top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced statistical methods in data science / / edited by Ding-Geng Chen, Jiahua Chen, Xuewen Lu, Grace Y. Yi, Hao Yu
Advanced statistical methods in data science / / edited by Ding-Geng Chen, Jiahua Chen, Xuewen Lu, Grace Y. Yi, Hao Yu
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (XVI, 222 p. 41 illus., 20 illus. in color.)
Disciplina 519.50285
Collana ICSA Book Series in Statistics
Soggetto topico Statistics 
Big data
Statistical Theory and Methods
Big Data/Analytics
Statistics for Business, Management, Economics, Finance, Insurance
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Data Analysis Based on Latent or Dependent Variable Models -- Chapter 1: A New Method for Robust Mixture Regression and Outlier Detection -- Chapter 2: The Mixture Gatekeeping Procedure Based on Weighted Multiple Testing Correction for Correlated Tests -- Chapter 3: Regularization in Regime-switching Gaussian Autoregressive Models -- Chapter 4: Modeling Zero Inflation and Over-dispersion in the Length of Hospital Stay for Patients with Ischaemic Heart Disease -- Chapter 5: Robust Optimal Interval Design for High-Dimensional Dose Finding in Multi-Agent Combination Trials -- Part II: Life Time Data Analysis -- Chapter 6: Group Selection in Semi-parametric Accelerated Failure Time Model -- Chapter 7: A Proportional Odds Model for Regression Analysis of Case I Interval-Censored Data -- Chapter 8: Empirical Likelihood Inference under Density Ratio Models Based on Type I Censored Samples: Hypothesis Testing and Quantile Estimation -- Chapter 9: Recent Development in the Joint Modeling of Longitudinal Quality of Life Measurements and Survival Data from Cancer Clinical Trials -- Part III: Applied Data Analysis -- Chapter 10: Confidence Weighting Procedures for Multiple Choice Tests -- Chapter 11: Improving the Robustness of Parametric Imputation -- Chapter 12: Maximum Smoothed Likelihood Estimation of the Centre of a Symmetric Distribution -- Chapter 13: Dividend Pay-out Problems with the Logarithmic Utility -- Chapter 14: Modeling the Common Risk among Equities: A Multivariate Time Series Model with an Additive GARCH Structure.
Record Nr. UNINA-9910155548503321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Time Series Methods and Applications : The A. Ian McLeod Festschrift / / edited by Wai Keung Li, David A. Stanford, Hao Yu
Advances in Time Series Methods and Applications : The A. Ian McLeod Festschrift / / edited by Wai Keung Li, David A. Stanford, Hao Yu
Edizione [1st ed. 2016.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (VIII, 293 p. 37 illus., 7 illus. in color.)
Disciplina 330.015195
Collana Fields Institute Communications
Soggetto topico Statistics
Statistics in Business, Management, Economics, Finance, Insurance
ISBN 1-4939-6568-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Ian McLeod's Contribution to Time Series Analysis: a Tribute (W.K. Li) -- 2. The Doubly Adaptive LASSO for Vector Autoregressive Models (Z.Z. Liu, R. Kulperger, H. Yu) -- 3. On diagnostic checking autoregressive conditional duration models with wavelet-based spectral density estimators (P. Duchesne, Y. Hong) -- 4. Diagnostic checking for Weibull autoregressive conditional duration models (Y. Zheng, Y. Li, W.K. Li, G. Li) -- 5. Diagnostic checking for Partially Nonstationary Multivariate ARMA Models (M.T. Tai, Y.X. Yang, and S.Q. Ling) -- 6. The portmanteau tests and the LM test for ARMA models with uncorrelated errors (N. Katayama) -- 7. Generalized C(alpha) tests for estimating functions with serial dependence J.-M. Dufour, A. Tognon, P. Tuvaandorj) -- Regression Models for Ordinal Categorical Time Series Data (B.C. Sutradhar, R.P. Rao) -- 9. Identification of Threshold Autoregressive Moving Average Models (Q. Xia, H. Wong) -- 10. Improved Seasonal Mann-Kendall Tests for Trend Analysis in Water Resources Time Series (Y. Zhang, P. Cabilio and K. Nadeem) -- 11. A brief derivation of the asymptotic distribution of Pearson’s statistic and an accurate approximation to its exact distribution (S.B. Provost) -- 12. Business Resilience during Power Shortages: A Power Saving Rate Measured by Power Consumption Time Series in Industrial Sector before and after the Great East Japan Earthquake in 2011 (Y. Kajitani) -- Atmospheric CO2 and global temperatures: the strength and nature of their dependence (G. Tunnicliffe Wilson) -- Catching Uncertainty of Wind: A Blend of Sieve Bootstrap and Regime Switching Models for Probabilistic Short-term Forecasting of Wind Speed (Y.R. Gel, V. Lyubchich, S.E. Ahmed). .
Record Nr. UNINA-9910154846503321
New York, NY : , : Springer New York : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Compact and Fast Machine Learning Accelerator for IoT Devices [[electronic resource] /] / by Hantao Huang, Hao Yu
Compact and Fast Machine Learning Accelerator for IoT Devices [[electronic resource] /] / by Hantao Huang, Hao Yu
Autore Huang Hantao
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (157 pages)
Disciplina 006.31
Collana Computer Architecture and Design Methodologies
Soggetto topico Engineering
Computer science
Mathematical optimization
Computational Intelligence
Processor Architectures
Optimization
ISBN 981-13-3323-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Computing on Edge Devices in Internet-of-things (IoT) -- The Rise of Machine Learning in IoT system -- Least-squares-solver for Shadow Neural Network -- Tensor-solver for Deep Neural Network -- Distributed-solver for Networked Neural Network -- Conclusion.
Record Nr. UNINA-9910483157403321
Huang Hantao  
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emerging Technology and Architecture for Big-data Analytics / / edited by Anupam Chattopadhyay, Chip Hong Chang, Hao Yu
Emerging Technology and Architecture for Big-data Analytics / / edited by Anupam Chattopadhyay, Chip Hong Chang, Hao Yu
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XI, 330 p. 162 illus., 98 illus. in color.)
Disciplina 621.3815
Soggetto topico Electronic circuits
Microprocessors
Big data
Circuits and Systems
Processor Architectures
Electronic Circuits and Devices
Big Data/Analytics
ISBN 3-319-54840-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I State-of-the-Art Architectures and Automation for Data-analytics -- Chapter 1. Scaling the Java Virtual Machine on a Many-core System -- Chapter 2.Scaling the Java Virtual Machine on a Many-core System -- Chapter 3.Least-squares based Machine Learning Accelerator for Big-data Analytics in Smart Buildings -- Chapter 4.Compute-in-memory Architecture for Data-Intensive Kernels -- Chapter 5. New Solutions for Cross-Layer System-Level and High-Level Synthesis -- Part II New Solutions for Cross-Layer System-Level and High-Level Synthesis -- Chapter 6.Side Channel Attacks and Efficient Countermeasures on Residue Number System Multipliers -- Chapter 7. Ultra-Low-Power Biomedical Circuit Design and Optimization: Catching The Don’t Cares -- Chapter 8.Acceleration of MapReduce Framework on a Multicore Processor -- Chapter 9. Adaptive dynamic range compression for improving envelope-based speech perception: Implications for cochlear implants -- Part III Emerging Technology, Circuits and Systems for Data-analytics -- Chapter 10. Emerging Technology, Circuits and Systems for Data-analytics -- Chapter 11. Energy Efficient Spiking Neural Network Design with RRAM Devices -- Chapter 12. Efficient Neuromorphic Systems and Emerging Technologies - Prospects and Perspectives -- Chapter 13. In-memory Data Compression Using ReRAMs -- Chapter 14. In-memory Data Compression Using ReRAMs -- Chapter 15.Data Analytics in Quantum Paradigm – An Introduction.
Record Nr. UNINA-9910254323803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui