top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Neural networks for intelligent signal processing [[electronic resource] /] / Anthony Zaknich
Neural networks for intelligent signal processing [[electronic resource] /] / Anthony Zaknich
Autore Zaknich Anthony
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2003
Descrizione fisica 1 online resource (510 p.)
Disciplina 006.3/2
Collana Series on innovative intelligence
Soggetto topico Neural networks (Computer science)
Signal processing - Digital techniques
Intelligent control systems
Soggetto genere / forma Electronic books.
ISBN 1-281-94787-3
9786611947873
981-279-685-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Acknowledgments; Foreword; Preface; 1. Introduction; 1.1 Motivation for ANNs; 1.2 ANN Definitions and Main Types; 1.3 Specific ANN Models; 1.4 ANN Black Box Model; 1.5 ANN Implementation; 1.6 When To Use an ANN; 1.7 How To Use an ANN
1.8 General Applications 1.9 Pattern Recognition Examples; 1.9.1 Sheep Eating Phase Identification from Jaw Sounds; 1.9.2 Particle Isolation in SEM Images; 1.9.3 Oxalate Needle Detection in Microscope Images ; 1.10 Function Mapping and Filtering Examples
1.10.1 Water Level from Resonant Sound Analysis 1.10.2 Nonlinear Signal Filtering; 1.11 Motor Control Example; 1.12 ANN Summary; References; 2. A Brief Historical Overview; 2.1 ANN History to 1970; 2.1.1 Key Events prior to 1970; 2.2 ANN History after 1970
2.2.1 Key Events after 1970 to the Mid 1980's 2.2.2 Developments after the Mid 1980's; 2.2.3 Nonparametric Learning From Finite Data; 2.3 Reasons for the Resurgence of Interest in ANNs; 2.4 Historical Summary ; References; 3. Basic Concepts; 3.1 The Basic Model of the Neuron
3.2 Activation Functions 3.3 Topologies; 3.4 Learning; 3.4.1 A Basic Supervised Learning Algorithm; 3.4.2 A Basic Unsupervised Learning Algorithm; 3.5 The Basic McCulloch Pitts and Perceptron Models; 3.6 Vectors Spaces and Matrix Models; 3.6.1 ANN Classifiers
3.6.2 Vectors and Feature Spaces
Record Nr. UNINA-9910454089903321
Zaknich Anthony  
River Edge, NJ, : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Neural networks for intelligent signal processing [[electronic resource] /] / Anthony Zaknich
Neural networks for intelligent signal processing [[electronic resource] /] / Anthony Zaknich
Autore Zaknich Anthony
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2003
Descrizione fisica 1 online resource (510 p.)
Disciplina 006.3/2
Collana Series on innovative intelligence
Soggetto topico Neural networks (Computer science)
Signal processing - Digital techniques
Intelligent control systems
ISBN 1-281-94787-3
9786611947873
981-279-685-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Acknowledgments; Foreword; Preface; 1. Introduction; 1.1 Motivation for ANNs; 1.2 ANN Definitions and Main Types; 1.3 Specific ANN Models; 1.4 ANN Black Box Model; 1.5 ANN Implementation; 1.6 When To Use an ANN; 1.7 How To Use an ANN
1.8 General Applications 1.9 Pattern Recognition Examples; 1.9.1 Sheep Eating Phase Identification from Jaw Sounds; 1.9.2 Particle Isolation in SEM Images; 1.9.3 Oxalate Needle Detection in Microscope Images ; 1.10 Function Mapping and Filtering Examples
1.10.1 Water Level from Resonant Sound Analysis 1.10.2 Nonlinear Signal Filtering; 1.11 Motor Control Example; 1.12 ANN Summary; References; 2. A Brief Historical Overview; 2.1 ANN History to 1970; 2.1.1 Key Events prior to 1970; 2.2 ANN History after 1970
2.2.1 Key Events after 1970 to the Mid 1980's 2.2.2 Developments after the Mid 1980's; 2.2.3 Nonparametric Learning From Finite Data; 2.3 Reasons for the Resurgence of Interest in ANNs; 2.4 Historical Summary ; References; 3. Basic Concepts; 3.1 The Basic Model of the Neuron
3.2 Activation Functions 3.3 Topologies; 3.4 Learning; 3.4.1 A Basic Supervised Learning Algorithm; 3.4.2 A Basic Unsupervised Learning Algorithm; 3.5 The Basic McCulloch Pitts and Perceptron Models; 3.6 Vectors Spaces and Matrix Models; 3.6.1 ANN Classifiers
3.6.2 Vectors and Feature Spaces
Record Nr. UNINA-9910782282403321
Zaknich Anthony  
River Edge, NJ, : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Neural networks for intelligent signal processing / / Anthony Zaknich
Neural networks for intelligent signal processing / / Anthony Zaknich
Autore Zaknich Anthony
Edizione [1st ed.]
Pubbl/distr/stampa River Edge, NJ, : World Scientific, c2003
Descrizione fisica 1 online resource (510 p.)
Disciplina 006.3/2
Collana Series on innovative intelligence
Soggetto topico Neural networks (Computer science)
Signal processing - Digital techniques
Intelligent control systems
ISBN 1-281-94787-3
9786611947873
981-279-685-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Acknowledgments; Foreword; Preface; 1. Introduction; 1.1 Motivation for ANNs; 1.2 ANN Definitions and Main Types; 1.3 Specific ANN Models; 1.4 ANN Black Box Model; 1.5 ANN Implementation; 1.6 When To Use an ANN; 1.7 How To Use an ANN
1.8 General Applications 1.9 Pattern Recognition Examples; 1.9.1 Sheep Eating Phase Identification from Jaw Sounds; 1.9.2 Particle Isolation in SEM Images; 1.9.3 Oxalate Needle Detection in Microscope Images ; 1.10 Function Mapping and Filtering Examples
1.10.1 Water Level from Resonant Sound Analysis 1.10.2 Nonlinear Signal Filtering; 1.11 Motor Control Example; 1.12 ANN Summary; References; 2. A Brief Historical Overview; 2.1 ANN History to 1970; 2.1.1 Key Events prior to 1970; 2.2 ANN History after 1970
2.2.1 Key Events after 1970 to the Mid 1980's 2.2.2 Developments after the Mid 1980's; 2.2.3 Nonparametric Learning From Finite Data; 2.3 Reasons for the Resurgence of Interest in ANNs; 2.4 Historical Summary ; References; 3. Basic Concepts; 3.1 The Basic Model of the Neuron
3.2 Activation Functions 3.3 Topologies; 3.4 Learning; 3.4.1 A Basic Supervised Learning Algorithm; 3.4.2 A Basic Unsupervised Learning Algorithm; 3.5 The Basic McCulloch Pitts and Perceptron Models; 3.6 Vectors Spaces and Matrix Models; 3.6.1 ANN Classifiers
3.6.2 Vectors and Feature Spaces
Record Nr. UNINA-9910809089503321
Zaknich Anthony  
River Edge, NJ, : World Scientific, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui