Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis [[electronic resource] ] : 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Simone Balocco, Raphael Sznitman, Anne Martel, Lena Maier-Hein, Luc Duong, Guillaume Zahnd, Stefanie Demirci, Shadi Albarqouni, Su-Lin Lee, Stefano Moriconi, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, Eric Granger, Pierre Jannin |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (xvii, 202 pages) : color illustrations |
Disciplina | 651.504261 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Artificial intelligence Computer organization Image Processing and Computer Vision Health Informatics Artificial Intelligence Computer Systems Organization and Communication Networks |
ISBN | 3-030-01364-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Blood-flow estimation in the hepatic arteries based on 3D/2D angiography registration -- Automated quantification of blood flow velocity from time-resolved CT angiography -- Multiple device segmentation for fluoroscopic imaging using multi-task learning -- Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors -- Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network -- Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts -- Deep Learning-based Detection and Segmentation for BVS Struts in IVOCT Images -- Towards Automatic Measurement of Type B Aortic Dissection Parameters -- Prediction of FFR from IVUS Images using Machine Learning -- Deep Learning Retinal Vessel Segmentation From a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks -- An Efficient and Comprehensive Labeling Tool for Large-scale Annotation of Fundus Images -- Crowd disagreement about medical images is informative -- Imperfect Segmentation Labels: How Much Do They Matter? -- Crowdsourcing annotation of surgical instruments in videos of cataract surgery -- Four-dimensional ASL MR angiography phantoms with noise learned by neural styling -- Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans -- Capsule Networks against Medical Imaging Data Challenges -- Fully Automatic Segmentation of Coronary Arteries based on Deep Neural Network in Intravascular Ultrasound Images -- Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos -- Radiology Objects in COntext (ROCO) -- Improving out-of-sample prediction of quality of MRIQC. |
Record Nr. | UNISA-996466467603316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis : 7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Danail Stoyanov, Zeike Taylor, Simone Balocco, Raphael Sznitman, Anne Martel, Lena Maier-Hein, Luc Duong, Guillaume Zahnd, Stefanie Demirci, Shadi Albarqouni, Su-Lin Lee, Stefano Moriconi, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, Eric Granger, Pierre Jannin |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (xvii, 202 pages) : color illustrations |
Disciplina |
651.504261
610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Artificial intelligence Computer organization Image Processing and Computer Vision Health Informatics Artificial Intelligence Computer Systems Organization and Communication Networks |
ISBN | 3-030-01364-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Blood-flow estimation in the hepatic arteries based on 3D/2D angiography registration -- Automated quantification of blood flow velocity from time-resolved CT angiography -- Multiple device segmentation for fluoroscopic imaging using multi-task learning -- Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors -- Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network -- Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts -- Deep Learning-based Detection and Segmentation for BVS Struts in IVOCT Images -- Towards Automatic Measurement of Type B Aortic Dissection Parameters -- Prediction of FFR from IVUS Images using Machine Learning -- Deep Learning Retinal Vessel Segmentation From a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks -- An Efficient and Comprehensive Labeling Tool for Large-scale Annotation of Fundus Images -- Crowd disagreement about medical images is informative -- Imperfect Segmentation Labels: How Much Do They Matter? -- Crowdsourcing annotation of surgical instruments in videos of cataract surgery -- Four-dimensional ASL MR angiography phantoms with noise learned by neural styling -- Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans -- Capsule Networks against Medical Imaging Data Challenges -- Fully Automatic Segmentation of Coronary Arteries based on Deep Neural Network in Intravascular Ultrasound Images -- Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos -- Radiology Objects in COntext (ROCO) -- Improving out-of-sample prediction of quality of MRIQC. |
Record Nr. | UNINA-9910349396903321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis [[electronic resource] ] : 6th Joint International Workshops, CVII-STENT 2017 and Second International Workshop, LABELS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 10–14, 2017, Proceedings / / edited by M. Jorge Cardoso, Tal Arbel, Su-Lin Lee, Veronika Cheplygina, Simone Balocco, Diana Mateus, Guillaume Zahnd, Lena Maier-Hein, Stefanie Demirci, Eric Granger, Luc Duong, Marc-André Carbonneau, Shadi Albarqouni, Gustavo Carneiro |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (xvi, 166 pages) : color illustrations |
Disciplina | 616.07540285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Artificial intelligence Computer organization Image Processing and Computer Vision Health Informatics Artificial Intelligence Computer Systems Organization and Communication Networks |
ISBN | 3-319-67534-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996465977703316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis : 6th Joint International Workshops, CVII-STENT 2017 and Second International Workshop, LABELS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 10–14, 2017, Proceedings / / edited by M. Jorge Cardoso, Tal Arbel, Su-Lin Lee, Veronika Cheplygina, Simone Balocco, Diana Mateus, Guillaume Zahnd, Lena Maier-Hein, Stefanie Demirci, Eric Granger, Luc Duong, Marc-André Carbonneau, Shadi Albarqouni, Gustavo Carneiro |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (xvi, 166 pages) : color illustrations |
Disciplina | 616.07540285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Health informatics Artificial intelligence Computer organization Image Processing and Computer Vision Health Informatics Artificial Intelligence Computer Systems Organization and Communication Networks |
ISBN | 3-319-67534-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910484144503321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting [[electronic resource] ] : First International Workshop, MLMECH 2019, and 8th Joint International Workshop, CVII-STENT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Hongen Liao, Simone Balocco, Guijin Wang, Feng Zhang, Yongpan Liu, Zijian Ding, Luc Duong, Renzo Phellan, Guillaume Zahnd, Katharina Breininger, Shadi Albarqouni, Stefano Moriconi, Su-Lin Lee, Stefanie Demirci |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVII, 212 p. 83 illus., 68 illus. in color.) |
Disciplina | 610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Image Processing and Computer Vision Artificial Intelligence |
ISBN | 3-030-33327-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Proceedings of the Machine Learning and Medical Engineering for Cardiovascular Health, MLMECH 2019 -- Arrhythmia Classification with Attention-Based ResBiLSTM-Net -- A Multi-Label Learning Method to detect Arrhythmia Based on -- An Ensemble Neural Network for Multi-label Classification of Electrocardiogram -- Automatic Diagnosis with 12-lead ECG Signals -- Diagnosing Cardiac Abnormalities from 12-Lead Electrocardiograms Using Enhanced Deep Convolutional Neural Networks -- Transfer Learning for Electrocardiogram Classification under Small Dataset -- Multi-label classification of abnormalities in 12-lead ECG using 1D CNN and LSTM -- An Approach to Predict Multiple Cardiac Diseases -- A 12-lead ECG Arrhythmia Classification Method Based on 1D Densely Connected CNN -- Automatic Multi-label Classification in 12-lead ECGs Using Neural Networks and Characteristic Points -- Automatic Detection of ECG Abnormalities by using an Ensemble of Deep Residual Networks with Attention -- Deep Learning to Improve Heart Disease Risk Prediction -- LabelECG: A Web-based Tool for Distributed Electrocardiogram Annotation -- Particle Swarm Optimization for Great Enhancement in Semi-Supervised Retinal Vessel Segmentation with Generative Adversarial Networks -- Attention-Guided Decoder in Dilated Residual Network for Accurate Aortic Valve Segmentation in 3D CT Scans -- ARVBNet: Real-time Detection of Anatomical Structures in Fetal Ultrasound Cardiac Four-chamber Planes -- Proceedings of the Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2019 -- The Effect of Labeling Duration and Temporal Resolution on Arterial Transit Time Estimation Accuracy in 4D ASL MRA Datasets - a Flow Phantom Study -- Towards Quantifying Neurovascular Resilience -- Random 2.5D U-net for Fully 3D Segmentation -- Abdominal aortic aneurysm segmentation using convolutional neural networks trained with images generated with a synthetic shape model -- Tracking of intracavitary instrument markers in coronary angiography images -- Healthy Vessel Wall Detection Using U-Net in Optical Coherence Tomography -- Advanced Multi-objective Design Analysis to Identify Ideal Stent Design -- Simultaneous Intracranial Artery Tracing and Segmentation from Magnetic Resonance Angiography by Joint Optimization from Multiplanar Reformation. |
Record Nr. | UNISA-996466194903316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting : First International Workshop, MLMECH 2019, and 8th Joint International Workshop, CVII-STENT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings / / edited by Hongen Liao, Simone Balocco, Guijin Wang, Feng Zhang, Yongpan Liu, Zijian Ding, Luc Duong, Renzo Phellan, Guillaume Zahnd, Katharina Breininger, Shadi Albarqouni, Stefano Moriconi, Su-Lin Lee, Stefanie Demirci |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVII, 212 p. 83 illus., 68 illus. in color.) |
Disciplina | 610.285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Optical data processing
Artificial intelligence Image Processing and Computer Vision Artificial Intelligence |
ISBN | 3-030-33327-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Proceedings of the Machine Learning and Medical Engineering for Cardiovascular Health, MLMECH 2019 -- Arrhythmia Classification with Attention-Based ResBiLSTM-Net -- A Multi-Label Learning Method to detect Arrhythmia Based on -- An Ensemble Neural Network for Multi-label Classification of Electrocardiogram -- Automatic Diagnosis with 12-lead ECG Signals -- Diagnosing Cardiac Abnormalities from 12-Lead Electrocardiograms Using Enhanced Deep Convolutional Neural Networks -- Transfer Learning for Electrocardiogram Classification under Small Dataset -- Multi-label classification of abnormalities in 12-lead ECG using 1D CNN and LSTM -- An Approach to Predict Multiple Cardiac Diseases -- A 12-lead ECG Arrhythmia Classification Method Based on 1D Densely Connected CNN -- Automatic Multi-label Classification in 12-lead ECGs Using Neural Networks and Characteristic Points -- Automatic Detection of ECG Abnormalities by using an Ensemble of Deep Residual Networks with Attention -- Deep Learning to Improve Heart Disease Risk Prediction -- LabelECG: A Web-based Tool for Distributed Electrocardiogram Annotation -- Particle Swarm Optimization for Great Enhancement in Semi-Supervised Retinal Vessel Segmentation with Generative Adversarial Networks -- Attention-Guided Decoder in Dilated Residual Network for Accurate Aortic Valve Segmentation in 3D CT Scans -- ARVBNet: Real-time Detection of Anatomical Structures in Fetal Ultrasound Cardiac Four-chamber Planes -- Proceedings of the Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2019 -- The Effect of Labeling Duration and Temporal Resolution on Arterial Transit Time Estimation Accuracy in 4D ASL MRA Datasets - a Flow Phantom Study -- Towards Quantifying Neurovascular Resilience -- Random 2.5D U-net for Fully 3D Segmentation -- Abdominal aortic aneurysm segmentation using convolutional neural networks trained with images generated with a synthetic shape model -- Tracking of intracavitary instrument markers in coronary angiography images -- Healthy Vessel Wall Detection Using U-Net in Optical Coherence Tomography -- Advanced Multi-objective Design Analysis to Identify Ideal Stent Design -- Simultaneous Intracranial Artery Tracing and Segmentation from Magnetic Resonance Angiography by Joint Optimization from Multiplanar Reformation. |
Record Nr. | UNINA-9910349274303321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|