top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications / / edited by Shihua Li, Xinghuo Yu, Leonid Fridman, Zhihong Man, Xiangyu Wang
Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications / / edited by Shihua Li, Xinghuo Yu, Leonid Fridman, Zhihong Man, Xiangyu Wang
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (414 pages) : illustrations
Disciplina 511.326
Collana Studies in Systems, Decision and Control
Soggetto topico Control engineering
System theory
Control and Systems Theory
Systems Theory, Control
ISBN 3-319-62896-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Lyapunov-Based Design of Homogeneous High-Order Sliding Modes.-  Robustness of Homogeneous and Homogeneizable Differential Inclusions.- Practical Stability Phase and Gain Margins Concept --  Indirect Adaptive Sliding-Mode Control Using the Certainty-Equivalence Principle.-  Discrete Event-Triggered Sliding Mode Control -- Speed Control of Induction Motor Servo Drives Using Terminal Sliding-Mode Controller.- Sliding Modes Control in Vehicle Longitudinal Dynamics Control -- Sliding Mode Control of Power Converters with Switching Frequency Regulation.
Record Nr. UNINA-9910299881803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
AI 2004 : advances in artificial intelligence : 17th Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December 4-6, 2004 : proceedings / / Geoffrey I. Webb, Xinghuo Yu (eds.)
AI 2004 : advances in artificial intelligence : 17th Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December 4-6, 2004 : proceedings / / Geoffrey I. Webb, Xinghuo Yu (eds.)
Edizione [1st ed. 2005.]
Pubbl/distr/stampa Berlin, : Springer, c2004
Descrizione fisica 1 online resource (XXII, 1272 p.)
Disciplina 006.3
Altri autori (Persone) WebbGeoffrey I
YuXing Huo
Collana Lecture notes in computer science,Lecture notes in artificial intelligence
Soggetto topico Artificial intelligence
ISBN 3-540-30549-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Artificial intelligence 2004
Record Nr. UNINA-9910483045003321
Berlin, : Springer, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
AI 2021, advances in artificial intelligence : 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, February 2-4 2022, proceedings / / edited by Guodong Long, Xinghuo Yu, and Sen Wang
AI 2021, advances in artificial intelligence : 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, February 2-4 2022, proceedings / / edited by Guodong Long, Xinghuo Yu, and Sen Wang
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (810 pages)
Disciplina 006.3
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
ISBN 3-030-97546-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Ethical AI -- An Explanation Module for Deep Neural Networks Facing Multivariate Time Series Classification -- 1 Introduction -- 2 Related Work -- 2.1 Multivariate Time Series Classification -- 2.2 Explanation Methods -- 3 Our Approach -- 4 Experiments -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Evaluation Procedure -- 4.4 Results -- 5 Conclusion and Future Work -- References -- Privacy-Preserving in Double Deep-Q-Network with Differential Privacy in Continuous Spaces -- 1 Introduction -- 2 Preliminaries -- 2.1 Double Deep Q Network -- 2.2 Differential Privacy -- 3 Differentially Private Double Deep Q Network -- 3.1 Overview of Our Method -- 3.2 The Algorithm Design -- 3.3 Rationale of Using DPSGD -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Result and Analysis -- 5 Conclusion -- References -- HESIP: A Hybrid System for Explaining Sub-symbolic Predictions -- 1 Introduction -- 2 The LIME-Aleph System -- 3 The HESIP System Architecture -- 4 Ontology for HESIP -- 5 Image Information Extraction -- 6 Learning Rules in cplint -- 7 Applying HESIP to a New Problem Domain -- 8 Generating Explanations -- 9 Experiments -- 10 Comparison -- 11 Conclusion -- References -- An Explainable Recommendation Based on Acyclic Paths in an Edge-Colored Graph -- 1 Introduction -- 2 Preliminary -- 3 Proposed Method -- 3.1 Graph Construction -- 3.2 Acyclic-Path-Based Recommendation -- 3.3 Explanation by Color Sequences -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Results -- 5 Conclusion -- References -- Knowledge Transfer for Deep Reinforcement Agents in General Game Playing -- 1 Introduction -- 2 Background -- 3 Transfer Learning in Deep RL General Game-Playing Agents -- 3.1 Simple Network Transfer in General Game Playing -- 3.2 Complex Network Transfer -- 3.3 Multitask Training for General Game Playing.
4 Experimental Evaluation -- 4.1 Generic Agent Designs -- 4.2 Game Variations -- 4.3 Evaluation Methodology -- 5 Results and Discussion -- 5.1 Single Network Agents -- 5.2 Complex Network Transfer -- 5.3 Multi-network Agents -- 6 Conclusion and Future Work -- References -- GSMI: A Gradient Sign Optimization Based Model Inversion Method -- 1 Introduction -- 2 Gradient Sign Model Inversion -- 2.1 Threat model -- 2.2 Overview of the Attack -- 2.3 Proposed Model Inversion: GSMI -- 2.4 Two-Pass Components Selection -- 3 Performance Evaluation -- 3.1 Experimental Setup -- 3.2 Results -- 3.3 Discussion -- 4 Related Work -- 5 Summary and Future Work -- References -- Multicollinearity Correction and Combined Feature Effect in Shapley Values -- 1 Introduction -- 2 Proposed Method -- 2.1 MCC Shapley Values for Individual Features -- 2.2 MCC Shapley Values for Combination of Two or More Features -- 2.3 Algorithm of MCC Shapley Value Calculation -- 3 Results -- 3.1 Dataset - House Prices -- 4 Conclusion -- References -- Does a Face Mask Protect My Privacy?: Deep Learning to Predict Protected Attributes from Masked Face Images -- 1 Introduction -- 2 Related Work -- 2.1 Biometrics and Privacy -- 2.2 Face Biometric and Masks -- 2.3 User Perception -- 3 Methodology -- 3.1 User Perception Survey -- 3.2 Dataset and Synthetic Mask Generation -- 3.3 Computer Vision Workflow -- 3.4 Privacy Vulnerability Index(PVI) -- 4 Evaluation Results -- 4.1 User Perception Study -- 4.2 Prediction Accuracy -- 4.3 Impact of Image Attributes -- 4.4 Privacy Invasiveness -- 5 Discussion and Conclusion -- 5.1 Predicting Protected Attributes -- 5.2 Biases from Image Attributes -- 5.3 Privacy Preservation -- 5.4 Limitations -- 5.5 Conclusion and Future Work -- References -- Representation-Induced Algorithmic Bias -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Discussion -- References.
Contextual Importance and Utility: A Theoretical Foundation -- 1 Introduction -- 2 Theory -- 2.1 Additive Feature Attribution Methods -- 2.2 Decision Theory and Multi-attribute Utility Theory -- 2.3 Contextual Importance and Utility (CIU) -- 2.4 Contextual Influence -- 2.5 CIU Versus Additive Feature Attribution Methods -- 3 Experimental Evaluation -- 4 Conclusion -- References -- Deeper Insights into Neural Nets with Random Weights -- 1 Introduction -- 2 Literature Review on Polynomial Approximations of Activation Functions -- 3 Analysis -- 4 Simulations -- 5 Conclusions -- References -- Applications -- De Novo Molecular Generation with Stacked Adversarial Model -- 1 Introduction -- 2 Related Works -- 2.1 Generative Adversarial Models -- 2.2 Generative Models for Drug Discovery -- 3 Stacked Bidirectional Adversarial Autoencoder -- 4 Experiments -- 4.1 Dataset Description -- 4.2 Experimental Setup -- 4.3 Experimental Evaluations -- 5 Conclusion -- References -- Tailoring Contact Based Scoring Functions for Protein Structure Prediction -- 1 Introduction -- 2 Preliminaries -- 3 Scoring Functions -- 3.1 Existing Scoring Functions -- 3.2 Proposed Scoring Functions -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Comparison of Scoring Functions -- 4.3 Comparison with Existing Methods -- 5 Conclusions -- References -- Evaluation of Deep Learning Techniques on a Novel Hierarchical Surgical Tool Dataset -- 1 Introduction -- 2 Class Hierarchies and Training Strategies -- 3 Methodology -- 3.1 Surgery Dataset -- 3.2 Surgery Hierarchy -- 3.3 CNN Training Strategies -- 3.4 Metrics Reported -- 4 Experiments and Results -- 4.1 Does Size Matter? -- 4.2 Class Frequencies -- 5 Conclusions and Future Work -- References -- Feature Extraction Using Wavelet Scattering Transform Coefficients for EMG Pattern Classification -- 1 Introduction.
2 Wavelet Scattering Transform -- 3 Data Acquisition -- 4 Results -- 4.1 Results of BioPatrec-Database -- 4.2 Results of Force-Database -- 4.3 Results of 3DC-Database -- 5 Conclusion -- References -- Modelling Eye-Gaze Movement Using Gaussian Auto-regression Hidden Markov -- 1 Introduction -- 2 Preliminaries -- 2.1 Preparation for Data Collection -- 2.2 Data Collection -- 2.3 Data Pre-processing -- 3 Methodology of Eye Gaze Predictive Modelling -- 3.1 Image Transform -- 3.2 Gaussian Auto-regression Hidden Markov -- 4 Results and Analysis -- 4.1 Eye Gaze Inducted Dynamic Changes -- 4.2 Prediction Performance -- 4.3 Training and Test -- 4.4 Accuracy Analysis -- 5 Conclusion -- References -- Strategies Improve Social Welfare: An Empirical Study of Strategic Voting in Social Networks -- 1 Introduction -- 1.1 Related Work -- 2 Model -- 2.1 Basic Notations and Definitions -- 2.2 Decision Models from the Literature -- 2.3 AU Revised Model -- 2.4 The Iterative Voting Process -- 3 Experiments -- 3.1 Experiment Settings -- 3.2 Results -- 4 Conclusion -- References -- A Network-Based Rating Mechanism Against False-Name Attack -- 1 Introduction -- 2 The Model -- 3 Weighted Rating Mechanism -- 4 Conclusion -- References -- Modular Construction Planning Using Graph Neural Network Heuristic Search -- 1 Introduction -- 2 Related work -- 2.1 Neural Search Based Planning -- 2.2 Graph Generation with Neural Networks -- 3 Problem Formulation -- 4 Approach -- 4.1 Search as Planning and Design -- 4.2 Consistency of the Training Heuristic -- 5 Data Generation and Training -- 5.1 Data Augmentation with Adjacent States -- 5.2 Training -- 6 Performance Evaluation -- 6.1 Ablation Evaluation for Synthetic Data Augmentation -- 7 Conclusions -- References -- Priority-Based Traffic Management Protocols for Autonomous Vehicles on Road Networks -- 1 Introduction.
2 Road Network Modelling -- 3 Priority-Based Traffic Management Protocols -- 3.1 Static Priority Management Protocol -- 3.2 Dynamic Priority Management Protocol -- 3.3 Vehicle-Based Priority Management Protocol -- 4 Experimental Setting and Results -- 4.1 Average Delay for the Static-Priority Management Protocol -- 4.2 Bullwhip Effect for the Static Priority Management Protocol -- 4.3 Average Delay for Different Management Protocols -- 4.4 Latency Function -- 5 Related Work and Conclusion -- References -- Improving Traffic Load Prediction with Multi-modality -- 1 Introduction -- 2 Proposed Method -- 2.1 Mathematical Formulation -- 2.2 Multi-modal Method -- 3 Data Collection and Pre-processing -- 3.1 Multi-modal Data -- 3.2 Traffic Data -- 3.3 Experiment -- 4 Discussion -- 5 Related Works -- 6 Conclusion and Future Works -- References -- Predicting Geological Material Types Using Ground Penetrating Radar -- 1 Introduction -- 2 Background -- 2.1 Site Geology -- 2.2 Interaction of Site Materials and GPR -- 2.3 Machine Learning and Feature Extraction -- 3 Gaussian Ridge Extraction -- 4 Methodology -- 4.1 Signal Segmentation and Classification Process -- 4.2 Feature Extraction Processes -- 4.3 Training and Testing of Machine Learning Models -- 5 Results and Discussion -- 5.1 Individual Feature Extraction Analysis -- 5.2 Concatenation of Features into Combined Feature Space -- 5.3 Application of Feature Selection and Majority Voting -- 6 Conclusions and Future Works -- References -- A Gated Recurrent Neural Network for Electric Vehicle Detection with Imbalanced Samples -- 1 Introduction -- 2 Imbalanced Data Processing -- 2.1 Dynamic Time Warping -- 2.2 DTW Constraints -- 3 Gated Recurrent Units Network -- 4 Empirical Study -- 4.1 Data Preparation -- 4.2 The GRU Network Trianing and Validation -- 5 Conclusion -- References.
User-Defined Smart Contracts Using Answer Set Programming.
Record Nr. UNINA-9910552712103321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
AI 2021, advances in artificial intelligence : 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, February 2-4 2022, proceedings / / edited by Guodong Long, Xinghuo Yu, and Sen Wang
AI 2021, advances in artificial intelligence : 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, February 2-4 2022, proceedings / / edited by Guodong Long, Xinghuo Yu, and Sen Wang
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (810 pages)
Disciplina 006.3
Collana Lecture Notes in Computer Science
Soggetto topico Artificial intelligence
ISBN 3-030-97546-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Ethical AI -- An Explanation Module for Deep Neural Networks Facing Multivariate Time Series Classification -- 1 Introduction -- 2 Related Work -- 2.1 Multivariate Time Series Classification -- 2.2 Explanation Methods -- 3 Our Approach -- 4 Experiments -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Evaluation Procedure -- 4.4 Results -- 5 Conclusion and Future Work -- References -- Privacy-Preserving in Double Deep-Q-Network with Differential Privacy in Continuous Spaces -- 1 Introduction -- 2 Preliminaries -- 2.1 Double Deep Q Network -- 2.2 Differential Privacy -- 3 Differentially Private Double Deep Q Network -- 3.1 Overview of Our Method -- 3.2 The Algorithm Design -- 3.3 Rationale of Using DPSGD -- 4 Experiment -- 4.1 Experiment Setup -- 4.2 Result and Analysis -- 5 Conclusion -- References -- HESIP: A Hybrid System for Explaining Sub-symbolic Predictions -- 1 Introduction -- 2 The LIME-Aleph System -- 3 The HESIP System Architecture -- 4 Ontology for HESIP -- 5 Image Information Extraction -- 6 Learning Rules in cplint -- 7 Applying HESIP to a New Problem Domain -- 8 Generating Explanations -- 9 Experiments -- 10 Comparison -- 11 Conclusion -- References -- An Explainable Recommendation Based on Acyclic Paths in an Edge-Colored Graph -- 1 Introduction -- 2 Preliminary -- 3 Proposed Method -- 3.1 Graph Construction -- 3.2 Acyclic-Path-Based Recommendation -- 3.3 Explanation by Color Sequences -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Results -- 5 Conclusion -- References -- Knowledge Transfer for Deep Reinforcement Agents in General Game Playing -- 1 Introduction -- 2 Background -- 3 Transfer Learning in Deep RL General Game-Playing Agents -- 3.1 Simple Network Transfer in General Game Playing -- 3.2 Complex Network Transfer -- 3.3 Multitask Training for General Game Playing.
4 Experimental Evaluation -- 4.1 Generic Agent Designs -- 4.2 Game Variations -- 4.3 Evaluation Methodology -- 5 Results and Discussion -- 5.1 Single Network Agents -- 5.2 Complex Network Transfer -- 5.3 Multi-network Agents -- 6 Conclusion and Future Work -- References -- GSMI: A Gradient Sign Optimization Based Model Inversion Method -- 1 Introduction -- 2 Gradient Sign Model Inversion -- 2.1 Threat model -- 2.2 Overview of the Attack -- 2.3 Proposed Model Inversion: GSMI -- 2.4 Two-Pass Components Selection -- 3 Performance Evaluation -- 3.1 Experimental Setup -- 3.2 Results -- 3.3 Discussion -- 4 Related Work -- 5 Summary and Future Work -- References -- Multicollinearity Correction and Combined Feature Effect in Shapley Values -- 1 Introduction -- 2 Proposed Method -- 2.1 MCC Shapley Values for Individual Features -- 2.2 MCC Shapley Values for Combination of Two or More Features -- 2.3 Algorithm of MCC Shapley Value Calculation -- 3 Results -- 3.1 Dataset - House Prices -- 4 Conclusion -- References -- Does a Face Mask Protect My Privacy?: Deep Learning to Predict Protected Attributes from Masked Face Images -- 1 Introduction -- 2 Related Work -- 2.1 Biometrics and Privacy -- 2.2 Face Biometric and Masks -- 2.3 User Perception -- 3 Methodology -- 3.1 User Perception Survey -- 3.2 Dataset and Synthetic Mask Generation -- 3.3 Computer Vision Workflow -- 3.4 Privacy Vulnerability Index(PVI) -- 4 Evaluation Results -- 4.1 User Perception Study -- 4.2 Prediction Accuracy -- 4.3 Impact of Image Attributes -- 4.4 Privacy Invasiveness -- 5 Discussion and Conclusion -- 5.1 Predicting Protected Attributes -- 5.2 Biases from Image Attributes -- 5.3 Privacy Preservation -- 5.4 Limitations -- 5.5 Conclusion and Future Work -- References -- Representation-Induced Algorithmic Bias -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Discussion -- References.
Contextual Importance and Utility: A Theoretical Foundation -- 1 Introduction -- 2 Theory -- 2.1 Additive Feature Attribution Methods -- 2.2 Decision Theory and Multi-attribute Utility Theory -- 2.3 Contextual Importance and Utility (CIU) -- 2.4 Contextual Influence -- 2.5 CIU Versus Additive Feature Attribution Methods -- 3 Experimental Evaluation -- 4 Conclusion -- References -- Deeper Insights into Neural Nets with Random Weights -- 1 Introduction -- 2 Literature Review on Polynomial Approximations of Activation Functions -- 3 Analysis -- 4 Simulations -- 5 Conclusions -- References -- Applications -- De Novo Molecular Generation with Stacked Adversarial Model -- 1 Introduction -- 2 Related Works -- 2.1 Generative Adversarial Models -- 2.2 Generative Models for Drug Discovery -- 3 Stacked Bidirectional Adversarial Autoencoder -- 4 Experiments -- 4.1 Dataset Description -- 4.2 Experimental Setup -- 4.3 Experimental Evaluations -- 5 Conclusion -- References -- Tailoring Contact Based Scoring Functions for Protein Structure Prediction -- 1 Introduction -- 2 Preliminaries -- 3 Scoring Functions -- 3.1 Existing Scoring Functions -- 3.2 Proposed Scoring Functions -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Comparison of Scoring Functions -- 4.3 Comparison with Existing Methods -- 5 Conclusions -- References -- Evaluation of Deep Learning Techniques on a Novel Hierarchical Surgical Tool Dataset -- 1 Introduction -- 2 Class Hierarchies and Training Strategies -- 3 Methodology -- 3.1 Surgery Dataset -- 3.2 Surgery Hierarchy -- 3.3 CNN Training Strategies -- 3.4 Metrics Reported -- 4 Experiments and Results -- 4.1 Does Size Matter? -- 4.2 Class Frequencies -- 5 Conclusions and Future Work -- References -- Feature Extraction Using Wavelet Scattering Transform Coefficients for EMG Pattern Classification -- 1 Introduction.
2 Wavelet Scattering Transform -- 3 Data Acquisition -- 4 Results -- 4.1 Results of BioPatrec-Database -- 4.2 Results of Force-Database -- 4.3 Results of 3DC-Database -- 5 Conclusion -- References -- Modelling Eye-Gaze Movement Using Gaussian Auto-regression Hidden Markov -- 1 Introduction -- 2 Preliminaries -- 2.1 Preparation for Data Collection -- 2.2 Data Collection -- 2.3 Data Pre-processing -- 3 Methodology of Eye Gaze Predictive Modelling -- 3.1 Image Transform -- 3.2 Gaussian Auto-regression Hidden Markov -- 4 Results and Analysis -- 4.1 Eye Gaze Inducted Dynamic Changes -- 4.2 Prediction Performance -- 4.3 Training and Test -- 4.4 Accuracy Analysis -- 5 Conclusion -- References -- Strategies Improve Social Welfare: An Empirical Study of Strategic Voting in Social Networks -- 1 Introduction -- 1.1 Related Work -- 2 Model -- 2.1 Basic Notations and Definitions -- 2.2 Decision Models from the Literature -- 2.3 AU Revised Model -- 2.4 The Iterative Voting Process -- 3 Experiments -- 3.1 Experiment Settings -- 3.2 Results -- 4 Conclusion -- References -- A Network-Based Rating Mechanism Against False-Name Attack -- 1 Introduction -- 2 The Model -- 3 Weighted Rating Mechanism -- 4 Conclusion -- References -- Modular Construction Planning Using Graph Neural Network Heuristic Search -- 1 Introduction -- 2 Related work -- 2.1 Neural Search Based Planning -- 2.2 Graph Generation with Neural Networks -- 3 Problem Formulation -- 4 Approach -- 4.1 Search as Planning and Design -- 4.2 Consistency of the Training Heuristic -- 5 Data Generation and Training -- 5.1 Data Augmentation with Adjacent States -- 5.2 Training -- 6 Performance Evaluation -- 6.1 Ablation Evaluation for Synthetic Data Augmentation -- 7 Conclusions -- References -- Priority-Based Traffic Management Protocols for Autonomous Vehicles on Road Networks -- 1 Introduction.
2 Road Network Modelling -- 3 Priority-Based Traffic Management Protocols -- 3.1 Static Priority Management Protocol -- 3.2 Dynamic Priority Management Protocol -- 3.3 Vehicle-Based Priority Management Protocol -- 4 Experimental Setting and Results -- 4.1 Average Delay for the Static-Priority Management Protocol -- 4.2 Bullwhip Effect for the Static Priority Management Protocol -- 4.3 Average Delay for Different Management Protocols -- 4.4 Latency Function -- 5 Related Work and Conclusion -- References -- Improving Traffic Load Prediction with Multi-modality -- 1 Introduction -- 2 Proposed Method -- 2.1 Mathematical Formulation -- 2.2 Multi-modal Method -- 3 Data Collection and Pre-processing -- 3.1 Multi-modal Data -- 3.2 Traffic Data -- 3.3 Experiment -- 4 Discussion -- 5 Related Works -- 6 Conclusion and Future Works -- References -- Predicting Geological Material Types Using Ground Penetrating Radar -- 1 Introduction -- 2 Background -- 2.1 Site Geology -- 2.2 Interaction of Site Materials and GPR -- 2.3 Machine Learning and Feature Extraction -- 3 Gaussian Ridge Extraction -- 4 Methodology -- 4.1 Signal Segmentation and Classification Process -- 4.2 Feature Extraction Processes -- 4.3 Training and Testing of Machine Learning Models -- 5 Results and Discussion -- 5.1 Individual Feature Extraction Analysis -- 5.2 Concatenation of Features into Combined Feature Space -- 5.3 Application of Feature Selection and Majority Voting -- 6 Conclusions and Future Works -- References -- A Gated Recurrent Neural Network for Electric Vehicle Detection with Imbalanced Samples -- 1 Introduction -- 2 Imbalanced Data Processing -- 2.1 Dynamic Time Warping -- 2.2 DTW Constraints -- 3 Gated Recurrent Units Network -- 4 Empirical Study -- 4.1 Data Preparation -- 4.2 The GRU Network Trianing and Validation -- 5 Conclusion -- References.
User-Defined Smart Contracts Using Answer Set Programming.
Record Nr. UNISA-996464450403316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Complex Systems and Networks : Dynamics, Controls and Applications / / edited by Jinhu Lü, Xinghuo Yu, Guanrong Chen, Wenwu Yu
Complex Systems and Networks : Dynamics, Controls and Applications / / edited by Jinhu Lü, Xinghuo Yu, Guanrong Chen, Wenwu Yu
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (VIII, 482 p. 196 illus., 158 illus. in color.)
Disciplina 004.21
Collana Understanding Complex Systems
Soggetto topico Computational complexity
Physics
Statistical physics
Complexity
Applications of Graph Theory and Complex Networks
Applications of Nonlinear Dynamics and Chaos Theory
ISBN 3-662-47824-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Discovering Cluster Dynamics Using Kernel Spectral Methods -- Community Detection in Bipartite Networks: Algorithms and Case Studies -- Epidemiological Modeling on Complex Networks -- Resilience of Spatial Networks -- Synchronization and Control of Hyper and Colored Networks -- New Nonlinear CPRNG Based on Tent and Logistic Maps -- Distributed Finite-time Cooperative Control of Multi-agent Systems -- Composite Finite-time Containment Control for Disturbed Second-order multi-agent Systems.-Application of Fractional-order Calculus in a Class of Multi-Agent System -- Chaos Control and Anticontrol of Complex Systems via Parrondo’s Game -- Collective Behavior Coordination with Predictive Mechanisms -- Convergence, Consensus and Synchronization of Complex Networks via Contraction Theory -- Towards Structural Controllability of Temporal Complex Networks -- A General Model for Studying Time Evolution of Transition Networks -- Deflection Routing in Complex Networks -- Recommender Systems for Social Networks Analysis and Mining:Precision vs. Diversity -- Strategy Selection in Networked Evolutionary Games: Structural Effect and the Evolution of Cooperation -- Network Analysis, Integration and Methods in Computational Biology.
Record Nr. UNINA-9910254183803321
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui