Statistical microhydrodynamics / / Emmanuil G. Sinaiski and Leonid I. Zaichik
| Statistical microhydrodynamics / / Emmanuil G. Sinaiski and Leonid I. Zaichik |
| Autore | Sinaĭskiĭ Ė. G (Ėmmanuil Genrikhovich) |
| Pubbl/distr/stampa | Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008 |
| Descrizione fisica | 1 online resource (508 p.) |
| Disciplina |
532.5
532/.0527 |
| Soggetto topico | Hydrodynamics - Statistical methods |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-78443-9
9786612784439 3-527-62180-6 3-527-62181-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto |
Statistical Microhydrodynamics; Contents; Preface; Nomenclature; 1 Basic Concepts of the Probability Theory; 1.1 Events, Set of Events, and Probability; 1.2 Random Variables, Probability Distribution Function, Average Value, and Variance; 1.3 Generalized Functions; 1.4 Methods of Averaging; 1.5 Characteristic Functions; 1.6 Moments and Cumulants of Random Variables; 1.7 Correlation Functions; 1.8 Bernoulli, Poisson, and Gaussian Distributions; 1.9 Stationary Random Functions, Homogeneous Random Fields; 1.10 Isotropic Random Fields. Spectral Representation
1.11 Stochastic Processes. Markovian Processes. The Chapman-Kolmogorov Integral Equation1.12 The Chapman-Kolmogorov, Chapman-Feller, Fokker-Planck, and Liouville Differential Equations; 1.12.1 Derivation of the Differential Chapman-Kolmogorov Equation; 1.12.2 Discontinuous (""Jump"") Processes. The Kolmogorov-Feller Equation; 1.12.3 Diffusion Processes. The Fokker-Planck Equation; 1.12.4 Deterministic Processes. The Liouville Equation; 1.13 Stochastic Differential Equations. The Langevin Equation; 1.13.1 The Langevin Equation; 1.13.2 The Diffusion Equation 1.13.2.1 The Diffusion Equation with Chemical Reactions Taken into Account1.13.2.2 Brownian Motion of a Particle in a Hydrodynamic Medium; 1.14 Variational (Functional) Derivatives; 1.15 The Characteristic Functional; 2 Elements of Microhydrodynamics; 2.1 Motion of an Isolated Particle in a Quiescent Fluid; 2.2 Motion of an Isolated Particle in a Moving Fluid; 2.3 Motion of Two Particles in a Fluid; 2.3.1 Fluid is at Rest at the Infinity (v = 0); 2.3.2 Fluid is Moving at the Infinity (v 0); 2.4 Multi-Particle Motion; 2.5 Flow of a Fluid Through a Random Bed of Particles 3 Brownian Motion of Particles3.1 Random Walk of an Isolated Particle; 3.1.1 Isotropic Distribution; 3.1.2 Gaussian Distribution; 3.1.3 An Arbitrary Distribution τ(r) in the Limiting Case N»1; 3.2 Random Walk of an Ensemble of Particles; 3.3 Brownian Motion of a Free Particle in a Quiescent Fluid; 3.4 Brownian Motion of a Particle in an External Force Field; 3.5 The Smoluchowski Equation; 3.6 Brownian Motion of a Particle in a Moving Fluid; 3.7 Brownian Diffusion with Hydrodynamic Interactions; 3.8 Brownian Diffusion with Hydrodynamic Interactions and External Forces 3.8.1 High Peclet Numbers: Pe(ij)»13.8.2 Small Peclet Numbers, Pe(ij)«1; 3.9 Particle Sedimentation in a Monodisperse Dilute Suspension; 3.10 Particle Sedimentation in a Polydisperse Dilute Suspension, with Hydrodynamic and Molecular Interactions and Brownian Motion of Particles; 3.11 Transport Coefficients in Disperse Media; 3.11.1 Infinitely Dilute Suspension with Non-interacting Particles; 3.11.2 The Influence of Particle Interactions on Transport Coefficients; 3.12 Concentrated Disperse Media; 4 Turbulent Flow of Fluids; 4.1 General Information on Laminar and Turbulent Flows 4.2 The Momentum Equation for Viscous Incompressible Fluids |
| Record Nr. | UNINA-9910144829003321 |
Sinaĭskiĭ Ė. G (Ėmmanuil Genrikhovich)
|
||
| Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Statistical microhydrodynamics / / Emmanuil G. Sinaiski and Leonid I. Zaichik
| Statistical microhydrodynamics / / Emmanuil G. Sinaiski and Leonid I. Zaichik |
| Autore | Sinaĭskiĭ Ė. G (Ėmmanuil Genrikhovich) |
| Pubbl/distr/stampa | Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008 |
| Descrizione fisica | 1 online resource (508 p.) |
| Disciplina |
532.5
532/.0527 |
| Soggetto topico | Hydrodynamics - Statistical methods |
| ISBN |
1-282-78443-9
9786612784439 3-527-62180-6 3-527-62181-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto |
Statistical Microhydrodynamics; Contents; Preface; Nomenclature; 1 Basic Concepts of the Probability Theory; 1.1 Events, Set of Events, and Probability; 1.2 Random Variables, Probability Distribution Function, Average Value, and Variance; 1.3 Generalized Functions; 1.4 Methods of Averaging; 1.5 Characteristic Functions; 1.6 Moments and Cumulants of Random Variables; 1.7 Correlation Functions; 1.8 Bernoulli, Poisson, and Gaussian Distributions; 1.9 Stationary Random Functions, Homogeneous Random Fields; 1.10 Isotropic Random Fields. Spectral Representation
1.11 Stochastic Processes. Markovian Processes. The Chapman-Kolmogorov Integral Equation1.12 The Chapman-Kolmogorov, Chapman-Feller, Fokker-Planck, and Liouville Differential Equations; 1.12.1 Derivation of the Differential Chapman-Kolmogorov Equation; 1.12.2 Discontinuous (""Jump"") Processes. The Kolmogorov-Feller Equation; 1.12.3 Diffusion Processes. The Fokker-Planck Equation; 1.12.4 Deterministic Processes. The Liouville Equation; 1.13 Stochastic Differential Equations. The Langevin Equation; 1.13.1 The Langevin Equation; 1.13.2 The Diffusion Equation 1.13.2.1 The Diffusion Equation with Chemical Reactions Taken into Account1.13.2.2 Brownian Motion of a Particle in a Hydrodynamic Medium; 1.14 Variational (Functional) Derivatives; 1.15 The Characteristic Functional; 2 Elements of Microhydrodynamics; 2.1 Motion of an Isolated Particle in a Quiescent Fluid; 2.2 Motion of an Isolated Particle in a Moving Fluid; 2.3 Motion of Two Particles in a Fluid; 2.3.1 Fluid is at Rest at the Infinity (v = 0); 2.3.2 Fluid is Moving at the Infinity (v 0); 2.4 Multi-Particle Motion; 2.5 Flow of a Fluid Through a Random Bed of Particles 3 Brownian Motion of Particles3.1 Random Walk of an Isolated Particle; 3.1.1 Isotropic Distribution; 3.1.2 Gaussian Distribution; 3.1.3 An Arbitrary Distribution τ(r) in the Limiting Case N»1; 3.2 Random Walk of an Ensemble of Particles; 3.3 Brownian Motion of a Free Particle in a Quiescent Fluid; 3.4 Brownian Motion of a Particle in an External Force Field; 3.5 The Smoluchowski Equation; 3.6 Brownian Motion of a Particle in a Moving Fluid; 3.7 Brownian Diffusion with Hydrodynamic Interactions; 3.8 Brownian Diffusion with Hydrodynamic Interactions and External Forces 3.8.1 High Peclet Numbers: Pe(ij)»13.8.2 Small Peclet Numbers, Pe(ij)«1; 3.9 Particle Sedimentation in a Monodisperse Dilute Suspension; 3.10 Particle Sedimentation in a Polydisperse Dilute Suspension, with Hydrodynamic and Molecular Interactions and Brownian Motion of Particles; 3.11 Transport Coefficients in Disperse Media; 3.11.1 Infinitely Dilute Suspension with Non-interacting Particles; 3.11.2 The Influence of Particle Interactions on Transport Coefficients; 3.12 Concentrated Disperse Media; 4 Turbulent Flow of Fluids; 4.1 General Information on Laminar and Turbulent Flows 4.2 The Momentum Equation for Viscous Incompressible Fluids |
| Record Nr. | UNINA-9910830227203321 |
Sinaĭskiĭ Ė. G (Ėmmanuil Genrikhovich)
|
||
| Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||