top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Statistical microhydrodynamics / / Emmanuil G. Sinaiski and Leonid I. Zaichik
Statistical microhydrodynamics / / Emmanuil G. Sinaiski and Leonid I. Zaichik
Autore Sinaĭskiĭ Ė. G (Ėmmanuil Genrikhovich)
Pubbl/distr/stampa Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008
Descrizione fisica 1 online resource (508 p.)
Disciplina 532.5
532/.0527
Soggetto topico Hydrodynamics - Statistical methods
Soggetto genere / forma Electronic books.
ISBN 1-282-78443-9
9786612784439
3-527-62180-6
3-527-62181-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto Statistical Microhydrodynamics; Contents; Preface; Nomenclature; 1 Basic Concepts of the Probability Theory; 1.1 Events, Set of Events, and Probability; 1.2 Random Variables, Probability Distribution Function, Average Value, and Variance; 1.3 Generalized Functions; 1.4 Methods of Averaging; 1.5 Characteristic Functions; 1.6 Moments and Cumulants of Random Variables; 1.7 Correlation Functions; 1.8 Bernoulli, Poisson, and Gaussian Distributions; 1.9 Stationary Random Functions, Homogeneous Random Fields; 1.10 Isotropic Random Fields. Spectral Representation
1.11 Stochastic Processes. Markovian Processes. The Chapman-Kolmogorov Integral Equation1.12 The Chapman-Kolmogorov, Chapman-Feller, Fokker-Planck, and Liouville Differential Equations; 1.12.1 Derivation of the Differential Chapman-Kolmogorov Equation; 1.12.2 Discontinuous (""Jump"") Processes. The Kolmogorov-Feller Equation; 1.12.3 Diffusion Processes. The Fokker-Planck Equation; 1.12.4 Deterministic Processes. The Liouville Equation; 1.13 Stochastic Differential Equations. The Langevin Equation; 1.13.1 The Langevin Equation; 1.13.2 The Diffusion Equation
1.13.2.1 The Diffusion Equation with Chemical Reactions Taken into Account1.13.2.2 Brownian Motion of a Particle in a Hydrodynamic Medium; 1.14 Variational (Functional) Derivatives; 1.15 The Characteristic Functional; 2 Elements of Microhydrodynamics; 2.1 Motion of an Isolated Particle in a Quiescent Fluid; 2.2 Motion of an Isolated Particle in a Moving Fluid; 2.3 Motion of Two Particles in a Fluid; 2.3.1 Fluid is at Rest at the Infinity (v = 0); 2.3.2 Fluid is Moving at the Infinity (v 0); 2.4 Multi-Particle Motion; 2.5 Flow of a Fluid Through a Random Bed of Particles
3 Brownian Motion of Particles3.1 Random Walk of an Isolated Particle; 3.1.1 Isotropic Distribution; 3.1.2 Gaussian Distribution; 3.1.3 An Arbitrary Distribution τ(r) in the Limiting Case N»1; 3.2 Random Walk of an Ensemble of Particles; 3.3 Brownian Motion of a Free Particle in a Quiescent Fluid; 3.4 Brownian Motion of a Particle in an External Force Field; 3.5 The Smoluchowski Equation; 3.6 Brownian Motion of a Particle in a Moving Fluid; 3.7 Brownian Diffusion with Hydrodynamic Interactions; 3.8 Brownian Diffusion with Hydrodynamic Interactions and External Forces
3.8.1 High Peclet Numbers: Pe(ij)»13.8.2 Small Peclet Numbers, Pe(ij)«1; 3.9 Particle Sedimentation in a Monodisperse Dilute Suspension; 3.10 Particle Sedimentation in a Polydisperse Dilute Suspension, with Hydrodynamic and Molecular Interactions and Brownian Motion of Particles; 3.11 Transport Coefficients in Disperse Media; 3.11.1 Infinitely Dilute Suspension with Non-interacting Particles; 3.11.2 The Influence of Particle Interactions on Transport Coefficients; 3.12 Concentrated Disperse Media; 4 Turbulent Flow of Fluids; 4.1 General Information on Laminar and Turbulent Flows
4.2 The Momentum Equation for Viscous Incompressible Fluids
Record Nr. UNINA-9910144829003321
Sinaĭskiĭ Ė. G (Ėmmanuil Genrikhovich)  
Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical microhydrodynamics / / Emmanuil G. Sinaiski and Leonid I. Zaichik
Statistical microhydrodynamics / / Emmanuil G. Sinaiski and Leonid I. Zaichik
Autore Sinaĭskiĭ Ė. G (Ėmmanuil Genrikhovich)
Pubbl/distr/stampa Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008
Descrizione fisica 1 online resource (508 p.)
Disciplina 532.5
532/.0527
Soggetto topico Hydrodynamics - Statistical methods
ISBN 1-282-78443-9
9786612784439
3-527-62180-6
3-527-62181-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto Statistical Microhydrodynamics; Contents; Preface; Nomenclature; 1 Basic Concepts of the Probability Theory; 1.1 Events, Set of Events, and Probability; 1.2 Random Variables, Probability Distribution Function, Average Value, and Variance; 1.3 Generalized Functions; 1.4 Methods of Averaging; 1.5 Characteristic Functions; 1.6 Moments and Cumulants of Random Variables; 1.7 Correlation Functions; 1.8 Bernoulli, Poisson, and Gaussian Distributions; 1.9 Stationary Random Functions, Homogeneous Random Fields; 1.10 Isotropic Random Fields. Spectral Representation
1.11 Stochastic Processes. Markovian Processes. The Chapman-Kolmogorov Integral Equation1.12 The Chapman-Kolmogorov, Chapman-Feller, Fokker-Planck, and Liouville Differential Equations; 1.12.1 Derivation of the Differential Chapman-Kolmogorov Equation; 1.12.2 Discontinuous (""Jump"") Processes. The Kolmogorov-Feller Equation; 1.12.3 Diffusion Processes. The Fokker-Planck Equation; 1.12.4 Deterministic Processes. The Liouville Equation; 1.13 Stochastic Differential Equations. The Langevin Equation; 1.13.1 The Langevin Equation; 1.13.2 The Diffusion Equation
1.13.2.1 The Diffusion Equation with Chemical Reactions Taken into Account1.13.2.2 Brownian Motion of a Particle in a Hydrodynamic Medium; 1.14 Variational (Functional) Derivatives; 1.15 The Characteristic Functional; 2 Elements of Microhydrodynamics; 2.1 Motion of an Isolated Particle in a Quiescent Fluid; 2.2 Motion of an Isolated Particle in a Moving Fluid; 2.3 Motion of Two Particles in a Fluid; 2.3.1 Fluid is at Rest at the Infinity (v = 0); 2.3.2 Fluid is Moving at the Infinity (v 0); 2.4 Multi-Particle Motion; 2.5 Flow of a Fluid Through a Random Bed of Particles
3 Brownian Motion of Particles3.1 Random Walk of an Isolated Particle; 3.1.1 Isotropic Distribution; 3.1.2 Gaussian Distribution; 3.1.3 An Arbitrary Distribution τ(r) in the Limiting Case N»1; 3.2 Random Walk of an Ensemble of Particles; 3.3 Brownian Motion of a Free Particle in a Quiescent Fluid; 3.4 Brownian Motion of a Particle in an External Force Field; 3.5 The Smoluchowski Equation; 3.6 Brownian Motion of a Particle in a Moving Fluid; 3.7 Brownian Diffusion with Hydrodynamic Interactions; 3.8 Brownian Diffusion with Hydrodynamic Interactions and External Forces
3.8.1 High Peclet Numbers: Pe(ij)»13.8.2 Small Peclet Numbers, Pe(ij)«1; 3.9 Particle Sedimentation in a Monodisperse Dilute Suspension; 3.10 Particle Sedimentation in a Polydisperse Dilute Suspension, with Hydrodynamic and Molecular Interactions and Brownian Motion of Particles; 3.11 Transport Coefficients in Disperse Media; 3.11.1 Infinitely Dilute Suspension with Non-interacting Particles; 3.11.2 The Influence of Particle Interactions on Transport Coefficients; 3.12 Concentrated Disperse Media; 4 Turbulent Flow of Fluids; 4.1 General Information on Laminar and Turbulent Flows
4.2 The Momentum Equation for Viscous Incompressible Fluids
Record Nr. UNINA-9910830227203321
Sinaĭskiĭ Ė. G (Ėmmanuil Genrikhovich)  
Weinheim, [Germany] : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui