top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Autore Ye Feng <1989->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (307 pages)
Disciplina 621.31
Soggetto topico Smart power grids - Communication systems
Smart power grids - Security measures
ISBN 1-119-24016-6
1-119-24018-2
1-119-24013-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Background of the Smart Grid 1 -- 1.1 Motivations and Objectives of the Smart Grid 1 -- 1.1.1 Better Renewable Energy Resource Adaption 2 -- 1.1.2 Grid Operation Efficiency Advancement 3 -- 1.1.3 Grid Reliability and Security Improvement 4 -- 1.2 Smart Grid Communications Architecture 5 -- 1.2.1 Conceptual Domain Model 6 -- 1.2.2 Two-Way Communications Network 7 -- 1.3 Applications and Requirements 9 -- 1.3.1 Demand Response 9 -- 1.3.2 Advanced Metering Infrastructure 10 -- 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 -- 1.3.4 Communication Networks and Cybersecurity 12 -- 1.4 The Rest of the Book 13 -- 2 Smart Grid Communication Infrastructures 15 -- 2.1 An ICT Framework for the Smart Grid 15 -- 2.1.1 Roles and Benefits of an ICT Framework 15 -- 2.1.2 An Overview of the Proposed ICT Framework 16 -- 2.2 Entities in the ICT Framework 18 -- 2.2.1 Internal Data Collectors 18 -- 2.2.2 Control Centers 20 -- 2.2.3 Power Generators 22 -- 2.2.4 External Data Sources 23 -- 2.3 Communication Networks and Technologies 23 -- 2.3.1 Private and Public Networks 23 -- 2.3.2 Communication Technologies 25 -- 2.4 Data Communication Requirements 30 -- 2.4.1 Latency and Bandwidth 31 -- 2.4.2 Interoperability 32 -- 2.4.3 Scalability 32 -- 2.4.4 Security 32 -- 2.5 Summary 33 -- 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 -- 3.1 Overview of the Proposed NAN 35 -- 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 -- 3.1.2 Structure of the Proposed NAN 37 -- 3.2 Preliminaries 38 -- 3.2.1 Charging Rate Estimate 39 -- 3.2.2 Battery-Related Issues 40 -- 3.2.3 Path Loss Model 41 -- 3.3 Problem Formulations and Solutions in the NAN Design 44 -- 3.3.1 The Cost Minimization Problem 44 -- 3.3.2 Optimal Number of Gateways 48 -- 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 -- 3.3.4 Global Uplink Transmission Power Efficiency 54 -- 3.4 Numerical Results 56 -- 3.4.1 Evaluation of the Optimal Number of Gateways 56 -- 3.4.2 Evaluation of the Global Power Efficiency 56.
3.4.3 Evaluation of the Global Uplink Transmission Rates 58 -- 3.4.4 Evaluation of the Global Power Consumption 59 -- 3.4.5 Evaluation of the Minimum Cost Problem 59 -- 3.5 Case Study 63 -- 3.6 Summary 65 -- 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 -- 4.1 Background and RelatedWork 67 -- 4.1.1 Motivations and Background 67 -- 4.1.2 RelatedWork 69 -- 4.2 SystemModel 70 -- 4.3 Preliminaries 71 -- 4.3.1 Mathematical Formulation 72 -- 4.3.2 Energy Efficiency Utility Function 73 -- 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 -- 4.4.1 DGD Level Game 76 -- 4.4.2 BGD Level Game 77 -- 4.5 Analysis of the Proposed Schemes 78 -- 4.5.1 Estimation of B and D 78 -- 4.5.2 Analysis of the Proposed Stackelberg Game 80 -- 4.5.3 Algorithms to Approach NE and SE 84 -- 4.6 Numerical Results 85 -- 4.6.1 Simulation Settings 85 -- 4.6.2 Estimate of D and B 86 -- 4.6.3 Data Rate Reliability Evaluation 87 -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 -- 4.7 Summary 90 -- 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 -- 5.1 Background and RelatedWork 91 -- 5.1.1 Background and Motivation 91 -- 5.1.2 RelatedWork 93 -- 5.2 Network Model 94 -- 5.3 Problem Formulation 96 -- 5.4 Proposed Power Allocation Schemes 99 -- 5.4.1 Minimizing Total Power Usage 100 -- 5.4.2 Maximizing Power Efficiency 101 -- 5.4.3 Uniform Delay 104 -- 5.4.4 Uniform Transmission Rate 104 -- 5.5 Distributed Power Allocation Schemes 105 -- 5.6 Numerical Results and A Case Study 107 -- 5.6.1 Simulation Settings 107 -- 5.6.2 Comparison of the Centralized Schemes 108 -- 5.6.3 Case Study 111 -- 5.7 Summary 113 -- 6 A Real-Time Information-Based Demand-Side Management System 115 -- 6.1 Background and RelatedWork 115 -- 6.1.1 Background 115 -- 6.1.2 RelatedWork 117 -- 6.2 System Model 118 -- 6.2.1 The Demand-Side Power Management System 118 -- 6.2.2 MathematicalModeling 120 -- 6.2.3 Energy Cost and Unit Price 122.
6.3 Centralized DR Approaches 124 -- 6.3.1 Minimize Peak-to-Average Ratio 124 -- 6.3.2 Minimize Total Cost of Power Generation 125 -- 6.4 GameTheoretical Approaches 128 -- 6.4.1 Formulated Game 128 -- 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129 -- 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131 -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 -- 6.5 Precision and Truthfulness of the Proposed DR System 132 -- 6.6 Numerical and Simulation Results 132 -- 6.6.1 Settings 132 -- 6.6.2 Comparison of 1, 2 and GA1 135 -- 6.6.3 Comparison of Different Distributed Approaches 136 -- 6.6.4 The Impact from Energy Storage Unit 141 -- 6.6.5 The Impact from Increasing Renewable Energy 143 -- 6.7 Summary 145 -- 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147 -- 7.1 Background and RelatedWork 147 -- 7.1.1 Background and Overview 147 -- 7.1.2 RelatedWork 149 -- 7.2 System Model 150 -- 7.2.1 Overview of the Studied System 150 -- 7.2.2 Mathematical Formulation 151 -- 7.2.3 Customer Estimation 152 -- 7.3 Load Scheduling Schemes for BESs 154 -- 7.3.1 Constraints for a BES si 154 -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 -- 7.3.4 GameTheoretical Approach 159 -- 7.4 Simulation Analysis and Results 161 -- 7.4.1 Settings for the Simulations 161 -- 7.4.2 Impact of the Proposed DSM on PAR 163 -- 7.4.3 Evaluation of BESs Equipment Settings 164 -- 7.4.3.1 Number of Charging Ports 164 -- 7.4.3.2 Maximum Number of Fully Charged Batteries 164 -- 7.4.3.3 Preparation at the Beginning of Each Day 165 -- 7.4.3.4 Impact on PAR from BESs 166 -- 7.4.4 Evaluations of the GameTheoretical Approach 167 -- 7.5 Summary 169 -- 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 -- 8.1 Background and Motivation 171 -- 8.1.1 Big Data Era 171 -- 8.1.2 The Smart Grid and Big Data 173 -- 8.2 Pricing and Energy Forecasts in Demand Response 174.
8.2.1 An Overview of Pricing and Energy Forecasts 174 -- 8.2.2 A Case Study of Energy Forecasts 176 -- 8.3 Attack Detection 179 -- 8.3.1 An Overview of Attack Detection in the Smart Grid 179 -- 8.3.2 Current Problems and Techniques 180 -- 8.4 Cloud Computing in the Smart Grid 182 -- 8.4.1 Basics of Cloud Computing 182 -- 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 -- 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 -- 8.5 Summary 185 -- 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 -- 9.1 Background and RelatedWork 187 -- 9.1.1 Motivation and Background 187 -- 9.1.2 RelatedWork 189 -- 9.2 Preliminaries 190 -- 9.2.1 Classic Centralized Learning Scheme 190 -- 9.2.2 Supervised LearningModels 191 -- 9.2.2.1 Supervised Regression Learning Model 191 -- 9.2.2.2 Regularization Term 191 -- 9.2.3 Security Model 192 -- 9.3 Secure Data Learning Scheme 193 -- 9.3.1 Data Learning Scheme 193 -- 9.3.2 The Proposed Security Scheme 194 -- 9.3.2.1 Privacy Scheme 194 -- 9.3.2.2 Identity Protection 195 -- 9.3.3 Analysis of the Learning Process 197 -- 9.3.4 Analysis of the Security 197 -- 9.4 Smart Metering Data Set Analysis-A Case Study 198 -- 9.4.1 Smart Grid AMI and Metering Data Set 198 -- 9.4.2 Regression Study 200 -- 9.5 Conclusion and FutureWork 203 -- 10 Security Challenges in the Smart Grid Communication Infrastructure 205 -- 10.1 General Security Challenges 205 -- 10.1.1 Technical Requirements 205 -- 10.1.2 Information Security Domains 207 -- 10.1.3 Standards and interoperability 207 -- 10.2 Logical Security Architecture 207 -- 10.2.1 Key Concepts and Assumptions 207 -- 10.2.2 Logical Interface Categories 209 -- 10.3 Network Security Requirements 210 -- 10.3.1 Utility-Owned Private Networks 210 -- 10.3.2 Public Networks in the Smart Grid 212 -- 10.4 Classification of Attacks 213 -- 10.4.1 Component-Based Attacks 213 -- 10.4.2 Protocol-Based Attacks 214 -- 10.5 Existing Security Solutions 215 -- 10.6 Standardization and Regulation 216.
10.6.1 Commissions and Considerations 217 -- 10.6.2 Selected Standards 217 -- 10.7 Summary 219 -- 11 Security Schemes for AMI Private Networks 221 -- 11.1 Preliminaries 221 -- 11.1.1 Security Services 221 -- 11.1.2 Security Mechanisms 222 -- 11.1.3 Notations of the Keys Used inThis Chapter 223 -- 11.2 Initial Authentication 223 -- 11.2.1 An Overview of the Proposed Authentication Process 223 -- 11.2.1.1 DAP Authentication Process 224 -- 11.2.1.2 Smart Meter Authentication Process 225 -- 11.2.2 The Authentication Handshake Protocol 226 -- 11.2.3 Security Analysis 229 -- 11.3 Proposed Security Protocol in Uplink Transmissions 230 -- 11.3.1 Single-Traffic Uplink Encryption 231 -- 11.3.2 Multiple-Traffic Uplink Encryption 232 -- 11.3.3 Decryption Process in Uplink Transmissions 233 -- 11.3.4 Security Analysis 235 -- 11.4 Proposed Security Protocol in Downlink Transmissions 235 -- 11.4.1 Broadcast Control Message Encryption 236 -- 11.4.2 One-to-One Control Message Encryption 236 -- 11.4.3 Security Analysis 237 -- 11.5 Domain Secrets Update 238 -- 11.5.1 AS Public/Private Keys Update 238 -- 11.5.2 Active Secret Key Update 238 -- 11.5.3 Preshared Secret Key Update 239 -- 11.6 Summary 239 -- 12 Security Schemes for Smart Grid Communications over Public Networks 241 -- 12.1 Overview of the Proposed Security Schemes 241 -- 12.1.1 Background and Motivation 241 -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 -- 12.2 Proposed ID-Based Scheme 244 -- 12.2.1 Preliminaries 244 -- 12.2.2 Identity-Based Signcryption 245 -- 12.2.2.1 Setup 245 -- 12.2.2.2 Keygen 245 -- 12.2.2.3 Signcryption 246 -- 12.2.2.4 Decryption 246 -- 12.2.2.5 Verification 246 -- 12.2.3 Consistency of the Proposed IBSC Scheme 247 -- 12.2.4 Identity-Based Signature 247 -- 12.2.4.1 Signature 248 -- 12.2.4.2 Verification 248 -- 12.2.5 Key Distribution and Symmetrical Cryptography 248 -- 12.3 Single Proxy Signing Rights Delegation 249 -- 12.3.1 Certificate Distribution by the Local Control Center 249.
12.3.2 Signing Rights Delegation by the PKG 250 -- 12.3.3 Single Proxy Signature 250 -- 12.4 Group Proxy Signing Rights Delegation 251 -- 12.4.1 Certificate Distribution 251 -- 12.4.2 Partial Signature 251 -- 12.4.3 Group Signature 251 -- 12.5 Security Analysis of the Proposed Schemes 252 -- 12.5.1 Assumptions for Security Analysis 252 -- 12.5.2 Identity-Based Encryption Security 253 -- 12.5.2.1 Security Model 253 -- 12.5.2.2 Security Analysis 253 -- 12.5.3 Identity-Based Signature Security 255 -- 12.5.3.1 Security Models 255 -- 12.5.3.2 Security Analysis 256 -- 12.6 Performance Analysis of the Proposed Schemes 258 -- 12.6.1 Computational Complexity of the Proposed Schemes 258 -- 12.6.2 Choosing Bilinear Paring Functions 259 -- 12.6.3 Numerical Results 260 -- 12.7 Conclusion 261 -- 13 Open Issues and Possible Future Research Directions 263 -- 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 -- 13.2 Quality-of-Service Framework 263 -- 13.3 Optimal Network Design 264 -- 13.4 Better Involvement of Green Energy 265 -- 13.5 Need for Secure Communication Network Infrastructure 265 -- 13.6 Electrical Vehicles 265 -- Reference 267 -- Index 287.
Record Nr. UNINA-9910555278903321
Ye Feng <1989->  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Smart grid communication infrastructures : big data, cloud computing, and security / / by Feng Ye, Yi Qian, Dr. Rose Qingyang Hu
Autore Ye Feng <1989->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Descrizione fisica 1 online resource (307 pages)
Disciplina 621.31
Soggetto topico Smart power grids - Communication systems
Smart power grids - Security measures
ISBN 1-119-24016-6
1-119-24018-2
1-119-24013-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Background of the Smart Grid 1 -- 1.1 Motivations and Objectives of the Smart Grid 1 -- 1.1.1 Better Renewable Energy Resource Adaption 2 -- 1.1.2 Grid Operation Efficiency Advancement 3 -- 1.1.3 Grid Reliability and Security Improvement 4 -- 1.2 Smart Grid Communications Architecture 5 -- 1.2.1 Conceptual Domain Model 6 -- 1.2.2 Two-Way Communications Network 7 -- 1.3 Applications and Requirements 9 -- 1.3.1 Demand Response 9 -- 1.3.2 Advanced Metering Infrastructure 10 -- 1.3.3 Wide-Area Situational Awareness and Wide-Area Monitoring Systems 11 -- 1.3.4 Communication Networks and Cybersecurity 12 -- 1.4 The Rest of the Book 13 -- 2 Smart Grid Communication Infrastructures 15 -- 2.1 An ICT Framework for the Smart Grid 15 -- 2.1.1 Roles and Benefits of an ICT Framework 15 -- 2.1.2 An Overview of the Proposed ICT Framework 16 -- 2.2 Entities in the ICT Framework 18 -- 2.2.1 Internal Data Collectors 18 -- 2.2.2 Control Centers 20 -- 2.2.3 Power Generators 22 -- 2.2.4 External Data Sources 23 -- 2.3 Communication Networks and Technologies 23 -- 2.3.1 Private and Public Networks 23 -- 2.3.2 Communication Technologies 25 -- 2.4 Data Communication Requirements 30 -- 2.4.1 Latency and Bandwidth 31 -- 2.4.2 Interoperability 32 -- 2.4.3 Scalability 32 -- 2.4.4 Security 32 -- 2.5 Summary 33 -- 3 Self-Sustaining Wireless Neighborhood-Area Network Design 35 -- 3.1 Overview of the Proposed NAN 35 -- 3.1.1 Background and Motivation of a Self-Sustaining Wireless NAN 35 -- 3.1.2 Structure of the Proposed NAN 37 -- 3.2 Preliminaries 38 -- 3.2.1 Charging Rate Estimate 39 -- 3.2.2 Battery-Related Issues 40 -- 3.2.3 Path Loss Model 41 -- 3.3 Problem Formulations and Solutions in the NAN Design 44 -- 3.3.1 The Cost Minimization Problem 44 -- 3.3.2 Optimal Number of Gateways 48 -- 3.3.3 Geographical Deployment Problem for Gateway DAPs 51 -- 3.3.4 Global Uplink Transmission Power Efficiency 54 -- 3.4 Numerical Results 56 -- 3.4.1 Evaluation of the Optimal Number of Gateways 56 -- 3.4.2 Evaluation of the Global Power Efficiency 56.
3.4.3 Evaluation of the Global Uplink Transmission Rates 58 -- 3.4.4 Evaluation of the Global Power Consumption 59 -- 3.4.5 Evaluation of the Minimum Cost Problem 59 -- 3.5 Case Study 63 -- 3.6 Summary 65 -- 4 Reliable Energy-Efficient Uplink Transmission Power Control Scheme in NAN 67 -- 4.1 Background and RelatedWork 67 -- 4.1.1 Motivations and Background 67 -- 4.1.2 RelatedWork 69 -- 4.2 SystemModel 70 -- 4.3 Preliminaries 71 -- 4.3.1 Mathematical Formulation 72 -- 4.3.2 Energy Efficiency Utility Function 73 -- 4.4 Hierarchical Uplink Transmission Power Control Scheme 75 -- 4.4.1 DGD Level Game 76 -- 4.4.2 BGD Level Game 77 -- 4.5 Analysis of the Proposed Schemes 78 -- 4.5.1 Estimation of B and D 78 -- 4.5.2 Analysis of the Proposed Stackelberg Game 80 -- 4.5.3 Algorithms to Approach NE and SE 84 -- 4.6 Numerical Results 85 -- 4.6.1 Simulation Settings 85 -- 4.6.2 Estimate of D and B 86 -- 4.6.3 Data Rate Reliability Evaluation 87 -- 4.6.4 Evaluation of the Proposed Algorithms to Achieve NE and SE 88 -- 4.7 Summary 90 -- 5 Design and Analysis of a Wireless Monitoring Network for Transmission Lines in the Smart Grid 91 -- 5.1 Background and RelatedWork 91 -- 5.1.1 Background and Motivation 91 -- 5.1.2 RelatedWork 93 -- 5.2 Network Model 94 -- 5.3 Problem Formulation 96 -- 5.4 Proposed Power Allocation Schemes 99 -- 5.4.1 Minimizing Total Power Usage 100 -- 5.4.2 Maximizing Power Efficiency 101 -- 5.4.3 Uniform Delay 104 -- 5.4.4 Uniform Transmission Rate 104 -- 5.5 Distributed Power Allocation Schemes 105 -- 5.6 Numerical Results and A Case Study 107 -- 5.6.1 Simulation Settings 107 -- 5.6.2 Comparison of the Centralized Schemes 108 -- 5.6.3 Case Study 111 -- 5.7 Summary 113 -- 6 A Real-Time Information-Based Demand-Side Management System 115 -- 6.1 Background and RelatedWork 115 -- 6.1.1 Background 115 -- 6.1.2 RelatedWork 117 -- 6.2 System Model 118 -- 6.2.1 The Demand-Side Power Management System 118 -- 6.2.2 MathematicalModeling 120 -- 6.2.3 Energy Cost and Unit Price 122.
6.3 Centralized DR Approaches 124 -- 6.3.1 Minimize Peak-to-Average Ratio 124 -- 6.3.2 Minimize Total Cost of Power Generation 125 -- 6.4 GameTheoretical Approaches 128 -- 6.4.1 Formulated Game 128 -- 6.4.2 GameTheoretical Approach 1: Locally Computed Smart Pricing 129 -- 6.4.3 GameTheoretical Approach 2: Semifixed Smart Pricing 131 -- 6.4.4 Mixed Approach: Mixed GA1 and GA2 132 -- 6.5 Precision and Truthfulness of the Proposed DR System 132 -- 6.6 Numerical and Simulation Results 132 -- 6.6.1 Settings 132 -- 6.6.2 Comparison of 1, 2 and GA1 135 -- 6.6.3 Comparison of Different Distributed Approaches 136 -- 6.6.4 The Impact from Energy Storage Unit 141 -- 6.6.5 The Impact from Increasing Renewable Energy 143 -- 6.7 Summary 145 -- 7 Intelligent Charging for Electric Vehicles-Scheduling in Battery Exchanges Stations 147 -- 7.1 Background and RelatedWork 147 -- 7.1.1 Background and Overview 147 -- 7.1.2 RelatedWork 149 -- 7.2 System Model 150 -- 7.2.1 Overview of the Studied System 150 -- 7.2.2 Mathematical Formulation 151 -- 7.2.3 Customer Estimation 152 -- 7.3 Load Scheduling Schemes for BESs 154 -- 7.3.1 Constraints for a BES si 154 -- 7.3.2 Minimizing PAR: Problem Formulation and Analysis 156 -- 7.3.3 Problem Formulation and Analysis for Minimizing Costs 156 -- 7.3.4 GameTheoretical Approach 159 -- 7.4 Simulation Analysis and Results 161 -- 7.4.1 Settings for the Simulations 161 -- 7.4.2 Impact of the Proposed DSM on PAR 163 -- 7.4.3 Evaluation of BESs Equipment Settings 164 -- 7.4.3.1 Number of Charging Ports 164 -- 7.4.3.2 Maximum Number of Fully Charged Batteries 164 -- 7.4.3.3 Preparation at the Beginning of Each Day 165 -- 7.4.3.4 Impact on PAR from BESs 166 -- 7.4.4 Evaluations of the GameTheoretical Approach 167 -- 7.5 Summary 169 -- 8 Big Data Analytics and Cloud Computing in the Smart Grid 171 -- 8.1 Background and Motivation 171 -- 8.1.1 Big Data Era 171 -- 8.1.2 The Smart Grid and Big Data 173 -- 8.2 Pricing and Energy Forecasts in Demand Response 174.
8.2.1 An Overview of Pricing and Energy Forecasts 174 -- 8.2.2 A Case Study of Energy Forecasts 176 -- 8.3 Attack Detection 179 -- 8.3.1 An Overview of Attack Detection in the Smart Grid 179 -- 8.3.2 Current Problems and Techniques 180 -- 8.4 Cloud Computing in the Smart Grid 182 -- 8.4.1 Basics of Cloud Computing 182 -- 8.4.2 Advantages of Cloud Computing in the Smart Grid 183 -- 8.4.3 A Cloud Computing Architecture for the Smart Grid 184 -- 8.5 Summary 185 -- 9 A Secure Data Learning Scheme for Big Data Applications in the Smart Grid 187 -- 9.1 Background and RelatedWork 187 -- 9.1.1 Motivation and Background 187 -- 9.1.2 RelatedWork 189 -- 9.2 Preliminaries 190 -- 9.2.1 Classic Centralized Learning Scheme 190 -- 9.2.2 Supervised LearningModels 191 -- 9.2.2.1 Supervised Regression Learning Model 191 -- 9.2.2.2 Regularization Term 191 -- 9.2.3 Security Model 192 -- 9.3 Secure Data Learning Scheme 193 -- 9.3.1 Data Learning Scheme 193 -- 9.3.2 The Proposed Security Scheme 194 -- 9.3.2.1 Privacy Scheme 194 -- 9.3.2.2 Identity Protection 195 -- 9.3.3 Analysis of the Learning Process 197 -- 9.3.4 Analysis of the Security 197 -- 9.4 Smart Metering Data Set Analysis-A Case Study 198 -- 9.4.1 Smart Grid AMI and Metering Data Set 198 -- 9.4.2 Regression Study 200 -- 9.5 Conclusion and FutureWork 203 -- 10 Security Challenges in the Smart Grid Communication Infrastructure 205 -- 10.1 General Security Challenges 205 -- 10.1.1 Technical Requirements 205 -- 10.1.2 Information Security Domains 207 -- 10.1.3 Standards and interoperability 207 -- 10.2 Logical Security Architecture 207 -- 10.2.1 Key Concepts and Assumptions 207 -- 10.2.2 Logical Interface Categories 209 -- 10.3 Network Security Requirements 210 -- 10.3.1 Utility-Owned Private Networks 210 -- 10.3.2 Public Networks in the Smart Grid 212 -- 10.4 Classification of Attacks 213 -- 10.4.1 Component-Based Attacks 213 -- 10.4.2 Protocol-Based Attacks 214 -- 10.5 Existing Security Solutions 215 -- 10.6 Standardization and Regulation 216.
10.6.1 Commissions and Considerations 217 -- 10.6.2 Selected Standards 217 -- 10.7 Summary 219 -- 11 Security Schemes for AMI Private Networks 221 -- 11.1 Preliminaries 221 -- 11.1.1 Security Services 221 -- 11.1.2 Security Mechanisms 222 -- 11.1.3 Notations of the Keys Used inThis Chapter 223 -- 11.2 Initial Authentication 223 -- 11.2.1 An Overview of the Proposed Authentication Process 223 -- 11.2.1.1 DAP Authentication Process 224 -- 11.2.1.2 Smart Meter Authentication Process 225 -- 11.2.2 The Authentication Handshake Protocol 226 -- 11.2.3 Security Analysis 229 -- 11.3 Proposed Security Protocol in Uplink Transmissions 230 -- 11.3.1 Single-Traffic Uplink Encryption 231 -- 11.3.2 Multiple-Traffic Uplink Encryption 232 -- 11.3.3 Decryption Process in Uplink Transmissions 233 -- 11.3.4 Security Analysis 235 -- 11.4 Proposed Security Protocol in Downlink Transmissions 235 -- 11.4.1 Broadcast Control Message Encryption 236 -- 11.4.2 One-to-One Control Message Encryption 236 -- 11.4.3 Security Analysis 237 -- 11.5 Domain Secrets Update 238 -- 11.5.1 AS Public/Private Keys Update 238 -- 11.5.2 Active Secret Key Update 238 -- 11.5.3 Preshared Secret Key Update 239 -- 11.6 Summary 239 -- 12 Security Schemes for Smart Grid Communications over Public Networks 241 -- 12.1 Overview of the Proposed Security Schemes 241 -- 12.1.1 Background and Motivation 241 -- 12.1.2 Applications of the Proposed Security Schemes in the Smart Grid 242 -- 12.2 Proposed ID-Based Scheme 244 -- 12.2.1 Preliminaries 244 -- 12.2.2 Identity-Based Signcryption 245 -- 12.2.2.1 Setup 245 -- 12.2.2.2 Keygen 245 -- 12.2.2.3 Signcryption 246 -- 12.2.2.4 Decryption 246 -- 12.2.2.5 Verification 246 -- 12.2.3 Consistency of the Proposed IBSC Scheme 247 -- 12.2.4 Identity-Based Signature 247 -- 12.2.4.1 Signature 248 -- 12.2.4.2 Verification 248 -- 12.2.5 Key Distribution and Symmetrical Cryptography 248 -- 12.3 Single Proxy Signing Rights Delegation 249 -- 12.3.1 Certificate Distribution by the Local Control Center 249.
12.3.2 Signing Rights Delegation by the PKG 250 -- 12.3.3 Single Proxy Signature 250 -- 12.4 Group Proxy Signing Rights Delegation 251 -- 12.4.1 Certificate Distribution 251 -- 12.4.2 Partial Signature 251 -- 12.4.3 Group Signature 251 -- 12.5 Security Analysis of the Proposed Schemes 252 -- 12.5.1 Assumptions for Security Analysis 252 -- 12.5.2 Identity-Based Encryption Security 253 -- 12.5.2.1 Security Model 253 -- 12.5.2.2 Security Analysis 253 -- 12.5.3 Identity-Based Signature Security 255 -- 12.5.3.1 Security Models 255 -- 12.5.3.2 Security Analysis 256 -- 12.6 Performance Analysis of the Proposed Schemes 258 -- 12.6.1 Computational Complexity of the Proposed Schemes 258 -- 12.6.2 Choosing Bilinear Paring Functions 259 -- 12.6.3 Numerical Results 260 -- 12.7 Conclusion 261 -- 13 Open Issues and Possible Future Research Directions 263 -- 13.1 Efficient and Secure Cloud Services and Big Data Analytics 263 -- 13.2 Quality-of-Service Framework 263 -- 13.3 Optimal Network Design 264 -- 13.4 Better Involvement of Green Energy 265 -- 13.5 Need for Secure Communication Network Infrastructure 265 -- 13.6 Electrical Vehicles 265 -- Reference 267 -- Index 287.
Record Nr. UNINA-9910807947003321
Ye Feng <1989->  
Hoboken, New Jersey : , : John Wiley & Sons, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui