top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Federated learning : privacy and incentive / / edited by Qiang Yang, Lixin Fan, and Han Yu
Federated learning : privacy and incentive / / edited by Qiang Yang, Lixin Fan, and Han Yu
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (X, 286 p. 94 illus., 82 illus. in color.)
Disciplina 006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Federated database systems
Application software
Machine learning
ISBN 3-030-63076-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Privacy -- Threats to Federated Learning -- Rethinking Gradients Safety in Federated Learning -- Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks -- Task-Agnostic Privacy-Preserving Representation Learning via Federated Learning -- Large-Scale Kernel Method for Vertical Federated Learning -- Towards Byzantine-resilient Federated Learning via Group-wise Robust Aggregation -- Federated Soft Gradient Boosting Machine for Streaming Data -- Dealing with Label Quality Disparity In Federated Learning -- Incentive -- FedCoin: A Peer-to-Peer Payment System for Federated Learning -- Efficient and Fair Data Valuation for Horizontal Federated Learning -- A Principled Approach to Data Valuation for Federated Learning -- A Gamified Research Tool for Incentive Mechanism Design in Federated Learning -- Budget-bounded Incentives for Federated Learning -- Collaborative Fairness in Federated Learning -- A Game-Theoretic Framework for Incentive Mechanism Design in Federated Learning -- Applications -- Federated Recommendation Systems -- Federated Learning for Open Banking -- Building ICU In-hospital Mortality Prediction Model with Federated Learning -- Privacy-preserving Stacking with Application to Cross-organizational Diabetes Prediction. .
Record Nr. UNINA-9910427668503321
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Federated learning : privacy and incentive / / edited by Qiang Yang, Lixin Fan, and Han Yu
Federated learning : privacy and incentive / / edited by Qiang Yang, Lixin Fan, and Han Yu
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (X, 286 p. 94 illus., 82 illus. in color.)
Disciplina 006.31
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Federated database systems
Application software
Machine learning
ISBN 3-030-63076-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Privacy -- Threats to Federated Learning -- Rethinking Gradients Safety in Federated Learning -- Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks -- Task-Agnostic Privacy-Preserving Representation Learning via Federated Learning -- Large-Scale Kernel Method for Vertical Federated Learning -- Towards Byzantine-resilient Federated Learning via Group-wise Robust Aggregation -- Federated Soft Gradient Boosting Machine for Streaming Data -- Dealing with Label Quality Disparity In Federated Learning -- Incentive -- FedCoin: A Peer-to-Peer Payment System for Federated Learning -- Efficient and Fair Data Valuation for Horizontal Federated Learning -- A Principled Approach to Data Valuation for Federated Learning -- A Gamified Research Tool for Incentive Mechanism Design in Federated Learning -- Budget-bounded Incentives for Federated Learning -- Collaborative Fairness in Federated Learning -- A Game-Theoretic Framework for Incentive Mechanism Design in Federated Learning -- Applications -- Federated Recommendation Systems -- Federated Learning for Open Banking -- Building ICU In-hospital Mortality Prediction Model with Federated Learning -- Privacy-preserving Stacking with Application to Cross-organizational Diabetes Prediction. .
Record Nr. UNISA-996418217803316
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Scientific Communication : practices, theories, and pedagogies / / edited by Han Yu, Kathryn M. Northcut
Scientific Communication : practices, theories, and pedagogies / / edited by Han Yu, Kathryn M. Northcut
Pubbl/distr/stampa New York : , : Taylor & Francis, , 2018
Descrizione fisica 1 online resource (vi, 316 pages) : illustrations
Disciplina 501.4
Collana Routledge studies in technical communication, rhetoric, and culture
Soggetto topico Communication in science
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Scientific Communication
Record Nr. UNINA-9910493749703321
New York : , : Taylor & Francis, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui