top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Consequences of microbial interactions with hydrocarbons, oils, and lipids : production of fuels and chemicals / / edited by Sang Yup Lee
Consequences of microbial interactions with hydrocarbons, oils, and lipids : production of fuels and chemicals / / edited by Sang Yup Lee
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource : 100 illus., 50 illus. in color
Disciplina 579
Collana Handbook of Hydrocarbon and Lipid Microbiology
Soggetto topico Biomass energy
Industrial microbiology
Microbial biotechnology
ISBN 3-319-31421-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Hydrocarbon-lipid Microbiology and Poverty Reduction -- Hydrocarbons from Algae -- Industrial Isoprene Biosynthesis -- Lipid-Containing Secondary Metabolites from Algae -- Metagenomic Mining of Enzyme Diversity -- Microbial Conversion of Carbon Dioxide to Electrofuels -- Microbial Facilitation of Petroleum Recovery: An Introduction -- Microbial Production of Flavours and Fragrances -- Microbial Production of Isoprenoids -- Novel Sensors for Engineering Microbiology -- Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria -- Protein Emulsifiers -- Rediscovering Biopolymers -- Rhamnolipids -- Screening for Enantioselective Enzymes -- Synthetic Biology for Biocatalysis -- Synthetic Biology for Biofuels in Saccharomyces cerevisiae -- Use of Biosurfactants in Oil Recovery -- Using Microorganisms as Prospecting Agents in Oil and Gas Exploration -- Yarrowia lipolytica as a Cell Factory for Oleochemical Biotechnology.
Record Nr. UNINA-9910349265403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals / / edited by Sang Yup Lee
Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals / / edited by Sang Yup Lee
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (174 illus., 102 illus. in color. eReference.)
Disciplina 665.501579
Collana Handbook of Hydrocarbon and Lipid Microbiology
Soggetto topico Microbiology
Industrial microbiology
Environmental engineering
Biotechnology
Bioremediation
Biochemistry
Microbial ecology
Industrial Microbiology
Environmental Engineering/Biotechnology
Microbial Ecology
ISBN 3-319-50436-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Hydrocarbon-lipid Microbiology and Poverty Reduction -- Hydrocarbons from Algae -- Industrial Isoprene Biosynthesis -- Lipid-Containing Secondary Metabolites from Algae -- Metagenomic Mining of Enzyme Diversity -- Microbial Conversion of Carbon Dioxide to Electrofuels -- Microbial Facilitation of Petroleum Recovery: An Introduction -- Microbial Production of Flavours and Fragrances -- Microbial Production of Isoprenoids -- Novel Sensors for Engineering Microbiology -- Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria -- Protein Emulsifiers -- Rediscovering Biopolymers -- Rhamnolipids -- Screening for Enantioselective Enzymes -- Synthetic Biology for Biocatalysis -- Synthetic Biology for Biofuels in Saccharomyces cerevisiae -- Use of Biosurfactants in Oil Recovery -- Using Microorganisms as Prospecting Agents in Oil and Gas Exploration -- Yarrowia lipolytica as a Cell Factory for Oleochemical Biotechnology.
Record Nr. UNINA-9910279578503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genome informatics 2009 : proceedings of the 20th international conference : Pacifico Yokohama, Japan, 14-16 December 2009. / / editors: Shinichi Morishita, Sang Yup Lee, Yasubumi Sakakibara
Genome informatics 2009 : proceedings of the 20th international conference : Pacifico Yokohama, Japan, 14-16 December 2009. / / editors: Shinichi Morishita, Sang Yup Lee, Yasubumi Sakakibara
Autore Shinichi Morishita
Pubbl/distr/stampa London, : Imperial College Press, 2009
Descrizione fisica xv, 224 p. : ill
Disciplina 572.860285
Altri autori (Persone) MorishitaShinichi <1960->
YiSang-yŏp <1964->
SakakibaraYasubumi
Collana Genome informatics series
Soggetto topico Genomics - Data processing
Bioinformatics
Soggetto non controllato Computational Systems Biology
Genomics
Computational Biology
Proteomics
Genome Informatics
Bioinformatics
ISBN 1-282-76016-5
9786612760167
1-84816-563-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Predicting protein-protein relationships from literature using latent topics / T. Aso & K. Eguchi -- Evaluation of DNA intramolecular interactions for nucleosome positioning in yeast / M. Fernandez ... [et al.] -- Quality control and reproducibility in DNA microarray experiments / A. Fujita ... [et al.] -- Comparative analysis of topological patterns in different mammalian networks / B. Goemann ... [et al.] -- Tools for investigating mechanisms of antigenic variation : new extensions to varDB / C. N. Hayes ... [et al.] -- Localized suffix array and its application to genome mapping problems for paired-end short reads / K. Kimura & A. Koike -- Comparative analysis of aerobic and anaerobic prokaryotes to identify correlation between oxygen requirement and gene-gene functional association patterns / Y. Lin & H. Wu -- Calculation of protein-ligand binding free energy using Smooth Reaction Path Generation (SRPG) method : a comparison of the explicit water model, GB/SA model and docking score function / D. Mitomo ... [et al.] -- Structural insights into the enzyme mechanism of a new family of D-2-hydroxyacid dehydrogenases, a close homolog of 2-Ketopantoate reductase / S. Mondal & K. Mizuguchi -- Comprehensive analysis of sequence-structure relationships in the loop regions of proteins / S. Nakamura & K. Shimizu -- The prediction of local modular structures in a co-expression network based on gene expression datasets / Y. Ogata ... [et al.] -- Gradient-based optimization of hyperparameters for base-pairing profile local alignment kernels / K. Sato, Y. Saito & Y. Sakakibara -- A method for efficient execution of bioinformatics workfiows / J. Seo ... [et al.] -- Development of a new meta-score for protein structure prediction from seven all-atom distance dependent potentials using support vector regression / M. Shirota, T. Ishida & K. Kinoshita -- Refining Markov clustering for protein complex prediction by incorporating core-attachment structure / S. Srihari, K. Ning & H. W. Leong -- An assessment of prediction algorithms for nucleosome positioning / Y. Tanaka & K. Nakai -- Cancer classification using single genes / X. Wang & O. Gotoh -- RECOUNT : expectation maximization based error correction tool for next generation sequencing data / E. Wijaya ... [et al.] -- A new generation of homology search tools based on probabilistic inference / S. R. Eddy -- Representation and analysis of molecular networks involving diseases and drugs / M. Kanehisa -- Systems biotechnology / S. Y. Lee -- Strategies toward CNS-regeneration using induced pluripotent stem cells / H. Okano -- Thinking laterally about genomes / M. A. Ragan.
Record Nr. UNINA-9910346696103321
Shinichi Morishita  
London, : Imperial College Press, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metabolic engineering : concepts and applications / / edited by Sang Yup Lee, Jens Nielsen, Gregory Stephanopoulos
Metabolic engineering : concepts and applications / / edited by Sang Yup Lee, Jens Nielsen, Gregory Stephanopoulos
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH, , [2021]
Descrizione fisica 1 online resource (962 pages)
Disciplina 660.62
Collana Advanced Biotechnology
Soggetto topico Microbial biotechnology
Microbial genetic engineering
Soggetto genere / forma Electronic books.
ISBN 3-527-82345-X
3-527-82344-1
3-527-82346-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part 1 Concepts -- Chapter 1 Metabolic Engineering Perspectives -- 1.1 History and Overview of Metabolic Engineering -- 1.2 Understanding Cellular Metabolism and Physiology -- 1.2.1 Computational Methods in Understanding Metabolism -- 1.2.2 Experimental Methods in Understanding Metabolism -- 1.3 General Approaches to Metabolic Engineering -- 1.3.1 Rational Metabolic Engineering -- 1.3.2 Combinatorial Metabolic Engineering -- 1.3.3 Systems Metabolic Engineering -- 1.4 Host Organism Selection -- 1.5 Substrate Considerations -- 1.6 Metabolic Engineering and Synthetic Biology -- 1.7 The Future of Metabolic Engineering -- References -- Chapter 2 Genome‐Scale Models: Two Decades of Progress and a 2020 Vision -- 2.1 Introduction -- 2.2 Flux Balance Analysis -- 2.2.1 Dynamic Mass Balances -- 2.2.2 Analogy to Deriving Enzymatic Rate Equations -- 2.2.3 Formulating Flux Balances at the Genome‐Scale -- 2.2.4 Constrained Optimization -- 2.2.5 Principles -- 2.2.6 Additional Constraints -- 2.2.7 Flux-Concentration Duality -- 2.2.8 Recap -- 2.3 Network Reconstruction -- 2.3.1 Assembling the Reactome -- 2.3.2 Basic Principles of Network Reconstruction -- 2.3.3 Curation -- 2.3.4 GEMs Have a Genomic Basis -- 2.3.5 Computational Queries -- 2.3.6 Scope Expansion -- 2.3.7 Knowledge Bases -- 2.3.8 Availability of GEMs -- 2.3.9 Recap -- 2.4 Brief History of the GEM for E. coli -- 2.4.1 Origin -- 2.4.2 Model Organism -- 2.4.3 Key Predictions -- 2.4.4 Design Algorithms -- 2.4.5 Scope Expansions -- 2.4.6 Recap -- 2.5 From Metabolism to the Proteome -- 2.5.1 ME Models -- 2.5.2 Capabilities of ME Models -- 2.5.2.1 Growth‐Coupled Metabolic Designs Can Be Reproduced in GEMs -- 2.5.2.2 ME Models Can Reflect Properties of the Metalloproteome -- 2.5.2.3 ME Models Can Compute the Biomass Objective Function.
2.5.2.4 Computing Stresses -- 2.5.3 Recapitulation -- 2.6 Current Developments -- 2.6.1 Kinetics -- 2.6.2 Transcriptional Regulation -- 2.6.2.1 iModulons -- 2.6.2.2 Activities -- 2.6.3 Protein Structures -- 2.7 Broader Perspectives -- 2.7.1 Distal Causation -- 2.7.2 Contextualization of GEMs Within Workflows -- 2.8 What Does the Future Look Like for GEMs? -- Disclaimer -- Acknowledgments -- References -- Chapter 3 Quantitative Metabolic Flux Analysis Based on Isotope Labeling -- 3.1 Introduction -- 3.1.1 What Metabolic Flux Analysis Is About -- 3.1.2 The Variants of 13C‐MFA -- 3.2 A Toy Example Illustrates the Basic Principles -- 3.2.1 Fluxomics: More Than Just a Branch of Metabolomics -- 3.2.2 Isotope Labeling: The Key to Metabolic Fluxes -- 3.2.3 From the Data to the Intracellular Fluxes -- 3.2.4 INST‐13C‐MFA: Metabolic Stationary, but Isotopically Nonstationary -- 3.2.5 From Measurements to Flux Estimates: Parameter Fitting -- 3.2.6 Flux Estimates Have Confidence Bounds: Statistical Analysis -- 3.2.7 The Classical Approach at Metabolic and Isotopic Stationary State -- 3.2.8 An Additional Source of Information: Carbon Atom Transitions -- 3.2.9 Input Labeling Design: How Informative Can an Experiment Be Made? -- 3.2.10 The Isotopomers of a Single Metabolite can be a Rich Source of Information -- 3.2.11 Bidirectional Reaction Steps: More Than Just Nuisance Factors -- 3.2.12 Isotopomer Fractions Cannot Be Measured Comprehensively -- 3.3 Lessons Learned from the Example -- 3.3.1 Definition of 13C‐MFA Revisited -- 3.3.2 Statistical Evaluation and Optimal Experimental Design -- 3.4 How to Configure an Isotope Labeling Experiment -- 3.4.1 Modeling and Simulation of Isotope Labeling Experiments -- 3.4.2 Metabolic Network Specification -- 3.4.3 Atom Transition Network Specification -- 3.4.4 Input Labeling Composition -- 3.4.5 Measurement Specification.
3.4.6 Flux Constraints -- 3.4.7 In Silico Experimental ILE Design -- 3.5 Putting Theory into Practice -- 3.5.1 A Recipe How to Start -- 3.5.2 Metabolic and Isotopic Stationarity -- 3.5.3 Measuring Extracellular Fluxes -- 3.5.4 Administering Labeled Substrate(s) -- 3.5.5 Metabolomics: Sampling, Sample Preparation, and Analytical Procedures -- 3.5.6 Adjusting Labeling Enrichments for Isotopic Steady State Approximation -- 3.5.7 Correcting Labeling Enrichments for Natural Isotope Abundance -- 3.5.8 Simulation of Labeling Data and Flux Estimation -- 3.5.9 Delicacies of INST‐13C‐MFA -- 3.6 Future Challenges of 13C‐MFA -- Acknowledgments -- Abbreviations -- References -- Chapter 4 Proteome Constraints in Genome‐Scale Models -- 4.1 Introduction -- 4.2 Cellular Constraints -- 4.3 Formulation of Proteome Constraints -- 4.3.1 Coarse‐Grained Integration of Proteome Constraints -- 4.3.2 Fine‐Tuned Integration of Proteome Constraints -- 4.4 Perspectives -- References -- Chapter 5 Kinetic Models of Metabolism -- 5.1 Introduction -- 5.2 Definition of Enzyme Kinetics -- 5.2.1 Michaelis-Menten Formula -- 5.3 Factors Affecting Intracellular Enzyme Kinetics -- 5.4 Kinetic Model: Definition and Scope -- 5.4.1 What Is a Kinetic Model? -- 5.4.2 Scope of Kinetic Models -- 5.4.3 How to Build a Functional Kinetic Model? -- 5.5 Main Mathematical Expressions in Description of Reaction Rates -- 5.5.1 Mechanistic Rate Expressions -- 5.6 Approximative Rate Expressions -- 5.7 Approaches to Assign Parameters in the Rate Expressions -- 5.7.1 Direct Measurements of Kinetic Parameters in Enzyme Assays -- 5.7.2 Querying Databases -- 5.7.3 Inferring from Measured Fluxes -- 5.7.4 Parameters Inference Using the Statistical Analysis -- 5.8 Applications -- 5.9 Perspectives -- References -- Chapter 6 Metabolic Control Analysis.
6.1 The Metabolic Engineering Context of Metabolic Control Analysis -- 6.2 MCA Theory -- 6.2.1 Metabolic Steady State -- 6.2.2 Flux Control Coefficients -- 6.2.3 Examples of the Flux-Enzyme Relationship -- 6.2.4 Flux Summation Theorem -- 6.2.5 Concentration Control Coefficients -- 6.2.6 Linking Control Coefficients to Enzyme Properties -- 6.2.6.1 Enzyme Rate Equations and Elasticity Coefficients -- 6.2.6.2 Elasticities and Control Coefficients -- 6.2.6.3 Block Coefficients and Top‐Down Analysis -- 6.2.7 Feedback Inhibition -- 6.2.8 Large Alterations of Enzyme Activity -- 6.3 Implications of MCA for Metabolic Engineering Strategies -- 6.3.1 Abolishing Feedback Inhibition -- 6.3.2 Increasing Demand for Product -- 6.3.3 Inhibition of Competing Pathways -- 6.3.4 Designing Large Changes in Metabolic Flux -- 6.3.4.1 Yeast Tryptophan Synthesis -- 6.3.4.2 The Universal Method -- 6.3.4.3 Bacterial Production of Aromatic Amino Acids -- 6.3.4.4 Penicillin and Other Instances -- 6.3.5 Impacts on Yield from a Growing System -- 6.4 Conclusion -- Appendix 6.A: Feedback Inhibition Simulation -- References -- Chapter 7 Thermodynamics of Metabolic Pathways -- 7.1 Bioenergetics in Life and in Metabolic Engineering -- 7.2 Thermodynamics‐Based Flux Analysis Workflow -- 7.2.1 Thermodynamic Model Curation -- 7.2.1.1 Estimation of the Standard Free Energies of Formation -- 7.2.1.2 Compensating for Compartment‐Specific Ionic Strength and pH -- 7.2.1.3 Compensating the Free Energy of Formation for Isomer Distributions -- 7.2.1.4 Computing the Transformed Free Energies of Reaction -- 7.2.2 Mathematical Formulation -- 7.3 Thermodynamics‐Based Flux Analysis Applications -- 7.3.1 Constraining the Flux Space with Metabolomics Data -- 7.3.2 Characterizing the Feasible Concentration Space -- 7.4 Conclusion and Future Perspectives -- References -- Chapter 8 Pathway Design.
Definition -- 8.1 De Novo Design of Metabolic Pathways -- 8.1.1 Manual Versus Computational Design -- 8.2 Pathway Design Workflow -- 8.2.1 Biochemical Search Space -- 8.2.1.1 Reaction Prediction -- 8.2.1.2 Retrobiosynthesis -- 8.2.1.3 Network Data Representation -- 8.2.2 Pathway Search -- 8.2.2.1 Stoichiometric Matrix‐Based Search -- 8.2.2.2 Graph‐Based Search -- 8.2.2.3 Pathway Ranking -- 8.2.3 Enzyme Assignment -- 8.2.3.1 Enzyme Prediction for Orphan and Novel Reactions -- 8.2.3.2 Choice of Protein Sequence -- 8.2.4 Pathway Feasibility -- 8.2.4.1 Chassis Metabolic Model -- 8.2.4.2 Stoichiometric Feasibility -- 8.2.4.3 Thermodynamic Feasibility -- 8.2.4.4 Kinetic Feasibility -- 8.2.4.5 Toxicity of Intermediates -- 8.3 Applications -- 8.3.1 Available Tools for Pathway Design -- 8.3.2 Successful Applications of Pathway Design Tools -- 8.3.3 Practical Example of Pathway Design -- 8.3.3.1 Creating a Biochemical Network Around BDO -- 8.3.3.2 Search for Biosynthetic Pathways -- 8.3.3.3 Finding Enzymes for Novel Reactions -- 8.3.3.4 Stoichiometric and Thermodynamic Pathway Evaluation -- 8.3.3.5 Overall Ranking of Pathways -- 8.4 Conclusions and Future Perspectives -- References -- Chapter 9 Metabolomics -- 9.1 Introduction -- 9.2 Fundamentals -- 9.2.1 Experimental Design -- 9.2.2 Targeted and Untargeted Metabolomics -- 9.2.3 Sequences and Standards -- 9.3 Analytical Techniques -- 9.3.1 Sample Preparation -- 9.3.2 Separation Techniques -- 9.3.2.1 Liquid Chromatography -- 9.3.2.2 Gas Chromatography -- 9.3.2.3 Alternative Separation Techniques -- 9.3.3 Mass Spectrometry -- 9.3.3.1 Ionization Techniques -- 9.3.3.2 Low‐Resolution MS -- 9.3.3.3 High‐Resolution MS -- 9.3.3.4 Acquisition Modes for Targeted MS -- 9.3.3.5 Acquisition Modes for Untargeted Metabolomics -- 9.4 Data Analysis -- 9.4.1 Data Processing in Untargeted Metabolomics.
9.4.1.1 Preprocessing of Individual MS Runs.
Record Nr. UNINA-9910554813403321
Weinheim, Germany : , : WILEY-VCH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Metabolic engineering : concepts and applications / / edited by Sang Yup Lee, Jens Nielsen, Gregory Stephanopoulos
Metabolic engineering : concepts and applications / / edited by Sang Yup Lee, Jens Nielsen, Gregory Stephanopoulos
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH, , [2021]
Descrizione fisica 1 online resource (962 pages)
Disciplina 660.62
Collana Advanced Biotechnology
Soggetto topico Microbial biotechnology
Microbial genetic engineering
ISBN 3-527-82345-X
3-527-82344-1
3-527-82346-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part 1 Concepts -- Chapter 1 Metabolic Engineering Perspectives -- 1.1 History and Overview of Metabolic Engineering -- 1.2 Understanding Cellular Metabolism and Physiology -- 1.2.1 Computational Methods in Understanding Metabolism -- 1.2.2 Experimental Methods in Understanding Metabolism -- 1.3 General Approaches to Metabolic Engineering -- 1.3.1 Rational Metabolic Engineering -- 1.3.2 Combinatorial Metabolic Engineering -- 1.3.3 Systems Metabolic Engineering -- 1.4 Host Organism Selection -- 1.5 Substrate Considerations -- 1.6 Metabolic Engineering and Synthetic Biology -- 1.7 The Future of Metabolic Engineering -- References -- Chapter 2 Genome‐Scale Models: Two Decades of Progress and a 2020 Vision -- 2.1 Introduction -- 2.2 Flux Balance Analysis -- 2.2.1 Dynamic Mass Balances -- 2.2.2 Analogy to Deriving Enzymatic Rate Equations -- 2.2.3 Formulating Flux Balances at the Genome‐Scale -- 2.2.4 Constrained Optimization -- 2.2.5 Principles -- 2.2.6 Additional Constraints -- 2.2.7 Flux-Concentration Duality -- 2.2.8 Recap -- 2.3 Network Reconstruction -- 2.3.1 Assembling the Reactome -- 2.3.2 Basic Principles of Network Reconstruction -- 2.3.3 Curation -- 2.3.4 GEMs Have a Genomic Basis -- 2.3.5 Computational Queries -- 2.3.6 Scope Expansion -- 2.3.7 Knowledge Bases -- 2.3.8 Availability of GEMs -- 2.3.9 Recap -- 2.4 Brief History of the GEM for E. coli -- 2.4.1 Origin -- 2.4.2 Model Organism -- 2.4.3 Key Predictions -- 2.4.4 Design Algorithms -- 2.4.5 Scope Expansions -- 2.4.6 Recap -- 2.5 From Metabolism to the Proteome -- 2.5.1 ME Models -- 2.5.2 Capabilities of ME Models -- 2.5.2.1 Growth‐Coupled Metabolic Designs Can Be Reproduced in GEMs -- 2.5.2.2 ME Models Can Reflect Properties of the Metalloproteome -- 2.5.2.3 ME Models Can Compute the Biomass Objective Function.
2.5.2.4 Computing Stresses -- 2.5.3 Recapitulation -- 2.6 Current Developments -- 2.6.1 Kinetics -- 2.6.2 Transcriptional Regulation -- 2.6.2.1 iModulons -- 2.6.2.2 Activities -- 2.6.3 Protein Structures -- 2.7 Broader Perspectives -- 2.7.1 Distal Causation -- 2.7.2 Contextualization of GEMs Within Workflows -- 2.8 What Does the Future Look Like for GEMs? -- Disclaimer -- Acknowledgments -- References -- Chapter 3 Quantitative Metabolic Flux Analysis Based on Isotope Labeling -- 3.1 Introduction -- 3.1.1 What Metabolic Flux Analysis Is About -- 3.1.2 The Variants of 13C‐MFA -- 3.2 A Toy Example Illustrates the Basic Principles -- 3.2.1 Fluxomics: More Than Just a Branch of Metabolomics -- 3.2.2 Isotope Labeling: The Key to Metabolic Fluxes -- 3.2.3 From the Data to the Intracellular Fluxes -- 3.2.4 INST‐13C‐MFA: Metabolic Stationary, but Isotopically Nonstationary -- 3.2.5 From Measurements to Flux Estimates: Parameter Fitting -- 3.2.6 Flux Estimates Have Confidence Bounds: Statistical Analysis -- 3.2.7 The Classical Approach at Metabolic and Isotopic Stationary State -- 3.2.8 An Additional Source of Information: Carbon Atom Transitions -- 3.2.9 Input Labeling Design: How Informative Can an Experiment Be Made? -- 3.2.10 The Isotopomers of a Single Metabolite can be a Rich Source of Information -- 3.2.11 Bidirectional Reaction Steps: More Than Just Nuisance Factors -- 3.2.12 Isotopomer Fractions Cannot Be Measured Comprehensively -- 3.3 Lessons Learned from the Example -- 3.3.1 Definition of 13C‐MFA Revisited -- 3.3.2 Statistical Evaluation and Optimal Experimental Design -- 3.4 How to Configure an Isotope Labeling Experiment -- 3.4.1 Modeling and Simulation of Isotope Labeling Experiments -- 3.4.2 Metabolic Network Specification -- 3.4.3 Atom Transition Network Specification -- 3.4.4 Input Labeling Composition -- 3.4.5 Measurement Specification.
3.4.6 Flux Constraints -- 3.4.7 In Silico Experimental ILE Design -- 3.5 Putting Theory into Practice -- 3.5.1 A Recipe How to Start -- 3.5.2 Metabolic and Isotopic Stationarity -- 3.5.3 Measuring Extracellular Fluxes -- 3.5.4 Administering Labeled Substrate(s) -- 3.5.5 Metabolomics: Sampling, Sample Preparation, and Analytical Procedures -- 3.5.6 Adjusting Labeling Enrichments for Isotopic Steady State Approximation -- 3.5.7 Correcting Labeling Enrichments for Natural Isotope Abundance -- 3.5.8 Simulation of Labeling Data and Flux Estimation -- 3.5.9 Delicacies of INST‐13C‐MFA -- 3.6 Future Challenges of 13C‐MFA -- Acknowledgments -- Abbreviations -- References -- Chapter 4 Proteome Constraints in Genome‐Scale Models -- 4.1 Introduction -- 4.2 Cellular Constraints -- 4.3 Formulation of Proteome Constraints -- 4.3.1 Coarse‐Grained Integration of Proteome Constraints -- 4.3.2 Fine‐Tuned Integration of Proteome Constraints -- 4.4 Perspectives -- References -- Chapter 5 Kinetic Models of Metabolism -- 5.1 Introduction -- 5.2 Definition of Enzyme Kinetics -- 5.2.1 Michaelis-Menten Formula -- 5.3 Factors Affecting Intracellular Enzyme Kinetics -- 5.4 Kinetic Model: Definition and Scope -- 5.4.1 What Is a Kinetic Model? -- 5.4.2 Scope of Kinetic Models -- 5.4.3 How to Build a Functional Kinetic Model? -- 5.5 Main Mathematical Expressions in Description of Reaction Rates -- 5.5.1 Mechanistic Rate Expressions -- 5.6 Approximative Rate Expressions -- 5.7 Approaches to Assign Parameters in the Rate Expressions -- 5.7.1 Direct Measurements of Kinetic Parameters in Enzyme Assays -- 5.7.2 Querying Databases -- 5.7.3 Inferring from Measured Fluxes -- 5.7.4 Parameters Inference Using the Statistical Analysis -- 5.8 Applications -- 5.9 Perspectives -- References -- Chapter 6 Metabolic Control Analysis.
6.1 The Metabolic Engineering Context of Metabolic Control Analysis -- 6.2 MCA Theory -- 6.2.1 Metabolic Steady State -- 6.2.2 Flux Control Coefficients -- 6.2.3 Examples of the Flux-Enzyme Relationship -- 6.2.4 Flux Summation Theorem -- 6.2.5 Concentration Control Coefficients -- 6.2.6 Linking Control Coefficients to Enzyme Properties -- 6.2.6.1 Enzyme Rate Equations and Elasticity Coefficients -- 6.2.6.2 Elasticities and Control Coefficients -- 6.2.6.3 Block Coefficients and Top‐Down Analysis -- 6.2.7 Feedback Inhibition -- 6.2.8 Large Alterations of Enzyme Activity -- 6.3 Implications of MCA for Metabolic Engineering Strategies -- 6.3.1 Abolishing Feedback Inhibition -- 6.3.2 Increasing Demand for Product -- 6.3.3 Inhibition of Competing Pathways -- 6.3.4 Designing Large Changes in Metabolic Flux -- 6.3.4.1 Yeast Tryptophan Synthesis -- 6.3.4.2 The Universal Method -- 6.3.4.3 Bacterial Production of Aromatic Amino Acids -- 6.3.4.4 Penicillin and Other Instances -- 6.3.5 Impacts on Yield from a Growing System -- 6.4 Conclusion -- Appendix 6.A: Feedback Inhibition Simulation -- References -- Chapter 7 Thermodynamics of Metabolic Pathways -- 7.1 Bioenergetics in Life and in Metabolic Engineering -- 7.2 Thermodynamics‐Based Flux Analysis Workflow -- 7.2.1 Thermodynamic Model Curation -- 7.2.1.1 Estimation of the Standard Free Energies of Formation -- 7.2.1.2 Compensating for Compartment‐Specific Ionic Strength and pH -- 7.2.1.3 Compensating the Free Energy of Formation for Isomer Distributions -- 7.2.1.4 Computing the Transformed Free Energies of Reaction -- 7.2.2 Mathematical Formulation -- 7.3 Thermodynamics‐Based Flux Analysis Applications -- 7.3.1 Constraining the Flux Space with Metabolomics Data -- 7.3.2 Characterizing the Feasible Concentration Space -- 7.4 Conclusion and Future Perspectives -- References -- Chapter 8 Pathway Design.
Definition -- 8.1 De Novo Design of Metabolic Pathways -- 8.1.1 Manual Versus Computational Design -- 8.2 Pathway Design Workflow -- 8.2.1 Biochemical Search Space -- 8.2.1.1 Reaction Prediction -- 8.2.1.2 Retrobiosynthesis -- 8.2.1.3 Network Data Representation -- 8.2.2 Pathway Search -- 8.2.2.1 Stoichiometric Matrix‐Based Search -- 8.2.2.2 Graph‐Based Search -- 8.2.2.3 Pathway Ranking -- 8.2.3 Enzyme Assignment -- 8.2.3.1 Enzyme Prediction for Orphan and Novel Reactions -- 8.2.3.2 Choice of Protein Sequence -- 8.2.4 Pathway Feasibility -- 8.2.4.1 Chassis Metabolic Model -- 8.2.4.2 Stoichiometric Feasibility -- 8.2.4.3 Thermodynamic Feasibility -- 8.2.4.4 Kinetic Feasibility -- 8.2.4.5 Toxicity of Intermediates -- 8.3 Applications -- 8.3.1 Available Tools for Pathway Design -- 8.3.2 Successful Applications of Pathway Design Tools -- 8.3.3 Practical Example of Pathway Design -- 8.3.3.1 Creating a Biochemical Network Around BDO -- 8.3.3.2 Search for Biosynthetic Pathways -- 8.3.3.3 Finding Enzymes for Novel Reactions -- 8.3.3.4 Stoichiometric and Thermodynamic Pathway Evaluation -- 8.3.3.5 Overall Ranking of Pathways -- 8.4 Conclusions and Future Perspectives -- References -- Chapter 9 Metabolomics -- 9.1 Introduction -- 9.2 Fundamentals -- 9.2.1 Experimental Design -- 9.2.2 Targeted and Untargeted Metabolomics -- 9.2.3 Sequences and Standards -- 9.3 Analytical Techniques -- 9.3.1 Sample Preparation -- 9.3.2 Separation Techniques -- 9.3.2.1 Liquid Chromatography -- 9.3.2.2 Gas Chromatography -- 9.3.2.3 Alternative Separation Techniques -- 9.3.3 Mass Spectrometry -- 9.3.3.1 Ionization Techniques -- 9.3.3.2 Low‐Resolution MS -- 9.3.3.3 High‐Resolution MS -- 9.3.3.4 Acquisition Modes for Targeted MS -- 9.3.3.5 Acquisition Modes for Untargeted Metabolomics -- 9.4 Data Analysis -- 9.4.1 Data Processing in Untargeted Metabolomics.
9.4.1.1 Preprocessing of Individual MS Runs.
Record Nr. UNINA-9910829921803321
Weinheim, Germany : , : WILEY-VCH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui