Nanomedicine design of particles, sensors, motors, implants, robots, and devices / / Mark J. Schulz, Vesselin N. Shanov, Yeoheung Yun, editors |
Pubbl/distr/stampa | Boston : , : Artech House, , ©2009 |
Descrizione fisica | 1 online resource (548 p.) |
Disciplina |
610.28
610.284 |
Altri autori (Persone) |
SchulzMark J
ShanovVesselin N YunYeoheung |
Collana | Artech House series engineering in medicine & biology |
Soggetto topico |
Nanomedicine
Nanotechnology |
Soggetto genere / forma | Electronic books. |
ISBN | 1-59693-280-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices; Contents; Preface; Chapter 1 A Nanotechnology Framework for Medical Innovation; 1.1 Introduction; 1.2 Descriptive Systems Modeling; 1.2.1 Examples of Descriptive Systems Modeling; 1.3 Instrumentation Needed to Develop DSM; 1.4 Nanomaterials Made for Medicine; 1.5 Implantable Nanomedical Devices; 1.6 Nanorobots; 1.6.1 Nanorobots for Revolutionizing Medicine; 1.6.2 Nanorobot Factory; 1.6.3 Biological Nanorobots; 1.7 Biodegradable Metals for Temporary Implantable Nanomedical Devices
1.8 Integration of Nanodevices in the Body1.9 Safety and Ethical Implications of Nanomedicine; 1.10 Efficiently Working Together Using Shared Resources; 1.11 Chapter Summary and Conclusions; Problems; Acknowledgments; References; Endnote; Part 1 Nanoscale Materials and Particles; Chapter 2 Synthesis of Carbon Nanotube Materials for Biomedical Applications; 2.1 Introduction to Nanoscale Materials; 2.2 Synthesis of Long Carbon Nanotube Arrays; 2.3 Characterization of CNT Arrays; 2.3.1 Scanning Electron Microscopy and Transmission Electron Microscopy 2.3.2 Raman Spectroscopy and Thermal Gravimetric Analysis2.4 Patterned CNT Arrays; 2.5 Production Scale Up of CNT Arrays at UC; 2.5.1 Magnetron Sputtering for Substrate Preparation; 2.6 Spinning Carbon Nanotubes into Thread; 2.6.1 Mechanics of Array Spinning; 2.6.2 Direct Spinning of Thread from Long CNT Arrays; 2.6.3 Catalyst and Substrates for Growing of Spinable CNT Arrays; 2.6.4 Spinning Thread from DWCNT Arrays; 2.6.5 Pulling Ribbon from CNT Arrays; 2.6.6 Post-Treatment of the CNT Thread; 2.7 Mechanical and Electrical Characterization of CNT Thread; 2.7.1 Tensile Testing of CNT Thread 2.7.2 Electrical Properties of CNT Thread2.7.3 Temperature Dependence of the CNT Thread Resistance; 2.7.4 Electrical Properties of CNT Ribbon; 2.8 Nano-Handling of CNTs Using a Nanomanipulator Inside an ESEM; 2.8.1 Instrumentation; 2.8.2 Handling CNT Bundles; 2.8.3 Building Nanomedical Devices Using the Nanomanipulator; 2.9 Carbon Nanotube Threads in Wireless, Biomedical Sensor Applications; 2.9.1 Wireless Communication and the Modern World; 2.9.2 Development of CNT Thread-Based Antenna at UC; 2.9.3 Future Medical Application of the CNT Thread Antenna 2.10 Applications of CNT Materials in Nanomedicine2.10.1 Carbon Nanotube Array Immunosensor; 2.10.2 Carbon Nanotube Actuators; 2.10.3 Carbon Nanotube Materials as Scaffolds for Supporting Directional Neurite Growth; 2.11 Summary and Conclusions; Problems; Acknowledgments; References; Chapter 3 Functionalized Carbon Nanotubes as Multimodal Drug Delivery Systems for Targeted Cancer Therapy; 3.1 Introduction to Targeted Cancer Therapy; 3.1.1 Cancer Statistics; 3.1.2 Present-Day Cancer Treatment and Associated Problems; 3.1.3 A Brief Insight into Targeting Strategies 3.2 Carbon Nanotubes: A Versatile Material |
Record Nr. | UNINA-9910456709603321 |
Boston : , : Artech House, , ©2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanomedicine design of particles, sensors, motors, implants, robots, and devices / / Mark J. Schulz, Vesselin N. Shanov, Yeoheung Yun, editors |
Pubbl/distr/stampa | Boston : , : Artech House, , ©2009 |
Descrizione fisica | 1 online resource (548 p.) |
Disciplina |
610.28
610.284 |
Altri autori (Persone) |
SchulzMark J
ShanovVesselin N YunYeoheung |
Collana | Artech House series engineering in medicine & biology |
Soggetto topico |
Nanomedicine
Nanotechnology |
ISBN | 1-59693-280-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices; Contents; Preface; Chapter 1 A Nanotechnology Framework for Medical Innovation; 1.1 Introduction; 1.2 Descriptive Systems Modeling; 1.2.1 Examples of Descriptive Systems Modeling; 1.3 Instrumentation Needed to Develop DSM; 1.4 Nanomaterials Made for Medicine; 1.5 Implantable Nanomedical Devices; 1.6 Nanorobots; 1.6.1 Nanorobots for Revolutionizing Medicine; 1.6.2 Nanorobot Factory; 1.6.3 Biological Nanorobots; 1.7 Biodegradable Metals for Temporary Implantable Nanomedical Devices
1.8 Integration of Nanodevices in the Body1.9 Safety and Ethical Implications of Nanomedicine; 1.10 Efficiently Working Together Using Shared Resources; 1.11 Chapter Summary and Conclusions; Problems; Acknowledgments; References; Endnote; Part 1 Nanoscale Materials and Particles; Chapter 2 Synthesis of Carbon Nanotube Materials for Biomedical Applications; 2.1 Introduction to Nanoscale Materials; 2.2 Synthesis of Long Carbon Nanotube Arrays; 2.3 Characterization of CNT Arrays; 2.3.1 Scanning Electron Microscopy and Transmission Electron Microscopy 2.3.2 Raman Spectroscopy and Thermal Gravimetric Analysis2.4 Patterned CNT Arrays; 2.5 Production Scale Up of CNT Arrays at UC; 2.5.1 Magnetron Sputtering for Substrate Preparation; 2.6 Spinning Carbon Nanotubes into Thread; 2.6.1 Mechanics of Array Spinning; 2.6.2 Direct Spinning of Thread from Long CNT Arrays; 2.6.3 Catalyst and Substrates for Growing of Spinable CNT Arrays; 2.6.4 Spinning Thread from DWCNT Arrays; 2.6.5 Pulling Ribbon from CNT Arrays; 2.6.6 Post-Treatment of the CNT Thread; 2.7 Mechanical and Electrical Characterization of CNT Thread; 2.7.1 Tensile Testing of CNT Thread 2.7.2 Electrical Properties of CNT Thread2.7.3 Temperature Dependence of the CNT Thread Resistance; 2.7.4 Electrical Properties of CNT Ribbon; 2.8 Nano-Handling of CNTs Using a Nanomanipulator Inside an ESEM; 2.8.1 Instrumentation; 2.8.2 Handling CNT Bundles; 2.8.3 Building Nanomedical Devices Using the Nanomanipulator; 2.9 Carbon Nanotube Threads in Wireless, Biomedical Sensor Applications; 2.9.1 Wireless Communication and the Modern World; 2.9.2 Development of CNT Thread-Based Antenna at UC; 2.9.3 Future Medical Application of the CNT Thread Antenna 2.10 Applications of CNT Materials in Nanomedicine2.10.1 Carbon Nanotube Array Immunosensor; 2.10.2 Carbon Nanotube Actuators; 2.10.3 Carbon Nanotube Materials as Scaffolds for Supporting Directional Neurite Growth; 2.11 Summary and Conclusions; Problems; Acknowledgments; References; Chapter 3 Functionalized Carbon Nanotubes as Multimodal Drug Delivery Systems for Targeted Cancer Therapy; 3.1 Introduction to Targeted Cancer Therapy; 3.1.1 Cancer Statistics; 3.1.2 Present-Day Cancer Treatment and Associated Problems; 3.1.3 A Brief Insight into Targeting Strategies 3.2 Carbon Nanotubes: A Versatile Material |
Record Nr. | UNINA-9910781083903321 |
Boston : , : Artech House, , ©2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanomedicine design of particles, sensors, motors, implants, robots, and devices / / Mark J. Schulz, Vesselin N. Shanov, Yeoheung Yun, editors |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Boston, Mass., : Artech House, c2009 |
Descrizione fisica | 1 online resource (548 p.) |
Disciplina |
610.28
610.284 |
Altri autori (Persone) |
SchulzMark J
ShanovVesselin N YunYeoheung |
Collana | Engineering in medicine & biology |
Soggetto topico |
Nanomedicine
Nanotechnology |
ISBN | 1-59693-280-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices; Contents; Preface; Chapter 1 A Nanotechnology Framework for Medical Innovation; 1.1 Introduction; 1.2 Descriptive Systems Modeling; 1.2.1 Examples of Descriptive Systems Modeling; 1.3 Instrumentation Needed to Develop DSM; 1.4 Nanomaterials Made for Medicine; 1.5 Implantable Nanomedical Devices; 1.6 Nanorobots; 1.6.1 Nanorobots for Revolutionizing Medicine; 1.6.2 Nanorobot Factory; 1.6.3 Biological Nanorobots; 1.7 Biodegradable Metals for Temporary Implantable Nanomedical Devices
1.8 Integration of Nanodevices in the Body1.9 Safety and Ethical Implications of Nanomedicine; 1.10 Efficiently Working Together Using Shared Resources; 1.11 Chapter Summary and Conclusions; Problems; Acknowledgments; References; Endnote; Part 1 Nanoscale Materials and Particles; Chapter 2 Synthesis of Carbon Nanotube Materials for Biomedical Applications; 2.1 Introduction to Nanoscale Materials; 2.2 Synthesis of Long Carbon Nanotube Arrays; 2.3 Characterization of CNT Arrays; 2.3.1 Scanning Electron Microscopy and Transmission Electron Microscopy 2.3.2 Raman Spectroscopy and Thermal Gravimetric Analysis2.4 Patterned CNT Arrays; 2.5 Production Scale Up of CNT Arrays at UC; 2.5.1 Magnetron Sputtering for Substrate Preparation; 2.6 Spinning Carbon Nanotubes into Thread; 2.6.1 Mechanics of Array Spinning; 2.6.2 Direct Spinning of Thread from Long CNT Arrays; 2.6.3 Catalyst and Substrates for Growing of Spinable CNT Arrays; 2.6.4 Spinning Thread from DWCNT Arrays; 2.6.5 Pulling Ribbon from CNT Arrays; 2.6.6 Post-Treatment of the CNT Thread; 2.7 Mechanical and Electrical Characterization of CNT Thread; 2.7.1 Tensile Testing of CNT Thread 2.7.2 Electrical Properties of CNT Thread2.7.3 Temperature Dependence of the CNT Thread Resistance; 2.7.4 Electrical Properties of CNT Ribbon; 2.8 Nano-Handling of CNTs Using a Nanomanipulator Inside an ESEM; 2.8.1 Instrumentation; 2.8.2 Handling CNT Bundles; 2.8.3 Building Nanomedical Devices Using the Nanomanipulator; 2.9 Carbon Nanotube Threads in Wireless, Biomedical Sensor Applications; 2.9.1 Wireless Communication and the Modern World; 2.9.2 Development of CNT Thread-Based Antenna at UC; 2.9.3 Future Medical Application of the CNT Thread Antenna 2.10 Applications of CNT Materials in Nanomedicine2.10.1 Carbon Nanotube Array Immunosensor; 2.10.2 Carbon Nanotube Actuators; 2.10.3 Carbon Nanotube Materials as Scaffolds for Supporting Directional Neurite Growth; 2.11 Summary and Conclusions; Problems; Acknowledgments; References; Chapter 3 Functionalized Carbon Nanotubes as Multimodal Drug Delivery Systems for Targeted Cancer Therapy; 3.1 Introduction to Targeted Cancer Therapy; 3.1.1 Cancer Statistics; 3.1.2 Present-Day Cancer Treatment and Associated Problems; 3.1.3 A Brief Insight into Targeting Strategies 3.2 Carbon Nanotubes: A Versatile Material |
Record Nr. | UNINA-9910809813903321 |
Boston, Mass., : Artech House, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|