Bayesian methods for structural dynamics and civil engineering [[electronic resource] /] / Ka-Veng Yuen
| Bayesian methods for structural dynamics and civil engineering [[electronic resource] /] / Ka-Veng Yuen |
| Autore | Yuen Ka-Veng |
| Pubbl/distr/stampa | Singapore ; ; Hoboken, N.J., : John Wiley & Sons Asia, c2010 |
| Descrizione fisica | 1 online resource (312 p.) |
| Disciplina | 624.101/519542 |
| Soggetto topico |
Engineering - Statistical methods
Structural engineering - Mathematics Bayesian statistical decision theory |
| ISBN |
1-282-54782-8
9786612547829 0-470-82456-5 0-470-82455-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
BAYESIAN METHODS FOR STRUCTURAL DYNAMICS AND CIVIL ENGINEERING; Contents; Preface; Acknowledgements; Nomenclature; 1 Introduction; 1.1 Thomas Bayes and Bayesian Methods in Engineering; 1.2 Purpose of Model Updating; 1.3 Source of Uncertainty and Bayesian Updating; 1.4 Organization of the Book; 2 Basic Concepts and Bayesian Probabilistic Framework; 2.1 Conditional Probability and Basic Concepts; 2.1.1 Bayes' Theorem for Discrete Events; 2.1.2 Bayes' Theorem for Continuous-valued Parameters by Discrete Events; 2.1.3 Bayes' Theorem for Discrete Events by Continuous-valued Parameters
2.1.4 Bayes' Theorem between Continuous-valued Parameters2.1.5 Bayesian Inference; 2.1.6 Examples of Bayesian Inference; 2.2 Bayesian Model Updating with Input-output Measurements; 2.2.1 Input-output Measurements; 2.2.2 Bayesian Parametric Identification; 2.2.3 Model Identifiability; 2.3 Deterministic versus Probabilistic Methods; 2.4 Regression Problems; 2.4.1 Linear Regression Problems; 2.4.2 Nonlinear Regression Problems; 2.5 Numerical Representation of the Updated PDF; 2.5.1 General Form of Reliability Integrals; 2.5.2 Monte Carlo Simulation 2.5.3 Adaptive Markov Chain Monte Carlo Simulation2.5.4 Illustrative Example; 2.6 Application to Temperature Effects on Structural Behavior; 2.6.1 Problem Description; 2.6.2 Thermal Effects on Modal Frequencies of Buildings; 2.6.3 Bayesian Regression Analysis; 2.6.4 Analysis of the Measurements; 2.6.5 Concluding Remarks; 2.7 Application to Noise Parameters Selection for the Kalman Filter; 2.7.1 Problem Description; 2.7.2 Kalman Filter; 2.7.3 Illustrative Examples; 2.8 Application to Prediction of Particulate Matter Concentration; 2.8.1 Introduction 2.8.2 Extended-Kalman-filter based Time-varying Statistical Models2.8.3 Analysis with Monitoring Data; 2.8.4 Conclusion; 3 Bayesian Spectral Density Approach; 3.1 Modal and Model Updating of Dynamical Systems; 3.2 Random Vibration Analysis; 3.2.1 Single-degree-of-freedom Systems; 3.2.2 Multi-degree-of-freedom Systems; 3.3 Bayesian Spectral Density Approach; 3.3.1 Formulation for Single-channel Output Measurements; 3.3.2 Formulation for Multiple-channel Output Measurements; 3.3.3 Selection of the Frequency Index Set; 3.3.4 Nonlinear Systems; 3.4 Numerical Verifications 3.4.1 Aliasing and Leakage3.4.2 Identification with the Spectral Density Approach; 3.4.3 Identification with Small Amount of Data; 3.4.4 Concluding Remarks; 3.5 Optimal Sensor Placement; 3.5.1 Information Entropy with Globally Identifiable Case; 3.5.2 Optimal Sensor Configuration; 3.5.3 Robust Information Entropy; 3.5.4 Discrete Optimization Algorithm for Suboptimal Solution; 3.6 Updating of a Nonlinear Oscillator; 3.7 Application to Structural Behavior under Typhoons; 3.7.1 Problem Description; 3.7.2 Meteorological Information of the Two Typhoons; 3.7.3 Analysis of Monitoring Data 3.7.4 Concluding Remarks |
| Record Nr. | UNINA-9910139364103321 |
Yuen Ka-Veng
|
||
| Singapore ; ; Hoboken, N.J., : John Wiley & Sons Asia, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bayesian methods for structural dynamics and civil engineering / / Ka-Veng Yuen
| Bayesian methods for structural dynamics and civil engineering / / Ka-Veng Yuen |
| Autore | Yuen Ka-Veng |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Singapore ; ; Hoboken, N.J., : John Wiley & Sons Asia, c2010 |
| Descrizione fisica | 1 online resource (312 p.) |
| Disciplina | 624.101/519542 |
| Soggetto topico |
Engineering - Statistical methods
Structural engineering - Mathematics Bayesian statistical decision theory |
| ISBN |
9786612547829
9781282547827 1282547828 9780470824566 0470824565 9780470824559 0470824557 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
BAYESIAN METHODS FOR STRUCTURAL DYNAMICS AND CIVIL ENGINEERING; Contents; Preface; Acknowledgements; Nomenclature; 1 Introduction; 1.1 Thomas Bayes and Bayesian Methods in Engineering; 1.2 Purpose of Model Updating; 1.3 Source of Uncertainty and Bayesian Updating; 1.4 Organization of the Book; 2 Basic Concepts and Bayesian Probabilistic Framework; 2.1 Conditional Probability and Basic Concepts; 2.1.1 Bayes' Theorem for Discrete Events; 2.1.2 Bayes' Theorem for Continuous-valued Parameters by Discrete Events; 2.1.3 Bayes' Theorem for Discrete Events by Continuous-valued Parameters
2.1.4 Bayes' Theorem between Continuous-valued Parameters2.1.5 Bayesian Inference; 2.1.6 Examples of Bayesian Inference; 2.2 Bayesian Model Updating with Input-output Measurements; 2.2.1 Input-output Measurements; 2.2.2 Bayesian Parametric Identification; 2.2.3 Model Identifiability; 2.3 Deterministic versus Probabilistic Methods; 2.4 Regression Problems; 2.4.1 Linear Regression Problems; 2.4.2 Nonlinear Regression Problems; 2.5 Numerical Representation of the Updated PDF; 2.5.1 General Form of Reliability Integrals; 2.5.2 Monte Carlo Simulation 2.5.3 Adaptive Markov Chain Monte Carlo Simulation2.5.4 Illustrative Example; 2.6 Application to Temperature Effects on Structural Behavior; 2.6.1 Problem Description; 2.6.2 Thermal Effects on Modal Frequencies of Buildings; 2.6.3 Bayesian Regression Analysis; 2.6.4 Analysis of the Measurements; 2.6.5 Concluding Remarks; 2.7 Application to Noise Parameters Selection for the Kalman Filter; 2.7.1 Problem Description; 2.7.2 Kalman Filter; 2.7.3 Illustrative Examples; 2.8 Application to Prediction of Particulate Matter Concentration; 2.8.1 Introduction 2.8.2 Extended-Kalman-filter based Time-varying Statistical Models2.8.3 Analysis with Monitoring Data; 2.8.4 Conclusion; 3 Bayesian Spectral Density Approach; 3.1 Modal and Model Updating of Dynamical Systems; 3.2 Random Vibration Analysis; 3.2.1 Single-degree-of-freedom Systems; 3.2.2 Multi-degree-of-freedom Systems; 3.3 Bayesian Spectral Density Approach; 3.3.1 Formulation for Single-channel Output Measurements; 3.3.2 Formulation for Multiple-channel Output Measurements; 3.3.3 Selection of the Frequency Index Set; 3.3.4 Nonlinear Systems; 3.4 Numerical Verifications 3.4.1 Aliasing and Leakage3.4.2 Identification with the Spectral Density Approach; 3.4.3 Identification with Small Amount of Data; 3.4.4 Concluding Remarks; 3.5 Optimal Sensor Placement; 3.5.1 Information Entropy with Globally Identifiable Case; 3.5.2 Optimal Sensor Configuration; 3.5.3 Robust Information Entropy; 3.5.4 Discrete Optimization Algorithm for Suboptimal Solution; 3.6 Updating of a Nonlinear Oscillator; 3.7 Application to Structural Behavior under Typhoons; 3.7.1 Problem Description; 3.7.2 Meteorological Information of the Two Typhoons; 3.7.3 Analysis of Monitoring Data 3.7.4 Concluding Remarks |
| Record Nr. | UNINA-9910810828703321 |
Yuen Ka-Veng
|
||
| Singapore ; ; Hoboken, N.J., : John Wiley & Sons Asia, c2010 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||