top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective [[electronic resource] /] / edited by Sajad Majeed Zargar, Mohammad Yousuf Zargar
Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective [[electronic resource] /] / edited by Sajad Majeed Zargar, Mohammad Yousuf Zargar
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (350 pages) : illustrations, tables
Disciplina 571.742
Soggetto topico Plant physiology
Plant anatomy
Plant development
Plant genetics
Plant breeding
Plant Physiology
Plant Anatomy/Development
Plant Genetics and Genomics
Plant Breeding/Biotechnology
ISBN 981-10-7479-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. “Omics”: A Gateway Towards Abiotic Stress Tolerance -- Chapter 2. Second Messengers: Central Regulators in Plant Abiotic Stress Response -- Chapter 3. Signaling Peptides: Hidden Molecular Messengers of Abiotic Stress Perception and Response in Plants -- Chapter 4. Reactive Oxygen Species (ROS) – A Way to Stress Survival in Plants -- Chapter 5. Role of Cuticular Wax in Adaptation to Abiotic Stress - A Molecular Perspective -- Chapter 6. Abiotic Stress Response in Plants: A Cis-Regulatory Perspective -- Chapter 7. Multifarious Role of ROS in Halophytes: Signaling and Defense -- Chapter 8. Enhancing Cold Tolerance in Horticultural Plants Using In Vitro Approaches -- Chapter 9. Omics Based Strategies for Improving Salt Tolerance in Maize (Zea mays L.) -- Chapter 10. Drought Stress Tolerance in Wheat: Omics Approaches in Understanding and Enhancing Antioxidant Defense -- Chapter 11. Signalling During Cold Stress And its Interplay with Transcriptional Regulation -- Chapter 12. Cross-Talk Between Phytohormone Signaling Pathways under Abiotic Stress Conditions and Their Metabolic Engineering for Conferring Abiotic Stress Tolerance.
Record Nr. UNINA-9910298425203321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Neglected and underutilized crops - towards nutritional security and sustainability / / edited by Sajad Majeed Zargar, Antonio Masi, Romesh Kumar Salgotra
Neglected and underutilized crops - towards nutritional security and sustainability / / edited by Sajad Majeed Zargar, Antonio Masi, Romesh Kumar Salgotra
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (278 pages)
Disciplina 605
Soggetto topico Sustainable agriculture
Crop diversification
Agricultura sostenible
Conreu
Soggetto genere / forma Llibres electrònics
ISBN 981-16-3876-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgements -- Contents -- About the Editors -- 1: Neglected and Underutilized Crop Species: Are They Future Smart Crops in Fighting Poverty, Hunger and Malnutrition Under Ch... -- 1.1 Introduction -- 1.2 Concept of Neglected and Underutilized Crop Species -- 1.3 Production Trends and Consumption -- 1.3.1 Underutilized Cereals -- 1.3.2 Underutilized Pulses -- 1.3.3 Underutilized Vegetables -- 1.3.4 Underutilized Root and Tuber Crops -- 1.4 Importance of Neglected and Underutilized Crop Species -- 1.4.1 Potentiality and Nutritional Importance of Underutilized Crops -- 1.4.2 Nutritional Importance -- 1.4.3 Diversification for Food Security: The Role of Underutilized Crops -- 1.4.3.1 Medicinal Values -- 1.4.3.2 Genetic Resources for the Development of Stress-Tolerant Crops -- 1.4.3.3 Sustainability of Underutilized Crops -- 1.5 Current Status of Research on NUFCs -- 1.6 Biotechnological Approaches for Domestication and Improvement of Orphan Crop Species for Climate Resilience -- 1.6.1 Concept and Importance of Domestication -- 1.6.2 Genome Editing Using CRISPR Technology -- 1.7 Challenges in Production of NUFCs -- 1.8 Framework for Mainstreaming NUFCs for Sustainable Nutrition Security -- 1.9 Conclusion -- References -- 2: Neglected and Underutilized Crops: Present Status and Future Prospectus -- 2.1 Introduction -- 2.2 Present Status of Neglected and Underutilized Species -- 2.2.1 Status of NUS Around the World -- 2.2.2 Global Scenario of NUS -- 2.2.3 Status of NUS in Europe -- 2.2.4 Status in Sub-Saharan Africa (SSA) -- 2.2.5 Status of NUS in West Asia -- 2.2.6 Status of NUS in Asia -- 2.3 China, Cambodia, Thailand, Vietnam and Southeast Asia -- 2.3.1 India -- 2.3.2 Sri Lanka and Bangladesh -- 2.3.3 Pakistan and Nepal -- 2.4 Global Research Organizations and Events Promoting NUS.
2.5 The Genetic Resources Policy Committee of the Consultative Group on International Agricultural Research (CGIAR) -- 2.6 International Centre for Underutilized Crops (ICUC) -- 2.7 Global Facilitation Unit for Underutilized Species (GFU) -- 2.8 Crops for the Future (CFF) -- 2.9 The African Orphan Crop Consortium (AOCC) -- 2.10 Potential and Future Prospects of NUS -- 2.11 Conclusion -- References -- 3: Germplasm Resources of Major Underutilized Crops -- 3.1 Introduction -- 3.2 Categories of Underutilized Crops -- 3.2.1 Cereals -- 3.2.2 Vegetables -- 3.2.3 Legumes -- 3.2.4 Roots and Tuber Crops -- 3.2.5 Fruits -- 3.2.6 Oilseeds -- 3.3 Major Underutilized Crops and Their Germplasm Resources -- 3.3.1 Millets -- 3.3.2 Buckwheat -- 3.3.3 Grain Amaranths -- 3.3.4 Quinoa -- 3.3.5 Ancient Wheat or Hulled Wheat -- 3.3.6 Teff -- 3.3.7 Bambara Groundnut -- 3.3.8 Faba Bean -- 3.3.9 Moringa -- 3.3.10 Winged Bean -- 3.4 Organizations Involved in Improving and Maintaining Genetic Resources -- 3.4.1 International Centre for Underutilized Crops (ICUC) -- 3.4.2 Global Facilitation Unit (GFU) -- 3.4.3 Convention on Biological Diversity (CBD) -- 3.4.4 Crops for the Future (CFF) -- 3.4.5 The International Plant Genetic Resources Institute (IPGRI) -- 3.4.6 The United Nation Food and Agriculture Organization (FAO) -- 3.5 Constraints in Development of Underutilized Crops -- 3.6 Conclusion -- References -- 4: Underutilized Vegetable Species of Indian Himalayas -- 4.1 Introduction -- 4.2 Status of Underutilized Vegetables in India -- 4.3 Jammu and Kashmir -- 4.3.1 Wand haaq (Brassica oleracea var. acephala) -- 4.3.2 Khanyari Haaq (Brassica oleracea var. acephala) -- 4.3.3 Hanz haaq (Brassica oleracea var. acephala) -- 4.3.4 Wast haaq (Amaranthus spp.) -- 4.3.5 Nunnar (Portulaca oleracea) -- 4.3.6 Hannd/Han (Taraxacum officinale) -- 4.3.7 Sonchal/Swatsal (Malva sylvestris).
4.3.8 Abuj (Rumex obtusifolius) -- 4.3.9 Pamb haaq (Rheum emodi) -- 4.3.10 Shamsho (Capsella bursa-pastoris) -- 4.3.11 Shangsho (Lepidium latifolium) -- 4.3.12 Khala (Lactuca dolichophylla) -- 4.3.13 Pran (Allium cepa var. proliferum) -- 4.3.14 Skotche (Allium przewalskianum) -- 4.3.15 Nadru (Nelumbo nucifera) -- 4.4 Himachal Pradesh, Uttarakhand and Temperate NE Region -- 4.4.1 Zimu (Allium tuberosum) -- 4.4.2 Jangli chulai (Amaranthus viridis) and Kantachulai (Amaranthus spinosus) -- 4.4.3 Bathua (Chenopodium album Linn.) -- 4.4.4 Chala (Nasturtium officinale) -- 4.4.5 Piyaji (Asphodelus tenuifolius) -- 4.4.6 Lungru/Kasrod (Diplazium esculentum Retz.) -- 4.4.7 Duna (Allium humile Kunth.) -- 4.4.8 Jambu or Faran (Allium consanguineum and Allium wallichii Kunth.) -- 4.4.9 Bichhubooti (Urtica dioica) -- 4.5 Anti-nutritional Factors -- 4.6 Scope of Underutilized Vegetables in India -- References -- 5: Nutritional and Medicinal Values of Neglected Spice Crops of Indian Himalayas -- 5.1 Introduction -- 5.2 Addressing Underutilization of NUS -- 5.3 Scenario of Production -- 5.3.1 Identification, Selection, and Cultivation -- 5.3.2 Resources and Production -- 5.3.3 Storage and Processing -- 5.3.4 Trade and Retail -- 5.3.5 Consumer -- 5.4 Nutritional and Medicinal Scope of the Neglected Spice Crops -- 5.4.1 Capsicum minimum -- 5.4.2 Zanthoxylum armatum -- 5.4.3 Hedychium spicatum -- 5.4.4 Ajuga bracteosa -- 5.4.5 Euphorbia hirta -- 5.4.6 Dicliptera bupleuroides -- 5.4.7 Myrica esculenta -- 5.4.8 Berberis aristata -- 5.4.9 Flemingia vestita -- 5.4.10 Perilla frutescens -- 5.4.11 Thymus linearis -- 5.4.12 Allium stracheyi -- 5.4.13 Angelica glauca -- 5.4.14 Piper longum -- 5.5 Conclusion and a Way Forward from Ecological Niche to Mainstream Purpose -- References -- 6: Genetics and Genomics Resources of Millets: Availability, Advancements, and Applications.
6.1 Introduction -- 6.2 Genetics and Genomic Relationships -- 6.3 Genomic Resources -- 6.4 Advancements -- 6.4.1 Use of Germplasm for Crop Improvement -- 6.4.2 Enhancement of Drought Tolerance -- 6.4.3 Markers with Agronomic Traits, Abiotic and Biotic Stress Confrontation, and Product Quality -- 6.4.4 Molecular Breeding Tools Enhanced by Genomic Sequences -- 6.5 Applications -- 6.6 Conclusion and Future Research Needs -- References -- 7: Genomic Approaches for the Improvement and Conservation of Buckwheat -- 7.1 Introduction -- 7.2 Biotechnological Interventions for Combating Underutilization of Buckwheat -- 7.3 Molecular Marker System and Its Application in Buckwheat -- 7.4 Sequencing Status of Buckwheat -- 7.5 Future Prospectus -- References -- 8: Genetic and Genomic Resources of Chestnut -- 8.1 Introduction -- 8.2 Genetics of Chestnut -- 8.3 Genomic Approach to Disease Resistance in American Chestnut -- 8.4 Conservation of Chestnut Germplasm -- 8.4.1 In Situ Conservation -- 8.4.2 Ex Situ Conservation -- 8.4.3 In Vitro Conservation -- 8.5 Conclusion -- References -- 9: Genetic and Genomic Resources in Rice Bean (Vigna umbellata Thunb.): Availability, Advancements, and Applications -- 9.1 Introduction -- 9.2 Genomic Resources: Advancement in Marker Technology -- 9.3 Genetic Resources in Rice Bean -- 9.4 Conclusion and Future Perspective -- References -- 10: Advancements in High-Throughput Omics-Technologies for Understanding the Biology of Neglected and Underutilized Crops -- 10.1 Introduction -- 10.2 Technical Advancement in Transcriptomics to Study NUCs -- 10.2.1 Hybridization-Based Technology -- 10.2.1.1 DNA Microarray/DNA Chips -- 10.2.2 Sequencing-Based Technologies -- 10.2.2.1 Expressed Sequence Tags -- 10.2.3 Serial Analysis of Gene Expression (SAGE) and Cap Analysis Gene Expression (CAGE).
10.2.4 Next-Generation Sequencing (NGS)/RNA Sequencing (RNA-Seq) -- 10.2.5 Transcript Assembly -- 10.2.5.1 Reference-Based Assembly Method -- 10.2.5.2 De Novo Method -- 10.2.5.3 Combined Strategy -- 10.3 Progress Made in Proteomics Technologies to Understand the NUCs -- 10.3.1 Advancements in Protein Extraction and Sample Clean-Up -- 10.3.2 Proteolytic Digestion and Database Searching for Gel-Based and Gel-Free Proteomics Approaches -- 10.4 Technical Advancements in Metabolomics to Facilitate the Metabolome Profiling of NUCs -- 10.5 Softwares and Other Bioinformatics Platforms to Facilitate the Studies on NUCs -- 10.5.1 Softwares for the Functional Annotation and Integration of Omics Data -- 10.5.1.1 Pathview Web: User-Friendly Pathway Visualization and Data Integration -- 10.5.1.2 PaintOmics 3: A Web Resource for the Pathway Analysis and Visualization of Multi-Omics Data -- 10.5.1.3 KaPPA-View: Integrating Transcript and Metabolite Data -- 10.5.1.4 MapMan: A User-Driven Tool to Functionally Annotate the Identified Genes/Proteins in Various Pathways -- 10.5.2 Subcellular Localization -- 10.5.2.1 CELLO: Subcellular Localization Predictive System -- 10.5.2.2 PSORTb (http://www.psort.org) -- 10.5.2.3 TMHMM Server -- 10.5.2.4 SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/) -- 10.5.2.5 LOCtree -- 10.5.2.6 PredictProtein (http://www.predictprotein.org) -- 10.5.3 Tools for the Detection of Post-translational Modifications -- 10.5.3.1 PhosPhAt: A Database of Phosphorylation Sites in Arabidopsis thaliana and a Plant-Specific Phosphorylation Site Predi... -- 10.5.3.2 Prediction of Glycosylation Sites -- 10.5.3.2.1 Cartoonist -- 10.5.3.2.2 GlycoWorkbench -- 10.5.3.2.3 NetOGlyc-Prediction of Mucin-Type O-Glycosylation Sites Based on Sequence Context and Surface Accessibility -- 10.5.3.2.4 NetNGlyc 1.0 -- References.
11: Understanding the Barriers of Underutilization and Applicability of Biotechnological Tools for Augmenting Spice Crop Produ.
Record Nr. UNINA-9910502988703321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Rediscovery of Genetic and Genomic Resources for Future Food Security [[electronic resource] /] / edited by Romesh Kumar Salgotra, Sajad Majeed Zargar
Rediscovery of Genetic and Genomic Resources for Future Food Security [[electronic resource] /] / edited by Romesh Kumar Salgotra, Sajad Majeed Zargar
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXI, 364 p. 18 illus., 16 illus. in color.)
Disciplina 631.53
Soggetto topico Plant breeding
Plant genetics
Agriculture
Nucleic acids
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Nucleic Acid Chemistry
ISBN 981-15-0156-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Potential of genetic and genomic resources for genetic improvement of food crops -- Chapter 2 Untapped genetic diversity of wild relatives for crop improvement -- Chapter 3 Molecular approaches for harvesting natural diversity for crop improvement -- Chapter 4 Omics and plant genetic resources: Towards mining potential genes -- Chapter 5 Genetic and genomic resources and their exploitation for unlocking genetic potential from the wild relatives.-Chapter 6 Role of gene banks in maintaining crop genetic resources -- Chapter 7 Exploring genetic resources for identification of potential novel genes for crop improvement -- Chapter 8 Next-generation sequencing technologies and their implications for efficiently utilization of genetic resources -- Chapter 9 Comparative genomics for exploring new genes and traits for crop improvement -- Chapter 10 Potential of wild species in the scenario of climate change -- Chapter 11 Role of wild relatives for development of climate-resilient varieties -- Chapter 12 Strategies for conservation of genetic resources -- Chapter 13 Crop landraces: Present threats and opportunities for conservation -- Chapter 14 Future threats and opportunities facing crop wild relatives and landrace diversity.
Record Nr. UNINA-9910373942703321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui