top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
From 5G to 6G : technologies, architecture, AI, and security / / Abdulrahman Yarali
From 5G to 6G : technologies, architecture, AI, and security / / Abdulrahman Yarali
Autore Yarali Abdulrahman
Edizione [First edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (227 pages)
Disciplina 621.38456
Soggetto topico Mobile communication systems
Artificial intelligence
ISBN 1-119-88311-3
1-119-88309-1
1-119-88310-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- About the Author -- Preface -- Chapter 1 Technologies and Development for the Next Information Age -- 1.1 Introduction -- 1.2 Roadmap to 6G -- 1.2.1 Society 5.0 -- 1.2.2 Extended Reality -- 1.2.3 Wireless Brain-Computer -- 1.2.4 Haptic Communication -- 1.2.5 Smart Healthcare -- 1.2.6 Five-Sense Information -- 1.2.7 The Internet of Everything -- 1.2.8 5G to 6G -- 1.3 AI and Cybersecurity: Paving the Way for the Future -- 1.4 Fusion of IoT, AI, and Cybersecurity -- 1.4.1 Where Did AI Begin? -- 1.4.2 Role of AI -- 1.4.3 Disadvantages of AI -- 1.4.4 Advantages of AI -- 1.4.5 Threats from Hackers -- 1.5 How AI Can Help Solve These Problems -- 1.6 Connected Devices and Cybersecurity -- 1.7 Solutions for Data Management in Cybersecurity -- 1.8 Conclusion -- References -- Chapter 2 Networks of the Future -- 2.1 Introduction -- 2.2 The Motive for Energy-Efficient ICTs -- 2.2.1 Approaches -- 2.3 Wireless Networks -- 2.3.1 Wi-Fi -- 2.3.2 LTE -- 2.3.3 Heterogeneous Networks -- 2.3.4 Femtocell Repeater -- 2.3.5 The Dawn of 5G Wireless Systems -- 2.3.6 Advancing from 5G to 6G Networks -- 2.4 Cognitive Networking -- 2.4.1 Zero-Touch Network and Service Management -- 2.4.2 Zero-Trust Networking -- 2.4.3 Information-Centric Networking -- 2.4.4 In-Network Computing -- 2.4.5 Active Networking -- 2.5 Mobile Edge Computing -- 2.6 Quantum Communications -- 2.6.1 Quantum Computing and 6G Wireless -- 2.7 Cybersecurity of 6G -- 2.8 Massive Machine-Type Communications (MTC) -- 2.9 Edge-Intelligence and Pervasive Artificial Intelligence in 6G -- 2.10 Blockchain: Foundations and Role in 6G -- 2.11 Role of Open-Source Platforms in 6G -- 2.11.1 PHY Technologies for 6G Wireless -- 2.11.2 Reconfigurable Intelligent Surface for 6G Wireless Networks -- 2.11.3 Millimeter-Wave and Terahertz Spectrum for 6G Wireless.
2.11.4 Challenges in Transport Layer for Terabit Communications -- 2.11.5 High-Capacity Backhaul Connectivity for 6G Wireless -- 2.11.6 Cloud-Native Approach for 6G Wireless Networks -- 2.11.7 Machine Type Communications in 6G -- 2.11.8 Impact of 5G and 6G on Health and Environment -- 2.12 Integration of 5G with AI and IoT and Roadmap to 6G -- 2.13 3GPP -- 2.14 Conclusion -- References -- Chapter 3 The Future of Wireless Communication with 6G -- 3.1 Introduction -- 3.2 Recent Trends Leading to 6G Technology Evolution -- 3.3 Security and Privacy Challenges in 6G Wireless Communications -- 3.4 The Impact of 6G on Healthcare Systems -- 3.5 The Impact of 6G on Space Technology and Satellite Communication -- 3.6 The Impact of 6G on Other Industries -- 3.7 Terahertz Wireless Systems and Networks with 6G -- 3.8 The Future of 6G and Its Role in IT -- References -- Chapter 4 Artificial Intelligence and Machine Learning in the Era of 5G and 6G Technology -- 4.1 Artificial Intelligence and Machine Learning: Definitions, Applications, and Challenges -- 4.1.1 Application of Machine Learning and Artificial Intelligence -- 4.1.2 Challenges for Machine Learning and Artificial Intelligence -- 4.2 Artificial Intelligence: Laws, Regulations, and Ethical Issues -- 4.2.1 Ethical Governance in Artificial Intelligence -- 4.2.2 The Future of Regulation for AI -- 4.3 Potentials of Artificial Intelligence in Wireless 5G and 6G: Benefits and Challenges -- 4.3.1 Artificial Intelligence in Wireless 5G and 6G -- 4.3.2 Benefits and Challenges of AI in 5G and 6G -- 4.3.3 How Can AI Be Used to Enhance 6G Wireless Security? -- 4.3.4 The 6G Era's Edge Intelligence and Cloudification -- 4.3.5 Distributed Artificial Intelligence in 6G Security -- 4.4 Cybersecurity Issues in Advanced 5G and 6G -- 4.5 Benefits and Challenges of Using AI in Cybersecurity: Help or Hurt?.
4.6 How Can AI Be Used by Hackers Attacking Networks? -- 4.7 Conclusion -- References -- Chapter 5 6G Wireless Communication Systems: Emerging Technologies, Architectures, Challenges, and Opportunities -- 5.1 Introduction -- 5.2 Important Aspects of Sixth-Generation Communication Technology -- 5.2.1 A Much Higher Data Rate -- 5.2.2 A Much Lower Latency -- 5.2.3 Network Reliability and Accuracy -- 5.2.4 Energy Efficiency -- 5.2.5 Focus on Machines as Primary Users -- 5.2.6 AI Wireless Communication Tools -- 5.2.7 Personalized Network Experience -- 5.3 Enabling Technologies Behind the Drive for 6G -- 5.3.1 Artificial Intelligence -- 5.3.2 Terahertz Communications -- 5.3.3 Optical Wireless Technology -- 5.4 Extreme Performance Technologies in 6G Connectivity -- 5.4.1 Quantum Communication and Quantum ML -- 5.4.2 Blockchain -- 5.5 6G Communications Using Intelligent Platforms -- 5.5.1 Integrated Intelligence -- 5.5.2 Satellite-Based Integrated Network -- 5.5.3 Wireless Information and Energy Transfer Are Seamlessly Integrated -- 5.6 Artificial Intelligence and a Data-Driven Approach to Networks -- 5.6.1 Zero-Touch Network -- 5.6.2 AI by Design -- 5.6.3 Technological Fundamentals for Zero-Touch Systems -- 5.7 Sensing for 6G -- 5.7.1 A Bandwidth as Well as Carrier Frequency Rise -- 5.7.2 Chip Technologies of the Future -- 5.7.3 Models of Consistent Channels -- 5.7.4 X-Haul and Transport Network for 6G -- 5.8 Applications -- 5.9 Innovative 6G Network Architectures -- 5.10 Conclusion -- References -- Chapter 6 6G: Architecture, Applications, and Challenges -- 6.1 Introduction -- 6.2 6G Network Architecture Vision -- 6.2.1 6G Use Cases, Requirements, and Metrics -- 6.2.2 What 5G Is Currently Covering -- 6.3 6th Generation Networks: A Step Beyond 5G -- 6.3.1 6G and the Fundamental Features -- 6.4 Emerging Applications of 6G Wireless Networks.
6.4.1 Virtual, Augmented, and Mixed Reality -- 6.4.2 Holographic Telepresence -- 6.4.3 Automation: The Future of Factories -- 6.4.4 Smart Lifestyle with the Integration of the Internet of Things -- 6.4.5 Autonomous Driving and Connected Devices -- 6.4.6 Healthcare -- 6.4.7 Nonterrestrial Communication -- 6.4.8 Underwater Communication -- 6.4.9 Disaster Management -- 6.4.10 Environment -- 6.5 The Requirements and KPI Targets of 6G -- 6.5.1 Extremely Low Latency -- 6.5.2 Low Power Consumption -- 6.5.3 High Data Rates -- 6.5.4 High-Frequency Bands -- 6.5.5 Ultra-Reliability -- 6.5.6 Security and Privacy -- 6.5.7 Massive Connection Density -- 6.5.8 Extreme Coverage Extension -- 6.5.9 Mobility -- 6.6 6G Applications -- 6.7 Challenges in 6G: Standardization, Design, and Deployment -- References -- Chapter 7 Cybersecurity in Digital Transformation Era: Security Risks and Solutions -- 7.1 Introduction -- 7.2 Digital Transformation and Mesh Networks of Networks -- 7.3 Security as the Enemy of Digital Transformation -- 7.4 The Current State of Cybercrime -- 7.5 Security and Technologies of the Digital Transformation Economy -- 7.6 Tackling the Cybersecurity Maturity Challenges to Succeed with Digital Transformation -- 7.7 Security Maturity and Optimization: Perception versus Reality -- 7.7.1 Why Cybersecurity Maturity Is Not What It Should Be in the Digital Business and Transformation Reality -- 7.7.2 Why Cybersecurity Maturity and Strategy Are Lagging -- 7.8 Changing Security Parameters and Cyber Risks Demand a Holistic Security Approach for Digital Business -- 7.9 Cybersecurity Challenges and Digital Risks for the Future -- 7.10 Conclusion -- References -- Chapter 8 Next Generations Networks: Integration, Trustworthiness, Privacy, and Security -- 8.1 Introduction -- 8.2 The State of 5G Networks -- 8.2.1 Applications and Services of 5G Technologies.
8.3 6G: Key Technologies -- 8.4 6G: Application and Services -- 8.5 Benefits of 6G over 5G: A Comparison -- 8.5.1 Artificial Intelligence in 5G and 6G: Benefits and Challenges -- 8.5.2 Artificial Intelligence and Cybersecurity -- 8.5.3 Benefits and Challenges of AI and 6G for Cybersecurity as Defense and Offense -- 8.6 6G: Integration and Roadmap -- 8.7 Key Words in Safeguarding 6G -- 8.7.1 Trust -- 8.7.2 Security -- 8.7.3 Privacy -- 8.8 Trustworthiness in 6G -- 8.8.1 Is Trust Networking Needed? -- 8.8.2 Benefits of Trust Networking for 6G -- 8.8.3 Constraints of Trust Networking in 6G -- 8.8.4 Principles for Trust Networking -- 8.8.5 Challenges in Trust Networking for 6G -- 8.9 Network Security Architecture for 6G -- 8.9.1 Privacy and Security in IoT for 6G -- 8.10 6G Wireless Systems -- 8.10.1 Advances -- 8.10.2 Physical Layer Security as a Means of Confidentiality -- 8.10.3 Challenges of Implementing Federated Learning -- 8.10.4 Physical Layer Security for Six-Generation Connectivity -- 8.10.5 Physical Layer Security Using Light Communications -- 8.10.6 Challenges for Physical Layer Security -- 8.10.7 Privacy Requirements for 6G -- 8.10.8 Is Personal Information Really Personal? -- 8.11 Fifth Generation vs. Sixth Generation -- 8.12 Conclusion -- References -- Chapter 9 Artificial Intelligence: Cybersecurity and Security Threats -- 9.1 Introduction -- 9.2 5G and 6G -- 9.3 Cybersecurity in Its Current State -- 9.4 AI as a Concept -- 9.5 AI: A Solution for Cybersecurity -- 9.6 AI: New Challenges in Cybersecurity -- 9.7 Conclusion -- References -- Chapter 10 Impact of Artificial Intelligence and Machine Learning on Cybersecurity -- 10.1 Introduction -- 10.2 What Is Artificial Intelligence (AI)? -- 10.2.1 Reactive Machines -- 10.2.2 Limited Memory -- 10.2.3 Theory of Mind -- 10.2.4 Self-Awareness -- 10.3 The Transformative Power of AI.
10.4 Understanding the Relationship Between AI and Cybersecurity.
Record Nr. UNINA-9910829834703321
Yarali Abdulrahman  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent connectivity : AI, IoT, and 5G / / Abdulrahman Yarali
Intelligent connectivity : AI, IoT, and 5G / / Abdulrahman Yarali
Autore Yarali Abdulrahman
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (353 pages)
Disciplina 004.678
Collana IEEE Press Ser.
Soggetto topico Internet of things
5G mobile communication systems
Artificial intelligence - Industrial applications
ISBN 9781119685180
9781119685265
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- Introduction -- Chapter 1 Technology Adoption and Emerging Trends -- 1.1 Introduction -- 1.2 Trends in Business Technology -- 1.2.1 Trends that Could Disrupt the Industry -- 1.2.2 Adopting New Technologies -- 1.2.3 Best Practices and Risks Associated with Emerging Technologies -- 1.2.4 Power of Disruptive Technologies -- 1.2.5 Driving Strategy Around Our Priority -- 1.2.6 Strategic Partnerships to be Pursued -- 1.3 AI-Fueled Organizations -- 1.4 Connectivity of Tomorrow -- 1.4.1 Intelligent Interfaces -- 1.5 Moving Beyond Marketing -- 1.6 Cloud Computing -- 1.7 Cybersecurity, Privacy, and Risk Management -- 1.8 Conclusion -- References -- Chapter 2 Telecommunication Transformation and Intelligent Connectivity -- 2.1 Introduction -- 2.1.1 Learning Algorithm and Its Connections to AI -- 2.1.2 Machine Learning as a Precursor to AI -- 2.1.3 Deep Learning and Realization of AI -- 2.1.4 Consideration of the Next Generation Wireless Technology -- 2.1.5 Potential of AI and 5G Network Technology Together -- 2.2 Cybersecurity Concerns in the 5G World -- 2.2.1 5G's Potential in Making Security a Priority -- 2.2.2 Key Features -- 2.3 Positive Effects of Addressing Cybersecurity Challenges in 5G -- 2.4 Intelligent Connectivity Use-Cases -- 2.4.1 Transportation and Logistics -- 2.4.2 AI-based Driver Assistance and Monitoring -- 2.4.3 Self-Driving Vehicles -- 2.4.4 Deliveries with Unmanned Vehicles -- 2.5 Industrial and Manufacturing Operations -- 2.5.1 Factory Automation and Remote Control of Industrial Robots -- 2.5.2 Remote Inspections and Maintenance, and Worker's Training -- 2.6 Healthcare -- 2.6.1 Remote Health Monitoring and Illness Prevention -- 2.6.2 Remote Diagnosis and Medical Operation -- 2.7 Public Safety and Security.
2.7.1 Intelligent Video-Surveillance and Security Systems -- 2.7.2 Emergency Services and Border Controls -- 2.7.3 Other Sectors -- 2.8 Conclusion -- References -- Chapter 3 The Internet of Things (IoT): Potentials and the Future Trends -- 3.1 Introduction -- 3.2 Achieving the Future of IoT -- 3.3 Commercial Opportunities for IoT -- 3.4 The Industrial Internet of Things -- 3.4.1 How IIoT Works -- 3.4.2 Benefits of IIoT -- 3.4.3 IIoT versus IoT -- 3.4.4 IIoT Applications and Examples -- 3.4.5 Vendors in IIoT -- 3.4.6 The Future of IIoT -- 3.5 Future Impact of IoT in Our Industry -- 3.6 Data Sharing in the IoT Environment -- 3.7 IoT Devices for Environment Operation -- 3.7.1 Step One: Pick Your Protocol -- 3.7.2 Step Two: Understand Coexistence -- 3.7.3 Step Three: Pick Your Technique -- 3.7.4 Step Four: Create Your Test Plan -- 3.8 Interoperability Issues of IoT -- 3.9 IoT-Cloud - Application -- 3.10 Regulation and Security Issues of IoT -- 3.11 Achieving IoT Innovations While Tackling Security and Regulation Issues -- 3.12 Future of IoT -- 3.13 Conclusion -- References -- Chapter 4 The Wild Wonders of 5G Wireless Technology -- 4.1 Introduction -- 4.1.1 First Generation (1G) -- 4.1.2 Second Generation (2G) -- 4.1.3 Third Generation (3G) -- 4.1.4 Advanced Third Generation (3.5G) -- 4.1.5 Fourth Generation (4G) -- 4.1.6 Fifth Generation (5G) -- 4.2 5G Architecture -- 4.2.1 Realizing New 5G Possibilities with the Intelligent Edge -- 4.3 5G Applications -- 4.3.1 5G and Video Surveillance -- 4.3.2 5G and Fixed Wireless Access (FWA) -- 4.4 5G Network Architecture -- 4.5 Security and Issues of 5G -- 4.6 IoT Devices in 5G Wireless -- 4.7 Big Data Analytics in 5G -- 4.8 AI Empowers a Wide Scope of Use Cases -- 4.9 Conclusion -- References -- Chapter 5 Artificial Intelligence Technology -- 5.1 Introduction -- 5.2 Core Concepts of Artificial Intelligence.
5.3 Machine Learning and Applications -- 5.4 Deep Learning -- 5.5 Neural Networks Follow a Natural Model -- 5.6 Classifications of Artificial Intelligence -- 5.7 Trends in Artificial Intelligence -- 5.7.1 Artificial Intelligence in Energy -- 5.7.2 Artificial Intelligence in Healthcare -- 5.7.3 Artificial Intelligence in Education -- 5.7.4 Artificial Intelligence in Manufacturing -- 5.7.5 Artificial Intelligence in Financial Services -- 5.7.6 Artificial Intelligence in Transport -- 5.8 Challenges of Artificial Intelligence -- 5.8.1 Data -- 5.9 Funding Trends in Artificial Intelligence -- 5.9.1 Artificial Readiness -- 5.9.2 Foundational Readiness -- 5.9.3 Operational Readiness -- 5.9.4 Transformational Readiness -- 5.10 Conclusion -- References -- Chapter 6 AI, 5G, and IoT: Driving Forces Towards the Industry Technology Trends -- 6.1 Introduction -- 6.2 Fifth Generation of Network Technology -- 6.3 Internet of Things (IoT) -- 6.4 Industrial Internet of Things -- 6.5 IoT in the Automotive Industry -- 6.6 IoT in Agriculture -- 6.7 AI, IoT, and 5G Security -- 6.8 Conclusion -- References -- Chapter 7 Intelligent Connectivity: New Capabilities to Bring Complex Use Cases -- 7.1 Introduction -- 7.1.1 Artificial Intelligence -- 7.1.2 The Fifth Generation Networks -- 7.1.3 The Internet of Things -- 7.2 Machine-to-Machine Communication and the Internet of Things -- 7.3 Convergence of Internet of Things, Artificial Intelligence, and 5G -- 7.3.1 The Benefits of Intelligent Connectivity -- 7.4 Intelligent Connectivity Applications -- 7.4.1 Industry -- 7.4.2 Transport and Logistics -- 7.4.3 Healthcare -- 7.4.4 Security -- 7.4.5 Smart Homes and Personal Assistant -- 7.4.6 Wearable Technology -- 7.4.7 Entertainment -- 7.4.8 Communication -- 7.4.9 Resource Management -- 7.4.10 Agriculture -- 7.4.11 Education -- 7.5 Challenges and Risks of Intelligent Connectivity.
7.5.1 Economic Risks -- 7.5.2 Risks to Human Safety and Agency -- 7.5.3 Social Risk -- 7.5.4 Secondary Risks -- 7.5.5 Confidentiality and Scalability -- 7.6 Recommendations -- 7.7 Conclusion -- References -- Chapter 8 IoT: Laws, Policies, and Regulations -- 8.1 Introduction -- 8.2 Recently Published Laws and Regulations -- 8.2.1 IoT Cybersecurity Improvement Act of 2017 -- 8.3 Developing Innovation and Growing the Internet of Things (DIGIT) Act -- 8.4 General View -- 8.5 Relaxation of Laws by the Federal Aviation Administration (FAA) -- 8.6 Supporting Innovation of Self-Driving Cars by Government Policies -- 8.6.1 Investment by US Department of Homeland Security -- 8.6.2 United States Guiding Principles for IoT Security -- 8.6.3 The United Kingdom on IoT -- 8.6.4 United States Department of Commerce -- 8.6.5 Federal Trade Commission and Creating an IoT Security Solution -- 8.7 Recommendations -- 8.8 Conclusion -- References -- Chapter 9 Artificial Intelligence and Blockchain -- 9.1 Introduction -- 9.2 Decentralized Intelligence -- 9.2.1 Data Protection -- 9.2.2 Trusting AI Decision Making -- 9.2.3 AI and Encryption -- 9.3 Applications -- 9.3.1 The Coordination of Blockchain into AI -- 9.3.2 Essential Blockchain Benefits -- 9.4 How Artificial Intelligence and Blockchain Will Affect Society -- 9.4.1 Banking and Payments -- 9.4.2 Cybersecurity -- 9.4.3 Internet of Things -- 9.4.4 Unified Communications -- 9.4.5 Government -- 9.4.6 Crowdfunding and Donating to Charities -- 9.4.7 Healthcare -- 9.4.8 Rentals and Ride-Sharing -- 9.5 Augmented Reality -- 9.5.1 Augmented Reality in the Production Context -- 9.5.2 How Augmented Reality Works -- 9.5.3 Marker and Marker-Less AR -- 9.5.4 Layered AR -- 9.5.5 Projection AR -- 9.5.6 AR in Education -- 9.5.7 AR in Navigation -- 9.5.8 AR in Games -- 9.6 Mixed Reality -- 9.7 Virtual Reality -- 9.7.1 Virtual World.
9.7.2 Mental Immersion -- 9.7.3 Physical Immersion -- 9.7.4 Tangible Feedback -- 9.7.5 Intelligence -- 9.7.6 Types of Virtual Reality -- 9.7.7 Semi-Immersive -- 9.7.8 Completely Immersive -- 9.8 Key Components in a Virtual Reality System -- 9.8.1 PC (Personal Computer)/Console/Smartphone -- 9.8.2 Head-Mounted Display -- 9.8.3 Information Devices -- 9.8.4 Augmented Reality versus Virtual Reality -- 9.8.5 Benefits of Augmented Reality -- 9.9 Augmented Reality Uses -- 9.9.1 Retail -- 9.9.2 Real Estate -- 9.9.3 Interior Design -- 9.9.4 Tourism and Maps -- 9.9.5 Training and Education -- 9.9.6 Healthcare -- 9.10 Applications of Virtual Reality in Business -- 9.10.1 Training -- 9.10.2 Retail -- 9.10.3 Construction -- 9.10.4 Data Representation -- 9.10.5 Manufacture -- 9.11 The Future of Blockchain -- 9.12 Blockchain Applications -- 9.12.1 National Cryptographic Money -- 9.12.2 Blockchain into Government -- 9.12.3 Blockchain Specialists -- 9.13 Blockchain and the Internet of Things -- 9.14 Law Coordination -- 9.15 Collaboration for Blockchain Success -- References -- Chapter 10 Digital Twin Technology -- 10.1 Introduction -- 10.2 The Timeline and History of Digital Twin Technology -- 10.3 Technologies Employed in Digital Twin Models -- 10.3.1 Cloud Services -- 10.3.2 Cyber-Physical Systems -- 10.4 The Dimension of Digital Twin Models -- 10.4.1 Digital Twin Data -- 10.4.2 Services in Digital Twins -- 10.4.3 Connection in Digital Twins -- 10.4.4 Physical Assets in Digital Twins -- 10.4.5 Virtual Entities in Digital Twins -- 10.5 Digital Twin and Other Technologies -- 10.5.1 Digital Twins and Internet of Things -- 10.5.2 Digital Twins and Artificial Intelligence -- 10.5.3 Digital Twins and Analytics -- 10.5.4 Digital Twins and Connectivity -- 10.5.5 Digital Twins and Machine Learning -- 10.6 Digital Twin Technology Implementation.
10.7 Benefits of Digital Twins.
Record Nr. UNINA-9910555251303321
Yarali Abdulrahman  
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent connectivity : AI, IoT, and 5G / / Abdulrahman Yarali
Intelligent connectivity : AI, IoT, and 5G / / Abdulrahman Yarali
Autore Yarali Abdulrahman
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , [2022]
Descrizione fisica 1 online resource (353 pages)
Disciplina 004.678
Collana IEEE Press
Soggetto topico Internet of things
5G mobile communication systems
Artificial intelligence - Industrial applications
ISBN 9781119685180
9781119685265
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- Introduction -- Chapter 1 Technology Adoption and Emerging Trends -- 1.1 Introduction -- 1.2 Trends in Business Technology -- 1.2.1 Trends that Could Disrupt the Industry -- 1.2.2 Adopting New Technologies -- 1.2.3 Best Practices and Risks Associated with Emerging Technologies -- 1.2.4 Power of Disruptive Technologies -- 1.2.5 Driving Strategy Around Our Priority -- 1.2.6 Strategic Partnerships to be Pursued -- 1.3 AI-Fueled Organizations -- 1.4 Connectivity of Tomorrow -- 1.4.1 Intelligent Interfaces -- 1.5 Moving Beyond Marketing -- 1.6 Cloud Computing -- 1.7 Cybersecurity, Privacy, and Risk Management -- 1.8 Conclusion -- References -- Chapter 2 Telecommunication Transformation and Intelligent Connectivity -- 2.1 Introduction -- 2.1.1 Learning Algorithm and Its Connections to AI -- 2.1.2 Machine Learning as a Precursor to AI -- 2.1.3 Deep Learning and Realization of AI -- 2.1.4 Consideration of the Next Generation Wireless Technology -- 2.1.5 Potential of AI and 5G Network Technology Together -- 2.2 Cybersecurity Concerns in the 5G World -- 2.2.1 5G's Potential in Making Security a Priority -- 2.2.2 Key Features -- 2.3 Positive Effects of Addressing Cybersecurity Challenges in 5G -- 2.4 Intelligent Connectivity Use-Cases -- 2.4.1 Transportation and Logistics -- 2.4.2 AI-based Driver Assistance and Monitoring -- 2.4.3 Self-Driving Vehicles -- 2.4.4 Deliveries with Unmanned Vehicles -- 2.5 Industrial and Manufacturing Operations -- 2.5.1 Factory Automation and Remote Control of Industrial Robots -- 2.5.2 Remote Inspections and Maintenance, and Worker's Training -- 2.6 Healthcare -- 2.6.1 Remote Health Monitoring and Illness Prevention -- 2.6.2 Remote Diagnosis and Medical Operation -- 2.7 Public Safety and Security.
2.7.1 Intelligent Video-Surveillance and Security Systems -- 2.7.2 Emergency Services and Border Controls -- 2.7.3 Other Sectors -- 2.8 Conclusion -- References -- Chapter 3 The Internet of Things (IoT): Potentials and the Future Trends -- 3.1 Introduction -- 3.2 Achieving the Future of IoT -- 3.3 Commercial Opportunities for IoT -- 3.4 The Industrial Internet of Things -- 3.4.1 How IIoT Works -- 3.4.2 Benefits of IIoT -- 3.4.3 IIoT versus IoT -- 3.4.4 IIoT Applications and Examples -- 3.4.5 Vendors in IIoT -- 3.4.6 The Future of IIoT -- 3.5 Future Impact of IoT in Our Industry -- 3.6 Data Sharing in the IoT Environment -- 3.7 IoT Devices for Environment Operation -- 3.7.1 Step One: Pick Your Protocol -- 3.7.2 Step Two: Understand Coexistence -- 3.7.3 Step Three: Pick Your Technique -- 3.7.4 Step Four: Create Your Test Plan -- 3.8 Interoperability Issues of IoT -- 3.9 IoT-Cloud - Application -- 3.10 Regulation and Security Issues of IoT -- 3.11 Achieving IoT Innovations While Tackling Security and Regulation Issues -- 3.12 Future of IoT -- 3.13 Conclusion -- References -- Chapter 4 The Wild Wonders of 5G Wireless Technology -- 4.1 Introduction -- 4.1.1 First Generation (1G) -- 4.1.2 Second Generation (2G) -- 4.1.3 Third Generation (3G) -- 4.1.4 Advanced Third Generation (3.5G) -- 4.1.5 Fourth Generation (4G) -- 4.1.6 Fifth Generation (5G) -- 4.2 5G Architecture -- 4.2.1 Realizing New 5G Possibilities with the Intelligent Edge -- 4.3 5G Applications -- 4.3.1 5G and Video Surveillance -- 4.3.2 5G and Fixed Wireless Access (FWA) -- 4.4 5G Network Architecture -- 4.5 Security and Issues of 5G -- 4.6 IoT Devices in 5G Wireless -- 4.7 Big Data Analytics in 5G -- 4.8 AI Empowers a Wide Scope of Use Cases -- 4.9 Conclusion -- References -- Chapter 5 Artificial Intelligence Technology -- 5.1 Introduction -- 5.2 Core Concepts of Artificial Intelligence.
5.3 Machine Learning and Applications -- 5.4 Deep Learning -- 5.5 Neural Networks Follow a Natural Model -- 5.6 Classifications of Artificial Intelligence -- 5.7 Trends in Artificial Intelligence -- 5.7.1 Artificial Intelligence in Energy -- 5.7.2 Artificial Intelligence in Healthcare -- 5.7.3 Artificial Intelligence in Education -- 5.7.4 Artificial Intelligence in Manufacturing -- 5.7.5 Artificial Intelligence in Financial Services -- 5.7.6 Artificial Intelligence in Transport -- 5.8 Challenges of Artificial Intelligence -- 5.8.1 Data -- 5.9 Funding Trends in Artificial Intelligence -- 5.9.1 Artificial Readiness -- 5.9.2 Foundational Readiness -- 5.9.3 Operational Readiness -- 5.9.4 Transformational Readiness -- 5.10 Conclusion -- References -- Chapter 6 AI, 5G, and IoT: Driving Forces Towards the Industry Technology Trends -- 6.1 Introduction -- 6.2 Fifth Generation of Network Technology -- 6.3 Internet of Things (IoT) -- 6.4 Industrial Internet of Things -- 6.5 IoT in the Automotive Industry -- 6.6 IoT in Agriculture -- 6.7 AI, IoT, and 5G Security -- 6.8 Conclusion -- References -- Chapter 7 Intelligent Connectivity: New Capabilities to Bring Complex Use Cases -- 7.1 Introduction -- 7.1.1 Artificial Intelligence -- 7.1.2 The Fifth Generation Networks -- 7.1.3 The Internet of Things -- 7.2 Machine-to-Machine Communication and the Internet of Things -- 7.3 Convergence of Internet of Things, Artificial Intelligence, and 5G -- 7.3.1 The Benefits of Intelligent Connectivity -- 7.4 Intelligent Connectivity Applications -- 7.4.1 Industry -- 7.4.2 Transport and Logistics -- 7.4.3 Healthcare -- 7.4.4 Security -- 7.4.5 Smart Homes and Personal Assistant -- 7.4.6 Wearable Technology -- 7.4.7 Entertainment -- 7.4.8 Communication -- 7.4.9 Resource Management -- 7.4.10 Agriculture -- 7.4.11 Education -- 7.5 Challenges and Risks of Intelligent Connectivity.
7.5.1 Economic Risks -- 7.5.2 Risks to Human Safety and Agency -- 7.5.3 Social Risk -- 7.5.4 Secondary Risks -- 7.5.5 Confidentiality and Scalability -- 7.6 Recommendations -- 7.7 Conclusion -- References -- Chapter 8 IoT: Laws, Policies, and Regulations -- 8.1 Introduction -- 8.2 Recently Published Laws and Regulations -- 8.2.1 IoT Cybersecurity Improvement Act of 2017 -- 8.3 Developing Innovation and Growing the Internet of Things (DIGIT) Act -- 8.4 General View -- 8.5 Relaxation of Laws by the Federal Aviation Administration (FAA) -- 8.6 Supporting Innovation of Self-Driving Cars by Government Policies -- 8.6.1 Investment by US Department of Homeland Security -- 8.6.2 United States Guiding Principles for IoT Security -- 8.6.3 The United Kingdom on IoT -- 8.6.4 United States Department of Commerce -- 8.6.5 Federal Trade Commission and Creating an IoT Security Solution -- 8.7 Recommendations -- 8.8 Conclusion -- References -- Chapter 9 Artificial Intelligence and Blockchain -- 9.1 Introduction -- 9.2 Decentralized Intelligence -- 9.2.1 Data Protection -- 9.2.2 Trusting AI Decision Making -- 9.2.3 AI and Encryption -- 9.3 Applications -- 9.3.1 The Coordination of Blockchain into AI -- 9.3.2 Essential Blockchain Benefits -- 9.4 How Artificial Intelligence and Blockchain Will Affect Society -- 9.4.1 Banking and Payments -- 9.4.2 Cybersecurity -- 9.4.3 Internet of Things -- 9.4.4 Unified Communications -- 9.4.5 Government -- 9.4.6 Crowdfunding and Donating to Charities -- 9.4.7 Healthcare -- 9.4.8 Rentals and Ride-Sharing -- 9.5 Augmented Reality -- 9.5.1 Augmented Reality in the Production Context -- 9.5.2 How Augmented Reality Works -- 9.5.3 Marker and Marker-Less AR -- 9.5.4 Layered AR -- 9.5.5 Projection AR -- 9.5.6 AR in Education -- 9.5.7 AR in Navigation -- 9.5.8 AR in Games -- 9.6 Mixed Reality -- 9.7 Virtual Reality -- 9.7.1 Virtual World.
9.7.2 Mental Immersion -- 9.7.3 Physical Immersion -- 9.7.4 Tangible Feedback -- 9.7.5 Intelligence -- 9.7.6 Types of Virtual Reality -- 9.7.7 Semi-Immersive -- 9.7.8 Completely Immersive -- 9.8 Key Components in a Virtual Reality System -- 9.8.1 PC (Personal Computer)/Console/Smartphone -- 9.8.2 Head-Mounted Display -- 9.8.3 Information Devices -- 9.8.4 Augmented Reality versus Virtual Reality -- 9.8.5 Benefits of Augmented Reality -- 9.9 Augmented Reality Uses -- 9.9.1 Retail -- 9.9.2 Real Estate -- 9.9.3 Interior Design -- 9.9.4 Tourism and Maps -- 9.9.5 Training and Education -- 9.9.6 Healthcare -- 9.10 Applications of Virtual Reality in Business -- 9.10.1 Training -- 9.10.2 Retail -- 9.10.3 Construction -- 9.10.4 Data Representation -- 9.10.5 Manufacture -- 9.11 The Future of Blockchain -- 9.12 Blockchain Applications -- 9.12.1 National Cryptographic Money -- 9.12.2 Blockchain into Government -- 9.12.3 Blockchain Specialists -- 9.13 Blockchain and the Internet of Things -- 9.14 Law Coordination -- 9.15 Collaboration for Blockchain Success -- References -- Chapter 10 Digital Twin Technology -- 10.1 Introduction -- 10.2 The Timeline and History of Digital Twin Technology -- 10.3 Technologies Employed in Digital Twin Models -- 10.3.1 Cloud Services -- 10.3.2 Cyber-Physical Systems -- 10.4 The Dimension of Digital Twin Models -- 10.4.1 Digital Twin Data -- 10.4.2 Services in Digital Twins -- 10.4.3 Connection in Digital Twins -- 10.4.4 Physical Assets in Digital Twins -- 10.4.5 Virtual Entities in Digital Twins -- 10.5 Digital Twin and Other Technologies -- 10.5.1 Digital Twins and Internet of Things -- 10.5.2 Digital Twins and Artificial Intelligence -- 10.5.3 Digital Twins and Analytics -- 10.5.4 Digital Twins and Connectivity -- 10.5.5 Digital Twins and Machine Learning -- 10.6 Digital Twin Technology Implementation.
10.7 Benefits of Digital Twins.
Record Nr. UNINA-9910830742203321
Yarali Abdulrahman  
Hoboken, New Jersey : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Autore Yarali Abdulrahman
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Descrizione fisica 1 online resource (269 pages)
Disciplina 384.64
Soggetto topico Emergency communication systems
ISBN 1-119-58013-7
1-119-57990-2
1-119-58015-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xvii -- Acknowledgment xix -- 1 Public Safety Networks from TETRA to Commercial Cellular Networks 1 -- 1.1 Introduction 1 -- 1.2 Evaluation of TETRA and TETRAPOL 3 -- 1.3 Understanding TETRA Modes of Operation 4 -- 1.3.1 TETRA Security 4 -- 1.3.2 Evaluating the Challenge of Data Transmission and Possible Solutions on TETRA Networks 5 -- 1.3.3 Comparing Public Safety Networks to the Commercial Cellular Networks 6 -- 1.3.3.1 Services 6 -- 1.3.3.2 Networks 6 -- 1.3.4 How to Overcome These Differences 7 -- 1.3.4.1 Limitations of TETRA 7 -- 1.3.4.2 Need for Broadband 8 -- 1.4 Unifying the Two Worlds of Public Safety Networks and Commercial Networks 8 -- 1.4.1 User Requirements 8 -- 1.4.2 Public Safety Network Migration 9 -- 1.4.3 Deployment Models 9 -- 1.5 The Transition from TETRA to LTE and the Current Initiatives 10 -- 1.5.1 Network Softwarization 10 -- 1.5.2 LTE Technology for Public Safety Communications 10 -- 1.5.3 LTE as a Public Safety Mobile Broadband Standard 11 -- 1.5.4 Security Enhancements for Public Safety LTE Features 11 -- 1.6 Conclusion 12 -- References 12 -- 2 Public Safety Networks Evolution Toward Broadband and Interoperability 15 -- 2.1 Introduction 15 -- 2.1.1 Communication Technology 15 -- 2.1.2 Wireless Communication Systems 16 -- 2.1.3 Government Involvement 17 -- 2.2 Evolution to Broadband Systems 18 -- 2.2.1 Determining Factors 19 -- 2.2.2 Evolution Process 21 -- 2.2.3 Broadband System Architecture 22 -- 2.2.4 Advantages of Broadband Systems 25 -- 2.3 Interoperability 28 -- 2.3.1 Developing an Interoperability Public Safety System 28 -- 2.3.2 Platform and Technology 29 -- 2.3.3 Benefits of Evolution 32 -- 2.4 Conclusion 33 -- 2.5 Recommendations 34 -- References 35 -- 3 Public Safety Communication Evolution 37 -- 3.1 Introduction 37 -- 3.1.1 Public Safety Network and Emergency Communication Networks 37 -- 3.2 Public Safety Standardization 39 -- 3.3 Evolution of Public Safety Communication 39 -- 3.3.1 Mission-Critical Voice 40 -- 3.3.2 Mission-Critical Data 41.
3.3.3 Requirements for Evolution in Communications 42 -- 3.4 Public Safety Networks 43 -- 3.4.1 Land Mobile Radio Systems (LMRS) 44 -- 3.4.1.1 SAFECOM Interoperability Continuum 46 -- 3.4.1.2 Wireless Broadband 46 -- 3.4.1.3 Wi-Fi in Ambulances 47 -- 3.4.1.4 Satellite Communications in EMS and Public Protection and Disaster Relief PPDR 47 -- 3.4.1.5 Technology in Patrol Communications 48 -- 3.4.1.6 Video Cameras 48 -- 3.4.2 Drivers of the Broadband Evolution 49 -- 3.5 4G and 4G LTE 50 -- 3.5.1 Benefits of 4G LTE in Public Safety Communication 51 -- 3.6 Fifth Generation (5G) 52 -- 3.6.1 Performance Targets and Benefits of 5G 55 -- 3.6.1.1 Security and Reliability 55 -- 3.6.1.2 Traffic Prioritization and Network Slicing 55 -- 3.6.1.3 Facial Recognition and License Plate Scanning in 5G 55 -- 3.6.1.4 Support for Sensor Proliferation and IoT 56 -- 3.6.1.5 Reduction of Trips Back to the Station 56 -- 3.7 Applying 4G and 5G Networks in Public Safety 57 -- 3.7.1 The Right Time to Implement 3GPP in Public Safety 59 -- 3.7.1.1 3GPP 59 -- 3.7.2 4G LTE as a Basis for Public Safety Communication Implementation 61 -- 3.7.3 Implementation of 5G in Public Safety 61 -- 3.8 Conclusion 61 -- References 62 -- 4 Keys to Building a Reliable Public Safety Communications Network 67 -- 4.1 Introduction 67 -- 4.2 Supporting the Law Enforcement Elements of Communication 67 -- 4.3 Components of Efficient Public Safety Communication Networks 68 -- 4.4 Networks Go Commercial 68 -- 4.5 Viable Business Prospects 69 -- 4.5.1 The Core Network 69 -- 4.5.2 The Radio Network 69 -- 4.6 The Industry Supports the Involvement of the Mobile Network Operators 70 -- 4.7 Policies for Public Safety Use of Commercial Wireless Networks 71 -- 4.8 Public Safety Networks Coverage: Availability and Reliability Even During Outages 72 -- 4.9 FirstNet Interoperability 72 -- 4.10 Solutions for Enhancing Availability and Reliability Even During Outages 73 -- 4.11 National Public Safety Broadband Network (NPSBN) 73 -- 4.12 Important Objectives of NPSBN 74.
4.13 The Future of FirstNet: Connecting Networks Together 75 -- 4.14 High Capacity Information Delivery 76 -- 4.15 Qualities that Facilitate Efficient High Capacity Information Handling 77 -- 4.15.1 FirstNet Has a Trustworthy Security System 77 -- 4.15.2 Concentrated Network Performance 77 -- 4.15.3 Simple and Scalable 77 -- 4.15.4 High Level of Vulnerability Safeguards 77 -- 4.16 FirstNet User Equipment 77 -- 4.17 Core Network 78 -- 4.18 Illustration: Layers of the LTE Network 78 -- 4.18.1 Transport Backhaul 79 -- 4.18.2 The Radio Access Networks 79 -- 4.18.3 Public Safety Devices 79 -- References 80 -- 5 Higher Generation of Mobile Communications and Public Safety 81 -- 5.1 Introduction 81 -- 5.2 Review of Existing Public Safety Networks 81 -- 5.2.1 What are LMR Systems? 82 -- 5.2.2 Services Offered by LMR Systems 83 -- 5.2.3 Adoption of Advanced Technologies to Supplement LMR 83 -- 5.2.4 Trunked Digital Network 84 -- 5.2.4.1 TETRAPOL Communication System 84 -- 5.2.4.2 The TETRA Communication System 85 -- 5.3 Is 4G LTE Forming a Good Enough Basis for Public Safety Implementations? 85 -- 5.3.1 Multi-Path Approach and the Convergence of Mission-Critical Communication 85 -- 5.3.2 Technical Aspects of LTE 86 -- 5.4 Is It Better to Wait for 5G Before Starting Public Safety Implementations? 87 -- 5.5 Will 5G Offer a Better Service than 4G for Public Safety? 88 -- 5.5.1 The Internet of Things and 5G 88 -- 5.5.2 5G Technical Aspects 89 -- 5.5.3 5G Network Costs 90 -- 5.5.4 Key Corner Cases for 5G 90 -- 5.5.5 Localization in 5G Networks 91 -- 5.6 What is the Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety? 91 -- 5.6.1 The Linkage Between 4G-5G Evolutions 91 -- 5.6.2 Spectrum for Public Safety 92 -- 5.7 Conclusion 94 -- References 95 -- 6 Roadmap Toward a Network Infrastructure for Public Safety and Security 97 -- 6.1 Introduction 97 -- 6.2 Evolution Toward Broadband 97 -- 6.2.1 Existing Situation 98 -- 6.3 Requirements for Public Safety Networks 99 -- 6.3.1 Network Requirements 100.
6.3.2 Priority Control 100 -- 6.4 Public Safety Standardization 100 -- 6.5 Flawless Mobile Broadband for Public Safety and Security 101 -- 6.6 Applications in Different Scenarios 102 -- 6.7 Public Safety Systems and Architectures 103 -- 6.7.1 Airwave 103 -- 6.7.2 LMR 104 -- 6.7.3 TETRA Security Analysis 105 -- 6.7.4 TETRA Services System 106 -- 6.7.5 The Architecture of TETRA 106 -- 6.7.5.1 The Interfaces of TETRA Network 106 -- 6.7.6 TETRA Network Components 106 -- 6.7.6.1 The Mobile Station 108 -- 6.7.6.2 TETRA Line Station 108 -- 6.7.6.3 The Switching Management Infrastructure 108 -- 6.7.6.4 Network Management Unit 108 -- 6.7.6.5 The Gateways 108 -- 6.7.6.6 How the TETRA System Operates 108 -- 6.7.7 TETRA Mobility Management 109 -- 6.7.8 The Security of TETRA Networks 109 -- 6.7.8.1 Confidentiality 109 -- 6.7.8.2 Integrity 109 -- 6.7.8.3 Reliability 109 -- 6.7.8.4 Non-repudiation 109 -- 6.7.8.5 Authentication 110 -- 6.7.9 The Process of Authentication in TETRA 110 -- 6.7.10 The Authentication Key 110 -- 6.7.11 Symmetric Key Algorithms 110 -- 6.7.12 The Process of Authentication Key Generation 111 -- 6.7.12.1 ESN (In United Kingdom) 111 -- 6.8 Emergency Services Network (ESN) in the United Kingdom 112 -- 6.8.1 Overview of the ESN 112 -- 6.8.2 The Deliverables of ESN 112 -- 6.8.3 The Main Deliverables of ESN 112 -- 6.9 SafeNet in South Korea 113 -- 6.10 FirstNet (in USA) 115 -- 6.10.1 The Benefits of FirstNet 117 -- 6.10.2 Public Safety Core of SafetyNet 117 -- 6.10.2.1 End-to-End Encryption 117 -- 6.10.3 Round the Clock Security Surveillance 118 -- 6.10.4 User Authentication 118 -- 6.10.5 Mission Critical Functionalities 118 -- 6.10.5.1 Tactical LTE Coverage 118 -- 6.11 Canadian Interoperability Technology Interest Group (CITIG) 118 -- 6.12 Centre for Disaster Management and Public Safety (CDMPS) at the University of Melbourne 119 -- 6.13 European Emergency Number Association (EENA) 120 -- 6.13.1 European Standardization Organization (ESO) 121 -- 6.13.2 Public Safety Communications ́ô Europe (PSCE) 121.
6.13.3 The Critical Communications Association (TCCA) 121 -- 6.14 Public Safety Network from LTE to 5G 122 -- 6.15 Convergence Solution for LTE and TETRA for AngoláÖs National Communications Network 124 -- 6.15.1 The Objectives of the Project 124 -- 6.15.2 Advantages of the LTE-TETRA Solutions 124 -- 6.15.3 Illustration: Before Integration and After Integration 125 -- 6.15.4 Overview of LTE Technology 125 -- 6.16 5GWireless Network and Public Safety Perspective 126 -- 6.16.1 Waiting for 5G for Public Safety Implementation 127 -- 6.17 The Linkage Between 4G and 5G Evolution 128 -- 6.17.1 Connecting 4G and 5G Solutions for Public Safety 128 -- 6.17.2 Deploying LTE Public Safety Networks 129 -- 6.18 Conclusion 129 -- References 130 -- 7 Bringing Public Safety Communications into the 21st Century 133 -- 7.1 Emerging Technologies with Life-Saving Potential 133 -- 7.1.1 Artificial Intelligence 134 -- 7.1.2 The Internet of Things (IoT) 136 -- 7.1.3 Blockchain 138 -- References 139 -- 8 4G LTE: The Future of Mobile Wireless Telecommunication Systems for Public Safety Networks 141 -- 8.1 Introduction 141 -- 8.2 Network Architecture 145 -- 8.3 User Equipment 145 -- 8.4 eNodeB 145 -- 8.5 Radio Access Network 146 -- 8.5.1 Gateways and Mobility Management Entities 146 -- 8.6 Evolved Packet Core (EPC) 147 -- 8.7 The Innovative Technologies 148 -- 8.8 PS-LTE and Public Safety 151 -- 8.9 PS-LTE 152 -- 8.10 Nationwide Public Safety Communication Systems 152 -- 8.11 Advantages of LTE Technology 152 -- 8.12 Driving Trends in Public Safety Communications 153 -- 8.13 Benefits of PS-LTE 155 -- 8.14 Benefits of Converged Networking in Public Safety 157 -- 8.15 Mobilizing Law Enforcement 157 -- References 159 -- 9 4G and 5G for PS: Technology Options, Issues, and Challenges 161 -- 9.1 Introduction 161 -- 9.2 4G LTE and Public Safety Implementation 162 -- 9.2.1 Reliability 162 -- 9.2.2 Cost Effectiveness 163 -- 9.2.3 Real-Time Communication 164 -- 9.2.4 Remote Deployment and Configuration 164.
9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.
11.3 Public Safety for 5G and 4G Networks 191 -- 11.4 Issues and Challenges Regarding 5G and 4G Cellular Connections 192 -- 11.5 Threats Against Privacy 192 -- 11.6 Threats Against Integrity 192 -- 11.7 Threats Against Availability 193 -- 11.8 Attacks Against Authentication 193 -- 11.9 Various Countermeasures to 4G and 5G Public Safety Threats 194 -- References 194 -- 12 Wireless Mesh Networking: A Key Solution for Rural and Public Safety Applications 195 -- 12.1 Introduction 195 -- 12.2 Wireless Mesh Networks 196 -- 12.3 WMN Challenges 197 -- 12.4 WMNs for Disaster Recovery and Emergency Services 198 -- 12.5 Reliability of Wireless Mesh Networks 199 -- 12.5.1 Self-configuration of Wireless Mesh Networks 199 -- 12.5.2 Fast Deployment and Low Installation Costs of Wireless Mesh Networks 199 -- 12.5.3 Voice Support of Wireless Mesh Networks 200 -- 12.6 Video/Image Support of Wireless Mesh Networks for Emergency Situations and Public Safety 200 -- 12.6.1 Video/Image Support of WMNs for Large Disasters 200 -- 12.6.2 WMNs Supporting Video Monitoring for Public Safety 201 -- 12.6.3 WMNs for Mobile Video Applications of Public Safety and Law Enforcement 202 -- 12.7 Interoperability of WMNs for Emergency Response and Public Safety Applications 202 -- 12.8 Security in Wireless Mesh Networks 203 -- 12.9 Conclusion 204 -- References 204 -- 13 Satellite for Public Safety and Emergency Communications 207 -- 13.1 Introduction 207 -- 13.2 Contextualizing Public Safety 208 -- 13.3 Public Safety Communications Today 208 -- 13.4 Satellite Communications in Public Safety 209 -- 13.4.1 Topology and Frequency Allocation 210 -- 13.4.2 Satellite Communications 210 -- 13.4.3 Applications of LEO and GEO Satellites in Public Safety Communication 211 -- 13.4.4 Mobile Satellite Systems 213 -- 13.4.4.1 Vehicle-Mounted Mobile Satellite Communications Systems 213 -- 13.4.4.2 Emergency Communications Trailers 216 -- 13.4.4.3 Flyaway Satellite Internet Systems 217 -- 13.4.5 VoIP Phone Service Over Satellite 218.
13.4.6 Fixed Satellite 219 -- 13.4.7 Frequency Allocations in FSS and MSS Systems 221 -- 13.5 Limitations of Satellite for Public Safety 222 -- 13.6 Conclusion 223 -- References 224 -- 14 Public Safety Communications Evolution: The Long Term Transition Toward a Desired Converged Future 227 -- 14.1 Introduction 227 -- 14.1.1 Toward Moving Public Safety Networks 227 -- 14.1.2 The Communication Needs of Public Safety Authorities 227 -- 14.1.3 The Nationwide Public Safety Broadband Networks 228 -- 14.1.4 Global Public Safety Community Aligning Behind LTE 230 -- 14.1.5 Understanding the Concept of E-Comm in Relation to Public Safety 231 -- 14.2 Transmission Trunking and Message Trunking 232 -- 14.2.1 Push-to-Talk Mechanisms 233 -- 14.2.2 Talk Groups and Group Calls 233 -- 14.2.3 Mobility of Radio Devices and Call Handover 233 -- 14.2.4 WarnSim: Learning About a Simulator for PSWN 233 -- 14.2.5 The Use Cases and Topologies of Public Safety Networks 235 -- 14.2.6 Standard Developments in Public Safety Networks 238 -- 14.2.7 The Future Challenges in Public Safety 240 -- 14.2.7.1 Moving Cells and Network Mobility 240 -- 14.2.7.2 Device-to-Device (D2D) Discovery and Communications 240 -- 14.2.7.3 Programmability and Flexibility 240 -- 14.2.7.4 Traffic Steering and Scheduling 241 -- 14.2.7.5 Optimization of Performance Metrics to Support Sufficient QoS 241 -- 14.2.8 Toward a Convergence Future of Public Safety Networks 241 -- 14.3 Conclusion 242 -- References 243 -- Index 245.
Record Nr. UNINA-9910555264203321
Yarali Abdulrahman  
Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Autore Yarali Abdulrahman
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Descrizione fisica 1 online resource (269 pages)
Disciplina 384.64
Soggetto topico Emergency communication systems
ISBN 1-119-58013-7
1-119-57990-2
1-119-58015-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xvii -- Acknowledgment xix -- 1 Public Safety Networks from TETRA to Commercial Cellular Networks 1 -- 1.1 Introduction 1 -- 1.2 Evaluation of TETRA and TETRAPOL 3 -- 1.3 Understanding TETRA Modes of Operation 4 -- 1.3.1 TETRA Security 4 -- 1.3.2 Evaluating the Challenge of Data Transmission and Possible Solutions on TETRA Networks 5 -- 1.3.3 Comparing Public Safety Networks to the Commercial Cellular Networks 6 -- 1.3.3.1 Services 6 -- 1.3.3.2 Networks 6 -- 1.3.4 How to Overcome These Differences 7 -- 1.3.4.1 Limitations of TETRA 7 -- 1.3.4.2 Need for Broadband 8 -- 1.4 Unifying the Two Worlds of Public Safety Networks and Commercial Networks 8 -- 1.4.1 User Requirements 8 -- 1.4.2 Public Safety Network Migration 9 -- 1.4.3 Deployment Models 9 -- 1.5 The Transition from TETRA to LTE and the Current Initiatives 10 -- 1.5.1 Network Softwarization 10 -- 1.5.2 LTE Technology for Public Safety Communications 10 -- 1.5.3 LTE as a Public Safety Mobile Broadband Standard 11 -- 1.5.4 Security Enhancements for Public Safety LTE Features 11 -- 1.6 Conclusion 12 -- References 12 -- 2 Public Safety Networks Evolution Toward Broadband and Interoperability 15 -- 2.1 Introduction 15 -- 2.1.1 Communication Technology 15 -- 2.1.2 Wireless Communication Systems 16 -- 2.1.3 Government Involvement 17 -- 2.2 Evolution to Broadband Systems 18 -- 2.2.1 Determining Factors 19 -- 2.2.2 Evolution Process 21 -- 2.2.3 Broadband System Architecture 22 -- 2.2.4 Advantages of Broadband Systems 25 -- 2.3 Interoperability 28 -- 2.3.1 Developing an Interoperability Public Safety System 28 -- 2.3.2 Platform and Technology 29 -- 2.3.3 Benefits of Evolution 32 -- 2.4 Conclusion 33 -- 2.5 Recommendations 34 -- References 35 -- 3 Public Safety Communication Evolution 37 -- 3.1 Introduction 37 -- 3.1.1 Public Safety Network and Emergency Communication Networks 37 -- 3.2 Public Safety Standardization 39 -- 3.3 Evolution of Public Safety Communication 39 -- 3.3.1 Mission-Critical Voice 40 -- 3.3.2 Mission-Critical Data 41.
3.3.3 Requirements for Evolution in Communications 42 -- 3.4 Public Safety Networks 43 -- 3.4.1 Land Mobile Radio Systems (LMRS) 44 -- 3.4.1.1 SAFECOM Interoperability Continuum 46 -- 3.4.1.2 Wireless Broadband 46 -- 3.4.1.3 Wi-Fi in Ambulances 47 -- 3.4.1.4 Satellite Communications in EMS and Public Protection and Disaster Relief PPDR 47 -- 3.4.1.5 Technology in Patrol Communications 48 -- 3.4.1.6 Video Cameras 48 -- 3.4.2 Drivers of the Broadband Evolution 49 -- 3.5 4G and 4G LTE 50 -- 3.5.1 Benefits of 4G LTE in Public Safety Communication 51 -- 3.6 Fifth Generation (5G) 52 -- 3.6.1 Performance Targets and Benefits of 5G 55 -- 3.6.1.1 Security and Reliability 55 -- 3.6.1.2 Traffic Prioritization and Network Slicing 55 -- 3.6.1.3 Facial Recognition and License Plate Scanning in 5G 55 -- 3.6.1.4 Support for Sensor Proliferation and IoT 56 -- 3.6.1.5 Reduction of Trips Back to the Station 56 -- 3.7 Applying 4G and 5G Networks in Public Safety 57 -- 3.7.1 The Right Time to Implement 3GPP in Public Safety 59 -- 3.7.1.1 3GPP 59 -- 3.7.2 4G LTE as a Basis for Public Safety Communication Implementation 61 -- 3.7.3 Implementation of 5G in Public Safety 61 -- 3.8 Conclusion 61 -- References 62 -- 4 Keys to Building a Reliable Public Safety Communications Network 67 -- 4.1 Introduction 67 -- 4.2 Supporting the Law Enforcement Elements of Communication 67 -- 4.3 Components of Efficient Public Safety Communication Networks 68 -- 4.4 Networks Go Commercial 68 -- 4.5 Viable Business Prospects 69 -- 4.5.1 The Core Network 69 -- 4.5.2 The Radio Network 69 -- 4.6 The Industry Supports the Involvement of the Mobile Network Operators 70 -- 4.7 Policies for Public Safety Use of Commercial Wireless Networks 71 -- 4.8 Public Safety Networks Coverage: Availability and Reliability Even During Outages 72 -- 4.9 FirstNet Interoperability 72 -- 4.10 Solutions for Enhancing Availability and Reliability Even During Outages 73 -- 4.11 National Public Safety Broadband Network (NPSBN) 73 -- 4.12 Important Objectives of NPSBN 74.
4.13 The Future of FirstNet: Connecting Networks Together 75 -- 4.14 High Capacity Information Delivery 76 -- 4.15 Qualities that Facilitate Efficient High Capacity Information Handling 77 -- 4.15.1 FirstNet Has a Trustworthy Security System 77 -- 4.15.2 Concentrated Network Performance 77 -- 4.15.3 Simple and Scalable 77 -- 4.15.4 High Level of Vulnerability Safeguards 77 -- 4.16 FirstNet User Equipment 77 -- 4.17 Core Network 78 -- 4.18 Illustration: Layers of the LTE Network 78 -- 4.18.1 Transport Backhaul 79 -- 4.18.2 The Radio Access Networks 79 -- 4.18.3 Public Safety Devices 79 -- References 80 -- 5 Higher Generation of Mobile Communications and Public Safety 81 -- 5.1 Introduction 81 -- 5.2 Review of Existing Public Safety Networks 81 -- 5.2.1 What are LMR Systems? 82 -- 5.2.2 Services Offered by LMR Systems 83 -- 5.2.3 Adoption of Advanced Technologies to Supplement LMR 83 -- 5.2.4 Trunked Digital Network 84 -- 5.2.4.1 TETRAPOL Communication System 84 -- 5.2.4.2 The TETRA Communication System 85 -- 5.3 Is 4G LTE Forming a Good Enough Basis for Public Safety Implementations? 85 -- 5.3.1 Multi-Path Approach and the Convergence of Mission-Critical Communication 85 -- 5.3.2 Technical Aspects of LTE 86 -- 5.4 Is It Better to Wait for 5G Before Starting Public Safety Implementations? 87 -- 5.5 Will 5G Offer a Better Service than 4G for Public Safety? 88 -- 5.5.1 The Internet of Things and 5G 88 -- 5.5.2 5G Technical Aspects 89 -- 5.5.3 5G Network Costs 90 -- 5.5.4 Key Corner Cases for 5G 90 -- 5.5.5 Localization in 5G Networks 91 -- 5.6 What is the Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety? 91 -- 5.6.1 The Linkage Between 4G-5G Evolutions 91 -- 5.6.2 Spectrum for Public Safety 92 -- 5.7 Conclusion 94 -- References 95 -- 6 Roadmap Toward a Network Infrastructure for Public Safety and Security 97 -- 6.1 Introduction 97 -- 6.2 Evolution Toward Broadband 97 -- 6.2.1 Existing Situation 98 -- 6.3 Requirements for Public Safety Networks 99 -- 6.3.1 Network Requirements 100.
6.3.2 Priority Control 100 -- 6.4 Public Safety Standardization 100 -- 6.5 Flawless Mobile Broadband for Public Safety and Security 101 -- 6.6 Applications in Different Scenarios 102 -- 6.7 Public Safety Systems and Architectures 103 -- 6.7.1 Airwave 103 -- 6.7.2 LMR 104 -- 6.7.3 TETRA Security Analysis 105 -- 6.7.4 TETRA Services System 106 -- 6.7.5 The Architecture of TETRA 106 -- 6.7.5.1 The Interfaces of TETRA Network 106 -- 6.7.6 TETRA Network Components 106 -- 6.7.6.1 The Mobile Station 108 -- 6.7.6.2 TETRA Line Station 108 -- 6.7.6.3 The Switching Management Infrastructure 108 -- 6.7.6.4 Network Management Unit 108 -- 6.7.6.5 The Gateways 108 -- 6.7.6.6 How the TETRA System Operates 108 -- 6.7.7 TETRA Mobility Management 109 -- 6.7.8 The Security of TETRA Networks 109 -- 6.7.8.1 Confidentiality 109 -- 6.7.8.2 Integrity 109 -- 6.7.8.3 Reliability 109 -- 6.7.8.4 Non-repudiation 109 -- 6.7.8.5 Authentication 110 -- 6.7.9 The Process of Authentication in TETRA 110 -- 6.7.10 The Authentication Key 110 -- 6.7.11 Symmetric Key Algorithms 110 -- 6.7.12 The Process of Authentication Key Generation 111 -- 6.7.12.1 ESN (In United Kingdom) 111 -- 6.8 Emergency Services Network (ESN) in the United Kingdom 112 -- 6.8.1 Overview of the ESN 112 -- 6.8.2 The Deliverables of ESN 112 -- 6.8.3 The Main Deliverables of ESN 112 -- 6.9 SafeNet in South Korea 113 -- 6.10 FirstNet (in USA) 115 -- 6.10.1 The Benefits of FirstNet 117 -- 6.10.2 Public Safety Core of SafetyNet 117 -- 6.10.2.1 End-to-End Encryption 117 -- 6.10.3 Round the Clock Security Surveillance 118 -- 6.10.4 User Authentication 118 -- 6.10.5 Mission Critical Functionalities 118 -- 6.10.5.1 Tactical LTE Coverage 118 -- 6.11 Canadian Interoperability Technology Interest Group (CITIG) 118 -- 6.12 Centre for Disaster Management and Public Safety (CDMPS) at the University of Melbourne 119 -- 6.13 European Emergency Number Association (EENA) 120 -- 6.13.1 European Standardization Organization (ESO) 121 -- 6.13.2 Public Safety Communications ́ô Europe (PSCE) 121.
6.13.3 The Critical Communications Association (TCCA) 121 -- 6.14 Public Safety Network from LTE to 5G 122 -- 6.15 Convergence Solution for LTE and TETRA for AngoláÖs National Communications Network 124 -- 6.15.1 The Objectives of the Project 124 -- 6.15.2 Advantages of the LTE-TETRA Solutions 124 -- 6.15.3 Illustration: Before Integration and After Integration 125 -- 6.15.4 Overview of LTE Technology 125 -- 6.16 5GWireless Network and Public Safety Perspective 126 -- 6.16.1 Waiting for 5G for Public Safety Implementation 127 -- 6.17 The Linkage Between 4G and 5G Evolution 128 -- 6.17.1 Connecting 4G and 5G Solutions for Public Safety 128 -- 6.17.2 Deploying LTE Public Safety Networks 129 -- 6.18 Conclusion 129 -- References 130 -- 7 Bringing Public Safety Communications into the 21st Century 133 -- 7.1 Emerging Technologies with Life-Saving Potential 133 -- 7.1.1 Artificial Intelligence 134 -- 7.1.2 The Internet of Things (IoT) 136 -- 7.1.3 Blockchain 138 -- References 139 -- 8 4G LTE: The Future of Mobile Wireless Telecommunication Systems for Public Safety Networks 141 -- 8.1 Introduction 141 -- 8.2 Network Architecture 145 -- 8.3 User Equipment 145 -- 8.4 eNodeB 145 -- 8.5 Radio Access Network 146 -- 8.5.1 Gateways and Mobility Management Entities 146 -- 8.6 Evolved Packet Core (EPC) 147 -- 8.7 The Innovative Technologies 148 -- 8.8 PS-LTE and Public Safety 151 -- 8.9 PS-LTE 152 -- 8.10 Nationwide Public Safety Communication Systems 152 -- 8.11 Advantages of LTE Technology 152 -- 8.12 Driving Trends in Public Safety Communications 153 -- 8.13 Benefits of PS-LTE 155 -- 8.14 Benefits of Converged Networking in Public Safety 157 -- 8.15 Mobilizing Law Enforcement 157 -- References 159 -- 9 4G and 5G for PS: Technology Options, Issues, and Challenges 161 -- 9.1 Introduction 161 -- 9.2 4G LTE and Public Safety Implementation 162 -- 9.2.1 Reliability 162 -- 9.2.2 Cost Effectiveness 163 -- 9.2.3 Real-Time Communication 164 -- 9.2.4 Remote Deployment and Configuration 164.
9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.
11.3 Public Safety for 5G and 4G Networks 191 -- 11.4 Issues and Challenges Regarding 5G and 4G Cellular Connections 192 -- 11.5 Threats Against Privacy 192 -- 11.6 Threats Against Integrity 192 -- 11.7 Threats Against Availability 193 -- 11.8 Attacks Against Authentication 193 -- 11.9 Various Countermeasures to 4G and 5G Public Safety Threats 194 -- References 194 -- 12 Wireless Mesh Networking: A Key Solution for Rural and Public Safety Applications 195 -- 12.1 Introduction 195 -- 12.2 Wireless Mesh Networks 196 -- 12.3 WMN Challenges 197 -- 12.4 WMNs for Disaster Recovery and Emergency Services 198 -- 12.5 Reliability of Wireless Mesh Networks 199 -- 12.5.1 Self-configuration of Wireless Mesh Networks 199 -- 12.5.2 Fast Deployment and Low Installation Costs of Wireless Mesh Networks 199 -- 12.5.3 Voice Support of Wireless Mesh Networks 200 -- 12.6 Video/Image Support of Wireless Mesh Networks for Emergency Situations and Public Safety 200 -- 12.6.1 Video/Image Support of WMNs for Large Disasters 200 -- 12.6.2 WMNs Supporting Video Monitoring for Public Safety 201 -- 12.6.3 WMNs for Mobile Video Applications of Public Safety and Law Enforcement 202 -- 12.7 Interoperability of WMNs for Emergency Response and Public Safety Applications 202 -- 12.8 Security in Wireless Mesh Networks 203 -- 12.9 Conclusion 204 -- References 204 -- 13 Satellite for Public Safety and Emergency Communications 207 -- 13.1 Introduction 207 -- 13.2 Contextualizing Public Safety 208 -- 13.3 Public Safety Communications Today 208 -- 13.4 Satellite Communications in Public Safety 209 -- 13.4.1 Topology and Frequency Allocation 210 -- 13.4.2 Satellite Communications 210 -- 13.4.3 Applications of LEO and GEO Satellites in Public Safety Communication 211 -- 13.4.4 Mobile Satellite Systems 213 -- 13.4.4.1 Vehicle-Mounted Mobile Satellite Communications Systems 213 -- 13.4.4.2 Emergency Communications Trailers 216 -- 13.4.4.3 Flyaway Satellite Internet Systems 217 -- 13.4.5 VoIP Phone Service Over Satellite 218.
13.4.6 Fixed Satellite 219 -- 13.4.7 Frequency Allocations in FSS and MSS Systems 221 -- 13.5 Limitations of Satellite for Public Safety 222 -- 13.6 Conclusion 223 -- References 224 -- 14 Public Safety Communications Evolution: The Long Term Transition Toward a Desired Converged Future 227 -- 14.1 Introduction 227 -- 14.1.1 Toward Moving Public Safety Networks 227 -- 14.1.2 The Communication Needs of Public Safety Authorities 227 -- 14.1.3 The Nationwide Public Safety Broadband Networks 228 -- 14.1.4 Global Public Safety Community Aligning Behind LTE 230 -- 14.1.5 Understanding the Concept of E-Comm in Relation to Public Safety 231 -- 14.2 Transmission Trunking and Message Trunking 232 -- 14.2.1 Push-to-Talk Mechanisms 233 -- 14.2.2 Talk Groups and Group Calls 233 -- 14.2.3 Mobility of Radio Devices and Call Handover 233 -- 14.2.4 WarnSim: Learning About a Simulator for PSWN 233 -- 14.2.5 The Use Cases and Topologies of Public Safety Networks 235 -- 14.2.6 Standard Developments in Public Safety Networks 238 -- 14.2.7 The Future Challenges in Public Safety 240 -- 14.2.7.1 Moving Cells and Network Mobility 240 -- 14.2.7.2 Device-to-Device (D2D) Discovery and Communications 240 -- 14.2.7.3 Programmability and Flexibility 240 -- 14.2.7.4 Traffic Steering and Scheduling 241 -- 14.2.7.5 Optimization of Performance Metrics to Support Sufficient QoS 241 -- 14.2.8 Toward a Convergence Future of Public Safety Networks 241 -- 14.3 Conclusion 242 -- References 243 -- Index 245.
Record Nr. UNINA-9910676530103321
Yarali Abdulrahman  
Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Public safety networks from LTE to 5G / / Abdulrahman Yarali, Murray State University, Murray, KY, USA
Autore Yarali Abdulrahman
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Descrizione fisica 1 online resource (269 pages)
Disciplina 384.64
Soggetto topico Emergency communication systems
ISBN 1-119-58013-7
1-119-57990-2
1-119-58015-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xvii -- Acknowledgment xix -- 1 Public Safety Networks from TETRA to Commercial Cellular Networks 1 -- 1.1 Introduction 1 -- 1.2 Evaluation of TETRA and TETRAPOL 3 -- 1.3 Understanding TETRA Modes of Operation 4 -- 1.3.1 TETRA Security 4 -- 1.3.2 Evaluating the Challenge of Data Transmission and Possible Solutions on TETRA Networks 5 -- 1.3.3 Comparing Public Safety Networks to the Commercial Cellular Networks 6 -- 1.3.3.1 Services 6 -- 1.3.3.2 Networks 6 -- 1.3.4 How to Overcome These Differences 7 -- 1.3.4.1 Limitations of TETRA 7 -- 1.3.4.2 Need for Broadband 8 -- 1.4 Unifying the Two Worlds of Public Safety Networks and Commercial Networks 8 -- 1.4.1 User Requirements 8 -- 1.4.2 Public Safety Network Migration 9 -- 1.4.3 Deployment Models 9 -- 1.5 The Transition from TETRA to LTE and the Current Initiatives 10 -- 1.5.1 Network Softwarization 10 -- 1.5.2 LTE Technology for Public Safety Communications 10 -- 1.5.3 LTE as a Public Safety Mobile Broadband Standard 11 -- 1.5.4 Security Enhancements for Public Safety LTE Features 11 -- 1.6 Conclusion 12 -- References 12 -- 2 Public Safety Networks Evolution Toward Broadband and Interoperability 15 -- 2.1 Introduction 15 -- 2.1.1 Communication Technology 15 -- 2.1.2 Wireless Communication Systems 16 -- 2.1.3 Government Involvement 17 -- 2.2 Evolution to Broadband Systems 18 -- 2.2.1 Determining Factors 19 -- 2.2.2 Evolution Process 21 -- 2.2.3 Broadband System Architecture 22 -- 2.2.4 Advantages of Broadband Systems 25 -- 2.3 Interoperability 28 -- 2.3.1 Developing an Interoperability Public Safety System 28 -- 2.3.2 Platform and Technology 29 -- 2.3.3 Benefits of Evolution 32 -- 2.4 Conclusion 33 -- 2.5 Recommendations 34 -- References 35 -- 3 Public Safety Communication Evolution 37 -- 3.1 Introduction 37 -- 3.1.1 Public Safety Network and Emergency Communication Networks 37 -- 3.2 Public Safety Standardization 39 -- 3.3 Evolution of Public Safety Communication 39 -- 3.3.1 Mission-Critical Voice 40 -- 3.3.2 Mission-Critical Data 41.
3.3.3 Requirements for Evolution in Communications 42 -- 3.4 Public Safety Networks 43 -- 3.4.1 Land Mobile Radio Systems (LMRS) 44 -- 3.4.1.1 SAFECOM Interoperability Continuum 46 -- 3.4.1.2 Wireless Broadband 46 -- 3.4.1.3 Wi-Fi in Ambulances 47 -- 3.4.1.4 Satellite Communications in EMS and Public Protection and Disaster Relief PPDR 47 -- 3.4.1.5 Technology in Patrol Communications 48 -- 3.4.1.6 Video Cameras 48 -- 3.4.2 Drivers of the Broadband Evolution 49 -- 3.5 4G and 4G LTE 50 -- 3.5.1 Benefits of 4G LTE in Public Safety Communication 51 -- 3.6 Fifth Generation (5G) 52 -- 3.6.1 Performance Targets and Benefits of 5G 55 -- 3.6.1.1 Security and Reliability 55 -- 3.6.1.2 Traffic Prioritization and Network Slicing 55 -- 3.6.1.3 Facial Recognition and License Plate Scanning in 5G 55 -- 3.6.1.4 Support for Sensor Proliferation and IoT 56 -- 3.6.1.5 Reduction of Trips Back to the Station 56 -- 3.7 Applying 4G and 5G Networks in Public Safety 57 -- 3.7.1 The Right Time to Implement 3GPP in Public Safety 59 -- 3.7.1.1 3GPP 59 -- 3.7.2 4G LTE as a Basis for Public Safety Communication Implementation 61 -- 3.7.3 Implementation of 5G in Public Safety 61 -- 3.8 Conclusion 61 -- References 62 -- 4 Keys to Building a Reliable Public Safety Communications Network 67 -- 4.1 Introduction 67 -- 4.2 Supporting the Law Enforcement Elements of Communication 67 -- 4.3 Components of Efficient Public Safety Communication Networks 68 -- 4.4 Networks Go Commercial 68 -- 4.5 Viable Business Prospects 69 -- 4.5.1 The Core Network 69 -- 4.5.2 The Radio Network 69 -- 4.6 The Industry Supports the Involvement of the Mobile Network Operators 70 -- 4.7 Policies for Public Safety Use of Commercial Wireless Networks 71 -- 4.8 Public Safety Networks Coverage: Availability and Reliability Even During Outages 72 -- 4.9 FirstNet Interoperability 72 -- 4.10 Solutions for Enhancing Availability and Reliability Even During Outages 73 -- 4.11 National Public Safety Broadband Network (NPSBN) 73 -- 4.12 Important Objectives of NPSBN 74.
4.13 The Future of FirstNet: Connecting Networks Together 75 -- 4.14 High Capacity Information Delivery 76 -- 4.15 Qualities that Facilitate Efficient High Capacity Information Handling 77 -- 4.15.1 FirstNet Has a Trustworthy Security System 77 -- 4.15.2 Concentrated Network Performance 77 -- 4.15.3 Simple and Scalable 77 -- 4.15.4 High Level of Vulnerability Safeguards 77 -- 4.16 FirstNet User Equipment 77 -- 4.17 Core Network 78 -- 4.18 Illustration: Layers of the LTE Network 78 -- 4.18.1 Transport Backhaul 79 -- 4.18.2 The Radio Access Networks 79 -- 4.18.3 Public Safety Devices 79 -- References 80 -- 5 Higher Generation of Mobile Communications and Public Safety 81 -- 5.1 Introduction 81 -- 5.2 Review of Existing Public Safety Networks 81 -- 5.2.1 What are LMR Systems? 82 -- 5.2.2 Services Offered by LMR Systems 83 -- 5.2.3 Adoption of Advanced Technologies to Supplement LMR 83 -- 5.2.4 Trunked Digital Network 84 -- 5.2.4.1 TETRAPOL Communication System 84 -- 5.2.4.2 The TETRA Communication System 85 -- 5.3 Is 4G LTE Forming a Good Enough Basis for Public Safety Implementations? 85 -- 5.3.1 Multi-Path Approach and the Convergence of Mission-Critical Communication 85 -- 5.3.2 Technical Aspects of LTE 86 -- 5.4 Is It Better to Wait for 5G Before Starting Public Safety Implementations? 87 -- 5.5 Will 5G Offer a Better Service than 4G for Public Safety? 88 -- 5.5.1 The Internet of Things and 5G 88 -- 5.5.2 5G Technical Aspects 89 -- 5.5.3 5G Network Costs 90 -- 5.5.4 Key Corner Cases for 5G 90 -- 5.5.5 Localization in 5G Networks 91 -- 5.6 What is the Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety? 91 -- 5.6.1 The Linkage Between 4G-5G Evolutions 91 -- 5.6.2 Spectrum for Public Safety 92 -- 5.7 Conclusion 94 -- References 95 -- 6 Roadmap Toward a Network Infrastructure for Public Safety and Security 97 -- 6.1 Introduction 97 -- 6.2 Evolution Toward Broadband 97 -- 6.2.1 Existing Situation 98 -- 6.3 Requirements for Public Safety Networks 99 -- 6.3.1 Network Requirements 100.
6.3.2 Priority Control 100 -- 6.4 Public Safety Standardization 100 -- 6.5 Flawless Mobile Broadband for Public Safety and Security 101 -- 6.6 Applications in Different Scenarios 102 -- 6.7 Public Safety Systems and Architectures 103 -- 6.7.1 Airwave 103 -- 6.7.2 LMR 104 -- 6.7.3 TETRA Security Analysis 105 -- 6.7.4 TETRA Services System 106 -- 6.7.5 The Architecture of TETRA 106 -- 6.7.5.1 The Interfaces of TETRA Network 106 -- 6.7.6 TETRA Network Components 106 -- 6.7.6.1 The Mobile Station 108 -- 6.7.6.2 TETRA Line Station 108 -- 6.7.6.3 The Switching Management Infrastructure 108 -- 6.7.6.4 Network Management Unit 108 -- 6.7.6.5 The Gateways 108 -- 6.7.6.6 How the TETRA System Operates 108 -- 6.7.7 TETRA Mobility Management 109 -- 6.7.8 The Security of TETRA Networks 109 -- 6.7.8.1 Confidentiality 109 -- 6.7.8.2 Integrity 109 -- 6.7.8.3 Reliability 109 -- 6.7.8.4 Non-repudiation 109 -- 6.7.8.5 Authentication 110 -- 6.7.9 The Process of Authentication in TETRA 110 -- 6.7.10 The Authentication Key 110 -- 6.7.11 Symmetric Key Algorithms 110 -- 6.7.12 The Process of Authentication Key Generation 111 -- 6.7.12.1 ESN (In United Kingdom) 111 -- 6.8 Emergency Services Network (ESN) in the United Kingdom 112 -- 6.8.1 Overview of the ESN 112 -- 6.8.2 The Deliverables of ESN 112 -- 6.8.3 The Main Deliverables of ESN 112 -- 6.9 SafeNet in South Korea 113 -- 6.10 FirstNet (in USA) 115 -- 6.10.1 The Benefits of FirstNet 117 -- 6.10.2 Public Safety Core of SafetyNet 117 -- 6.10.2.1 End-to-End Encryption 117 -- 6.10.3 Round the Clock Security Surveillance 118 -- 6.10.4 User Authentication 118 -- 6.10.5 Mission Critical Functionalities 118 -- 6.10.5.1 Tactical LTE Coverage 118 -- 6.11 Canadian Interoperability Technology Interest Group (CITIG) 118 -- 6.12 Centre for Disaster Management and Public Safety (CDMPS) at the University of Melbourne 119 -- 6.13 European Emergency Number Association (EENA) 120 -- 6.13.1 European Standardization Organization (ESO) 121 -- 6.13.2 Public Safety Communications ́ô Europe (PSCE) 121.
6.13.3 The Critical Communications Association (TCCA) 121 -- 6.14 Public Safety Network from LTE to 5G 122 -- 6.15 Convergence Solution for LTE and TETRA for AngoláÖs National Communications Network 124 -- 6.15.1 The Objectives of the Project 124 -- 6.15.2 Advantages of the LTE-TETRA Solutions 124 -- 6.15.3 Illustration: Before Integration and After Integration 125 -- 6.15.4 Overview of LTE Technology 125 -- 6.16 5GWireless Network and Public Safety Perspective 126 -- 6.16.1 Waiting for 5G for Public Safety Implementation 127 -- 6.17 The Linkage Between 4G and 5G Evolution 128 -- 6.17.1 Connecting 4G and 5G Solutions for Public Safety 128 -- 6.17.2 Deploying LTE Public Safety Networks 129 -- 6.18 Conclusion 129 -- References 130 -- 7 Bringing Public Safety Communications into the 21st Century 133 -- 7.1 Emerging Technologies with Life-Saving Potential 133 -- 7.1.1 Artificial Intelligence 134 -- 7.1.2 The Internet of Things (IoT) 136 -- 7.1.3 Blockchain 138 -- References 139 -- 8 4G LTE: The Future of Mobile Wireless Telecommunication Systems for Public Safety Networks 141 -- 8.1 Introduction 141 -- 8.2 Network Architecture 145 -- 8.3 User Equipment 145 -- 8.4 eNodeB 145 -- 8.5 Radio Access Network 146 -- 8.5.1 Gateways and Mobility Management Entities 146 -- 8.6 Evolved Packet Core (EPC) 147 -- 8.7 The Innovative Technologies 148 -- 8.8 PS-LTE and Public Safety 151 -- 8.9 PS-LTE 152 -- 8.10 Nationwide Public Safety Communication Systems 152 -- 8.11 Advantages of LTE Technology 152 -- 8.12 Driving Trends in Public Safety Communications 153 -- 8.13 Benefits of PS-LTE 155 -- 8.14 Benefits of Converged Networking in Public Safety 157 -- 8.15 Mobilizing Law Enforcement 157 -- References 159 -- 9 4G and 5G for PS: Technology Options, Issues, and Challenges 161 -- 9.1 Introduction 161 -- 9.2 4G LTE and Public Safety Implementation 162 -- 9.2.1 Reliability 162 -- 9.2.2 Cost Effectiveness 163 -- 9.2.3 Real-Time Communication 164 -- 9.2.4 Remote Deployment and Configuration 164.
9.2.5 Flexibility 164 -- 9.3 Starting Public Safety Implementation Versus Waiting for 5G 165 -- 9.4 5GVersus 4G Public Safety Services 166 -- 9.4.1 Video Surveillance 167 -- 9.4.2 Computer-Driven Augmented Reality (AR) Helmet 167 -- 9.5 How 5GWill Shape Emergency Services 167 -- 9.6 4G LTE Defined Public Safety Content in 5G 168 -- 9.7 The Linkage Between 4Ǵô5G Evolution and the Spectrum for Public Safety 168 -- 9.8 Conclusion 168 -- References 168 -- 10 Fifth Generation (5G) Cellular Technology 171 -- 10.1 Introduction 171 -- 10.2 Background Information on Cellular Network Generations 172 -- 10.2.1 Evolution of Mobile Technologies 172 -- 10.2.1.1 First Generation (1G) 172 -- 10.2.1.2 Second Generation (2G) Mobile Network 172 -- 10.2.1.3 Third Generation (3G) Mobile Network 172 -- 10.2.1.4 Fourth Generation (4G) Mobile Network 173 -- 10.2.1.5 Fifth Generation (5G) 173 -- 10.3 Fifth Generation (5G) and the Network of Tomorrow 174 -- 10.3.1 5G Network Architecture 176 -- 10.3.2 Wireless Communication Technologies for 5G 177 -- 10.3.2.1 Massive MIMO 177 -- 10.3.2.2 Spatial Modulation 179 -- 10.3.2.3 Machine to Machine Communication (M2M) 179 -- 10.3.2.4 Visible Light Communication (VLC) 180 -- 10.3.2.5 Green Communications 180 -- 10.3.3 5G System Environment 180 -- 10.3.4 Devices Used in 5G Technology 181 -- 10.3.5 Market Standardization and Adoption of 5G Technology 181 -- 10.3.6 Security Standardization of Cloud Applications 183 -- 10.3.7 The Global ICT Standardization Forum for India (GISFI) 184 -- 10.3.8 Energy Efficiency Enhancements 184 -- 10.3.9 Virtualization in the 5G Cellular Network 185 -- 10.3.10 Key Issues in the Development Process 185 -- 10.3.10.1 Challenges of Heterogeneous Networks 186 -- 10.3.10.2 Challenges Caused by Massive MIMO Technology 186 -- 10.3.10.3 Big Data Problem 186 -- 10.3.10.4 Shared Spectrum 186 -- 10.4 Conclusion 187 -- References 187 -- 11 Issues and Challenges of 4G and 5G for PS 189 -- 11.1 Introduction 189 -- 11.2 4G and 5GWireless Connections 190.
11.3 Public Safety for 5G and 4G Networks 191 -- 11.4 Issues and Challenges Regarding 5G and 4G Cellular Connections 192 -- 11.5 Threats Against Privacy 192 -- 11.6 Threats Against Integrity 192 -- 11.7 Threats Against Availability 193 -- 11.8 Attacks Against Authentication 193 -- 11.9 Various Countermeasures to 4G and 5G Public Safety Threats 194 -- References 194 -- 12 Wireless Mesh Networking: A Key Solution for Rural and Public Safety Applications 195 -- 12.1 Introduction 195 -- 12.2 Wireless Mesh Networks 196 -- 12.3 WMN Challenges 197 -- 12.4 WMNs for Disaster Recovery and Emergency Services 198 -- 12.5 Reliability of Wireless Mesh Networks 199 -- 12.5.1 Self-configuration of Wireless Mesh Networks 199 -- 12.5.2 Fast Deployment and Low Installation Costs of Wireless Mesh Networks 199 -- 12.5.3 Voice Support of Wireless Mesh Networks 200 -- 12.6 Video/Image Support of Wireless Mesh Networks for Emergency Situations and Public Safety 200 -- 12.6.1 Video/Image Support of WMNs for Large Disasters 200 -- 12.6.2 WMNs Supporting Video Monitoring for Public Safety 201 -- 12.6.3 WMNs for Mobile Video Applications of Public Safety and Law Enforcement 202 -- 12.7 Interoperability of WMNs for Emergency Response and Public Safety Applications 202 -- 12.8 Security in Wireless Mesh Networks 203 -- 12.9 Conclusion 204 -- References 204 -- 13 Satellite for Public Safety and Emergency Communications 207 -- 13.1 Introduction 207 -- 13.2 Contextualizing Public Safety 208 -- 13.3 Public Safety Communications Today 208 -- 13.4 Satellite Communications in Public Safety 209 -- 13.4.1 Topology and Frequency Allocation 210 -- 13.4.2 Satellite Communications 210 -- 13.4.3 Applications of LEO and GEO Satellites in Public Safety Communication 211 -- 13.4.4 Mobile Satellite Systems 213 -- 13.4.4.1 Vehicle-Mounted Mobile Satellite Communications Systems 213 -- 13.4.4.2 Emergency Communications Trailers 216 -- 13.4.4.3 Flyaway Satellite Internet Systems 217 -- 13.4.5 VoIP Phone Service Over Satellite 218.
13.4.6 Fixed Satellite 219 -- 13.4.7 Frequency Allocations in FSS and MSS Systems 221 -- 13.5 Limitations of Satellite for Public Safety 222 -- 13.6 Conclusion 223 -- References 224 -- 14 Public Safety Communications Evolution: The Long Term Transition Toward a Desired Converged Future 227 -- 14.1 Introduction 227 -- 14.1.1 Toward Moving Public Safety Networks 227 -- 14.1.2 The Communication Needs of Public Safety Authorities 227 -- 14.1.3 The Nationwide Public Safety Broadband Networks 228 -- 14.1.4 Global Public Safety Community Aligning Behind LTE 230 -- 14.1.5 Understanding the Concept of E-Comm in Relation to Public Safety 231 -- 14.2 Transmission Trunking and Message Trunking 232 -- 14.2.1 Push-to-Talk Mechanisms 233 -- 14.2.2 Talk Groups and Group Calls 233 -- 14.2.3 Mobility of Radio Devices and Call Handover 233 -- 14.2.4 WarnSim: Learning About a Simulator for PSWN 233 -- 14.2.5 The Use Cases and Topologies of Public Safety Networks 235 -- 14.2.6 Standard Developments in Public Safety Networks 238 -- 14.2.7 The Future Challenges in Public Safety 240 -- 14.2.7.1 Moving Cells and Network Mobility 240 -- 14.2.7.2 Device-to-Device (D2D) Discovery and Communications 240 -- 14.2.7.3 Programmability and Flexibility 240 -- 14.2.7.4 Traffic Steering and Scheduling 241 -- 14.2.7.5 Optimization of Performance Metrics to Support Sufficient QoS 241 -- 14.2.8 Toward a Convergence Future of Public Safety Networks 241 -- 14.3 Conclusion 242 -- References 243 -- Index 245.
Altri titoli varianti Public safety networks from LTE to Five G
Record Nr. UNINA-9910825777203321
Yarali Abdulrahman  
Hoboken, New Jersey : , : John Wiley & Sons, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui