymer -- 6.1.3 Synthesis and Characterization of FGE -- 6.1.4 Reversibility of DA Bonds and Crack Remendability of FGE-Based Polymer -- 6.2 Blends of DGFA and FGE -- 6.2.1 Reversibility of DA Bonds -- 6.2.2 Crack Remendability of Cured DGFA/FGE Blends -- 6.3 Concluding Remarks -- References -- Chapter 7 Intrinsic Self-Healing Via Synchronous Fission/Radical Recombination of the CON Bond -- 7.1 Thermal Reversibility of Alkoxyamine in Polymer Solids -- 7.2 Self-Healing Cross-linked Polystyrene -- 7.2.1 Synthesis -- 7.2.2 Characterization.
7.3 Self-Healing Epoxy -- 7.3.1 Synthesis -- 7.3.2 Characterization -- 7.4 Self-Healing Polymers Containing Alkoxyamine with Oxygen Insensitivity and Reduced Homolysis Temperature -- 7.4.1 Synthesis -- 7.4.2 Characterization -- 7.5 Reversible Shape Memory Polyurethane Network with Intrinsic Self-Healability of Wider Crack -- 7.5.1 Synthesis -- 7.5.2 Characterization -- 7.6 Concluding Remarks -- References -- Chapter 8 Intrinsic Self-Healing Via Exchange Reaction of the Disulfide Bond -- 8.1 Room-Temperature Self-Healable and Remoldable Cross-Linked Polysulfide -- 8.2 Sunlight Driven Self-Healing Cross-Linked Polyurethane Containing the Disulfide Bond -- 8.2.1 Cross-Linked Polyurethane -- 8.2.1.1 Bulk Polymer -- 8.2.1.2 Composites with Silver Nanowires as Strain Sensor -- 8.2.2 Commercial Silicone Elastomer -- 8.3 Self-Healing and Reclaiming of Vulcanized Rubber -- 8.4 Concluding Remarks -- References -- Index -- EULA.
Record Nr. UNINA-9910566696803321
Zhang Ming Qiu  
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Extrinsic and intrinsic approaches to self-healing polymers and polymer composites / / Ming Qiu Zhang, Min Zhi Rong
Extrinsic and intrinsic approaches to self-healing polymers and polymer composites / / Ming Qiu Zhang, Min Zhi Rong
Autore Zhang Ming Qiu
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (355 pages)
Disciplina 620.192
Soggetto topico Polymers
Self-healing materials
Polymeric composites
ISBN 1-119-63000-2
1-119-62997-7
1-119-62999-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Basics of Self-Healing - State of the Art -- 1.1 Background -- 1.1.1 Adhesive Bonding for Healing Thermosetting Materials -- 1.1.2 Fusion Bonding for Healing Thermoplastic Materials -- 1.1.3 Bioinspired Self-Healing -- 1.2 Intrinsic Self-Healing -- 1.2.1 Self-Healing Based on Reversible Covalent Chemistry -- 1.2.1.1 Healing Based on General Reversible Covalent Reactions -- 1.2.1.2 Healing Based on Dynamic Reversible Covalent Reactions -- 1.2.2 Self-Healing Based on Supramolecular Interactions -- 1.2.2.1 Coordination Bonds -- 1.2.2.2 Ionic Associations -- 1.2.2.3 Hydrogen Bonds -- 1.2.2.4 Other Intermolecular Forces -- 1.2.2.5 Host-Guest Inclusion -- 1.3 Extrinsic Self-Healing -- 1.3.1 Self-Healing in Terms of Healant Loaded Pipelines -- 1.3.1.1 Hollow Tubes and Fibers -- 1.3.1.2 Three-Dimensional Microvascular Networks -- 1.3.2 Self-Healing in Terms of Healant Loaded Microcapsules -- 1.3.2.1 Methods of Microencapsulation -- 1.3.2.2 Healing Chemistries -- 1.4 Insights for Future Work -- References -- Chapter 2 Extrinsic Self-Healing via Addition Polymerization -- 2.1 Design and Selection of Healing System -- 2.2 Microencapsulation of Mercaptan and Epoxy by In-Situ Polymerization -- 2.2.1 Microencapsulation of Mercaptan -- 2.2.2 Microencapsulation of Epoxy -- 2.3 Filling Polymeric Tubes with Mercaptan and Epoxy -- 2.4 Characterization of Self-Healing Functionality -- 2.4.1 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant - Healing of Crack Due to Monotonic Fracture -- 2.4.2 Factors Related to Performance Improvement -- 2.4.3 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant - Healing of Fatigue Crack -- 2.4.4 Self-Healing Epoxy/Glass Fabric Composites with Embedded Dual Encapsulated Healant - Healing of Impact Damage.
2.4.5 Self-Healing Epoxy/Glass Fabric Composites with Self-Pressurized Healing System -- 2.5 Concluding Remarks -- References -- Chapter 3 Extrinsic Self-Healing Via Cationic Polymerization -- 3.1 Thermosetting -- 3.1.1 Microencapsulation of Epoxy by Ultraviolet Irradiation-Induced Interfacial Copolymerization -- 3.1.2 Encapsulation of Boron-Containing Curing Agent -- 3.1.2.1 Loading Boron-Containing Curing Agent onto Porous Media -- 3.1.2.2 Microencapsulation of Boron-Containing Curing Agent Via the Hollow Capsules Approach -- 3.1.3 Characterization of Self-Healing Functionality -- 3.1.3.1 Self-Healing Epoxy Materials with Embedded -- 3.1.3.2 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant -- 3.1.4 Preparation of Silica Walled Microcapsules Containing SbF5·HOC2H5/HOC2H5 -- 3.1.5 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and SbF5·HOC2H5/HOC2H5-Loaded Silica Capsules -- 3.1.6 Preparation of Silica Walled Microcapsules Containing TfOH -- 3.1.7 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and TfOH-Loaded Silica Capsules -- 3.2 Thermoplastics -- 3.2.1 Preparation of IBH/GMA-Loaded Microcapsules -- 3.2.2 Self-Healing PS Composites Filled with IBH/GMA-Loaded Microcapsules and NaBH4 Particles -- 3.3 Concluding Remarks -- References -- Chapter 4 Extrinsic Self-Healing via Anionic Polymerization -- 4.1 Preparation of Epoxy-Loaded Microcapsules and Latent Hardener -- 4.1.1 Microencapsulation of Epoxy by In-Situ Condensation -- 4.1.2 Preparation of Imidazole Latent Hardener -- 4.2 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and Latent Hardener -- 4.3 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener - Healing of Interlaminar Failure -- 4.4 Durability of Healing Ability.
4.5 Self-Healing Epoxy/Woven Glass Fabric Composites with Embedded Epoxy-Loaded Microcapsules and Latent Hardener - Healing of Impact Damage -- 4.6 Concluding Remarks -- References -- Chapter 5 Extrinsic Self-Healing Via Miscellaneous Reactions -- 5.1 Extrinsic Self-Healing Via Nucleophilic Addition and Ring-Opening Reactions -- 5.1.1 Microencapsulation of GMA by In-Situ Polymerization -- 5.1.2 Self-Healing Epoxy Materials with Embedded Single-Component Healant -- 5.2 Extrinsic Self-Healing Via Living Polymerization -- 5.2.1 Preparation of Living PMMA and Its Composites with GMA-Loaded Microcapsules -- 5.2.2 Self-Healing Performance of Living PMMA Composites Filled with GMA-Loaded Microcapsules -- 5.2.3 Preparation of GMA-Loaded Multilayered Microcapsules and their PS-Based Composites -- 5.2.4 Self-Healing Performance of PS Composites Filled with GMA-Loaded Multilayered Microcapsules -- 5.3 Extrinsic Self-Healing Via Free Radical Polymerization -- 5.3.1 Microencapsulation of Styrene and BPO -- 5.3.2 Self-Healing Performance of Epoxy Composites Filled with Dual Capsules -- 5.4 Concluding Remarks -- References -- Chapter 6 Intrinsic Self-Healing Via the Diels-Alder Reaction -- 6.1 Molecular Design and Synthesis -- 6.1.1 Synthesis of DGFA -- 6.1.2 Reversibility of DA Bonds and Crack Remendability of DGFA-Based Polymer -- 6.1.3 Synthesis and Characterization of FGE -- 6.1.4 Reversibility of DA Bonds and Crack Remendability of FGE-Based Polymer -- 6.2 Blends of DGFA and FGE -- 6.2.1 Reversibility of DA Bonds -- 6.2.2 Crack Remendability of Cured DGFA/FGE Blends -- 6.3 Concluding Remarks -- References -- Chapter 7 Intrinsic Self-Healing Via Synchronous Fission/Radical Recombination of the CON Bond -- 7.1 Thermal Reversibility of Alkoxyamine in Polymer Solids -- 7.2 Self-Healing Cross-linked Polystyrene -- 7.2.1 Synthesis -- 7.2.2 Characterization.
7.3 Self-Healing Epoxy -- 7.3.1 Synthesis -- 7.3.2 Characterization -- 7.4 Self-Healing Polymers Containing Alkoxyamine with Oxygen Insensitivity and Reduced Homolysis Temperature -- 7.4.1 Synthesis -- 7.4.2 Characterization -- 7.5 Reversible Shape Memory Polyurethane Network with Intrinsic Self-Healability of Wider Crack -- 7.5.1 Synthesis -- 7.5.2 Characterization -- 7.6 Concluding Remarks -- References -- Chapter 8 Intrinsic Self-Healing Via Exchange Reaction of the Disulfide Bond -- 8.1 Room-Temperature Self-Healable and Remoldable Cross-Linked Polysulfide -- 8.2 Sunlight Driven Self-Healing Cross-Linked Polyurethane Containing the Disulfide Bond -- 8.2.1 Cross-Linked Polyurethane -- 8.2.1.1 Bulk Polymer -- 8.2.1.2 Composites with Silver Nanowires as Strain Sensor -- 8.2.2 Commercial Silicone Elastomer -- 8.3 Self-Healing and Reclaiming of Vulcanized Rubber -- 8.4 Concluding Remarks -- References -- Index -- EULA.
Record Nr. UNINA-9910830501803321
Zhang Ming Qiu  
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Self-healing polymers and polymer composites [[electronic resource] /] / Ming Qiu Zhang, Min Zhi Rong
Self-healing polymers and polymer composites [[electronic resource] /] / Ming Qiu Zhang, Min Zhi Rong
Autore Zhang Ming Qiu
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (438 p.)
Disciplina 547/.7
668.9
Altri autori (Persone) RongMin Zhi
Soggetto topico Polymeric composites
Self-healing materials
ISBN 1-283-17617-3
9786613176172
1-118-08258-3
1-118-08272-9
1-118-08287-7
Classificazione TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SELF-HEALING POLYMERS AND POLYMER COMPOSITES; CONTENTS; PREFACE; 1: BASICS OF SELF-HEALING: STATE OF THE ART; 1.1 BACKGROUND; 1.1.1 Adhesive Bonding for Healing Thermosetting Materials; 1.1.2 Fusion Bonding for Healing Thermoplastic Materials; 1.1.3 Bioinspired Self-Healing; 1.2 INTRINSIC SELF-HEALING; 1.2.1 Self-Healing Based on Physical Interactions; 1.2.2 Self-Healing Based on Chemical Interactions; 1.2.3 Self-Healing Based on Supramolecular Interactions; 1.3 EXTRINSIC SELF-HEALING; 1.3.1 Self-Healing in Terms of Healant Loaded Pipelines
1.3.2 Self-Healing in Terms of Healant Loaded Microcapsules1.4 INSIGHTS FOR FUTURE WORK; REFERENCES; 2: THEORETICAL CONSIDERATION AND MODELING; 2.1 MOLECULAR MECHANISMS; 2.1.1 Self-Healing Below Glass Transition Temperature; 2.1.2 Self-Healing Above Glass Transition Temperature; 2.2 HEALING MODELING; 2.2.1 Percolation Modeling; 2.2.2 Continuum and Molecular-Level Modeling of Fatigue Crack Retardation; 2.2.3 Continuum Damage and Healing Mechanics; 2.2.4 Discrete Element Modeling and Numerical Study; 2.3 DESIGN OF SELF-HEALING COMPOSITES; 2.3.1 Entropy Driven Self-Assembly of Nanoparticles
2.3.2 Optimization of Microvascular Networks2.4 CONCLUDING REMARKS; REFERENCES; 3: EXTRINSIC SELF-HEALING VIA ADDITION POLYMERIZATION; 3.1 DESIGN AND SELECTION OF HEALING SYSTEM; 3.2 MICROENCAPSULATION OF MERCAPTAN AND EPOXY BY IN SITU POLYMERIZATION; 3.2.1 Microencapsulation of Mercaptan; 3.2.2 Microencapsulation of Epoxy; 3.3 CHARACTERIZATION OF SELF-HEALING FUNCTIONALITY; 3.3.1 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant: Healing of Crack Due to Monotonic Fracture; 3.3.2 Factors Related to Performance Improvement
3.3.3 Self-Healing Epoxy Materials with Embedded Dual EncapsulatedHealant: Healing of Fatigue Crack3.3.4 Self-Healing Epoxy/Glass Fabric Composites with Embedded Dual Encapsulated Healant: Healing of Impact Damage; 3.4 CONCLUDING REMARKS; REFERENCES; 4: EXTRINSIC SELF-HEALING VIA CATIONIC POLYMERIZATION; 4.1 MICROENCAPSULATION OF EPOXY BY UV IRRADIATION-INDUCED INTERFACIAL COPOLYMERIZATION; 4.2 ENCAPSULATION OF BORON-CONTAINING CURING AGENT; 4.2.1 Loading Boron-Containing Curing Agent onto Porous Media; 4.2.2 Microencapsulation of Boron-Containing Curing Agent via Hollow Capsules Approach
4.3 CHARACTERIZATION OF SELF-HEALING FUNCTIONALITY4.3.1 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and (C2H5)2O·BF3-Loaded Sisal; 4.3.2 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant; 4.4 CONCLUDING REMARKS; REFERENCES; 5: EXTRINSIC SELF-HEALING VIAANIONIC POLYMERIZATION; 5.1 PREPARATION OF EPOXY-LOADED MICROCAPSULES AND LATENT HARDENER; 5.1.1 Microencapsulation of Epoxy by in situ Condensation; 5.1.2 Preparation of Imidazole Latent Hardener; 5.2 SELF-HEALING EPOXY MATERIALS WITH EMBEDDED EPOXY-LOADED MICROCAPSULES AND LATENT HARDENER
5.3 SELF-HEALING EPOXY/WOVEN GLASS FABRIC COMPOSITES WITH EMBEDDED EPOXY-LOADED MICROCAPSULES AND LATENT HARDENER: HEALING OF INTERLAMINAR FAILURE
Record Nr. UNINA-9910139647303321
Zhang Ming Qiu  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Self-healing polymers and polymer composites / / Ming Qiu Zhang, Min Zhi Rong
Self-healing polymers and polymer composites / / Ming Qiu Zhang, Min Zhi Rong
Autore Zhang Ming Qiu
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (438 p.)
Disciplina 547/.7
668.9
Altri autori (Persone) RongMin Zhi
Soggetto topico Polymeric composites
Self-healing materials
ISBN 1-283-17617-3
9786613176172
1-118-08258-3
1-118-08272-9
1-118-08287-7
Classificazione TEC009010
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto SELF-HEALING POLYMERS AND POLYMER COMPOSITES; CONTENTS; PREFACE; 1: BASICS OF SELF-HEALING: STATE OF THE ART; 1.1 BACKGROUND; 1.1.1 Adhesive Bonding for Healing Thermosetting Materials; 1.1.2 Fusion Bonding for Healing Thermoplastic Materials; 1.1.3 Bioinspired Self-Healing; 1.2 INTRINSIC SELF-HEALING; 1.2.1 Self-Healing Based on Physical Interactions; 1.2.2 Self-Healing Based on Chemical Interactions; 1.2.3 Self-Healing Based on Supramolecular Interactions; 1.3 EXTRINSIC SELF-HEALING; 1.3.1 Self-Healing in Terms of Healant Loaded Pipelines
1.3.2 Self-Healing in Terms of Healant Loaded Microcapsules1.4 INSIGHTS FOR FUTURE WORK; REFERENCES; 2: THEORETICAL CONSIDERATION AND MODELING; 2.1 MOLECULAR MECHANISMS; 2.1.1 Self-Healing Below Glass Transition Temperature; 2.1.2 Self-Healing Above Glass Transition Temperature; 2.2 HEALING MODELING; 2.2.1 Percolation Modeling; 2.2.2 Continuum and Molecular-Level Modeling of Fatigue Crack Retardation; 2.2.3 Continuum Damage and Healing Mechanics; 2.2.4 Discrete Element Modeling and Numerical Study; 2.3 DESIGN OF SELF-HEALING COMPOSITES; 2.3.1 Entropy Driven Self-Assembly of Nanoparticles
2.3.2 Optimization of Microvascular Networks2.4 CONCLUDING REMARKS; REFERENCES; 3: EXTRINSIC SELF-HEALING VIA ADDITION POLYMERIZATION; 3.1 DESIGN AND SELECTION OF HEALING SYSTEM; 3.2 MICROENCAPSULATION OF MERCAPTAN AND EPOXY BY IN SITU POLYMERIZATION; 3.2.1 Microencapsulation of Mercaptan; 3.2.2 Microencapsulation of Epoxy; 3.3 CHARACTERIZATION OF SELF-HEALING FUNCTIONALITY; 3.3.1 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant: Healing of Crack Due to Monotonic Fracture; 3.3.2 Factors Related to Performance Improvement
3.3.3 Self-Healing Epoxy Materials with Embedded Dual EncapsulatedHealant: Healing of Fatigue Crack3.3.4 Self-Healing Epoxy/Glass Fabric Composites with Embedded Dual Encapsulated Healant: Healing of Impact Damage; 3.4 CONCLUDING REMARKS; REFERENCES; 4: EXTRINSIC SELF-HEALING VIA CATIONIC POLYMERIZATION; 4.1 MICROENCAPSULATION OF EPOXY BY UV IRRADIATION-INDUCED INTERFACIAL COPOLYMERIZATION; 4.2 ENCAPSULATION OF BORON-CONTAINING CURING AGENT; 4.2.1 Loading Boron-Containing Curing Agent onto Porous Media; 4.2.2 Microencapsulation of Boron-Containing Curing Agent via Hollow Capsules Approach
4.3 CHARACTERIZATION OF SELF-HEALING FUNCTIONALITY4.3.1 Self-Healing Epoxy Materials with Embedded Epoxy-Loaded Microcapsules and (C2H5)2O·BF3-Loaded Sisal; 4.3.2 Self-Healing Epoxy Materials with Embedded Dual Encapsulated Healant; 4.4 CONCLUDING REMARKS; REFERENCES; 5: EXTRINSIC SELF-HEALING VIAANIONIC POLYMERIZATION; 5.1 PREPARATION OF EPOXY-LOADED MICROCAPSULES AND LATENT HARDENER; 5.1.1 Microencapsulation of Epoxy by in situ Condensation; 5.1.2 Preparation of Imidazole Latent Hardener; 5.2 SELF-HEALING EPOXY MATERIALS WITH EMBEDDED EPOXY-LOADED MICROCAPSULES AND LATENT HARDENER
5.3 SELF-HEALING EPOXY/WOVEN GLASS FABRIC COMPOSITES WITH EMBEDDED EPOXY-LOADED MICROCAPSULES AND LATENT HARDENER: HEALING OF INTERLAMINAR FAILURE
Record Nr. UNINA-9910826707803321
Zhang Ming Qiu  
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui