Carbon based nanofillers and their rubber nanocomposites : carbon nano-objects / / edited by Srinivasarao Yaragalla, [and four others] |
Pubbl/distr/stampa | Amsterdam, Netherlands : , : Elsevier, , 2019 |
Descrizione fisica | 1 online resource (404 pages) |
Disciplina | 678.2 |
Soggetto topico |
Rubber
Nanocomposites (Materials) |
ISBN | 0-12-813249-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover -- Carbon-Based Nanofillers and Their Rubber Nanocomposites -- Copyright Page -- Contents -- List of Contributors -- 1. Synthesis, Characterization, and Applications of Carbon Nanotubes -- Future Perspectives -- 1.1 Introduction -- 1.2 Brief History of Carbon Nanotubes -- 1.2.1 Synthesis -- 1.2.1.1 Arc Discharge -- 1.2.1.2 Laser Ablation -- 1.2.1.3 Chemical Vapor Deposition -- 1.2.2 Properties -- 1.2.3 Characterization -- 1.2.3.1 Raman Spectroscopy -- 1.2.3.2 Fourier Transform Infrared Spectroscopy -- 1.2.3.3 X-Ray Photoelectron Spectroscopy -- 1.2.3.4 X-Ray Diffraction (XRD) -- 1.2.3.5 Thermogravimetric Analysis -- 1.2.3.6 Scanning Electron Microscopy -- 1.2.3.7 Transmission Electron Microscopy -- 1.2.3.8 Dispersion Analysis of CNT -- 1.3 Potential Applications of Carbon Nanotubes -- 1.3.1 Reinforcement in Polymer Nanocomposites -- 1.3.1.1 Synthesis of CNT-Based Nanocomposites -- 1.3.1.1.1 Melt Mixing -- 1.3.1.1.2 Solvent Casting -- 1.3.1.1.3 In Situ Polymerization -- 1.3.1.2 Carbon Nanotube-Reinforced Systems -- 1.3.1.2.1 Simulations and Modeling -- 1.3.1.2.2 Experimental Approach -- 1.3.2 Electronic Devices -- 1.3.3 Biological Applications -- 1.3.3.1 CNTs in Neuroscience -- 1.3.3.1.1 MWCNT and SWCNT Substrates for Neuronal Cell Growth -- 1.3.4 Important Barriers That Limit the Application of Carbon Nanotubes -- 1.4 Conclusions -- Acknowledgments -- References -- 2. An Overview of the Synthesis, Characterization, and Applications of Carbon Nanotubes -- 2.1 Introduction -- 2.2 Synthesis of Carbon Nanotubes -- 2.2.1 Arc Discharge Process -- 2.2.2 Laser Ablation Process -- 2.2.3 CVD Process -- 2.2.4 Floating Catalyst CVD Process -- 2.2.5 Fluidized Bed CVD Process -- 2.3 Characterization of Carbon Nanotubes -- 2.3.1 Scanning Electron Microscopy -- 2.3.2 Transmission Electron Microscopy.
2.3.3 High-Resolution Transmission Electron Microscopy -- 2.3.4 Raman Spectroscopy -- 2.4 Applications of Carbon Nanotubes -- 2.5 Conclusions -- Acknowledgments -- References -- 3. Wet Functionalization of Carbon Nanotubes and Its Applications in Rubber Composites -- 3.1 Introduction to Carbon Nanotubes -- 3.2 Wet Functionalization of CNTs -- 3.2.1 Physical Functionalization -- 3.2.2 Chemical Functionalization -- 3.3 Application of Wet-Functionalized Carbon Nanotubes in Rubber Composites -- 3.3.1 Mechanical Properties -- 3.3.2 Thermal Properties -- 3.3.3 Electrical Properties -- 3.4 Conclusions and Perspectives -- References -- 4. Synthesized Carbon Nanotubes and Their Applications -- 4.1 Introduction -- 4.2 Chemically Modified Carbon Nanotubes -- 4.3 Ball Milling -- 4.4 Modification Using Microwave Technology -- 4.5 Electrochemically Assisted Covalent Modification -- 4.6 Electroless Deposition -- 4.7 Rubber Nanocomposites -- 4.8 Applications of Carbon Nanotubes in Recent Trends -- 4.9 Conclusion -- References -- Further Reading -- 5. Nanocrystalline Diamond: A High-Impact Carbon Nanomaterial for Multifunctional Applications Including as Nanofiller in... -- 5.1 General Features and Classification -- 5.1.1 Crystal Structure -- 5.1.2 Carbon Bonding -- 5.1.3 Graphite -- 5.1.4 Diamond-Like Carbon (DLC) -- 5.1.5 Diamond -- 5.1.6 Other Forms of Carbon -- 5.2 Synthesis of Diamond -- 5.2.1 High-Pressure High-Temperature Techniques -- 5.2.1.1 Kinetics and Growth -- 5.2.1.2 Transformation From Diamond to Graphite -- 5.2.2 Low-Pressure CVD Growth of Diamond Films -- 5.2.2.1 Introduction to CVD Diamond -- 5.2.2.2 Diamond Nucleation -- 5.2.2.3 Diamond Growth -- 5.2.2.3.1 Electromagnetic Excitation -- 5.2.2.3.2 Variations in Parameters, Precursors, and Pursuance of Growth -- 5.2.2.3.3 CVD Diamond Using Halogenated Precursors -- 5.2.2.3.4 Doped CVD Diamond. 5.2.2.3.4.1 CVD Doped Diamond Thin Film -- 5.2.2.3.4.2 Surface Transfer Doping -- 5.2.2.3.4.3 Doping by Vacuum Annealing -- 5.2.2.3.4.4 Doped Diamond in Electrochemistry -- 5.2.3 Ultrananocrystalline Diamond (UNCD) Film -- Classification With Nanocrystalline Diamond (NCD) and Microcrystalline Diam... -- 5.2.3.1 Synthesis of Ultrananocrystalline Diamond (UNCD) Films -- 5.2.3.1.1 Diluent Gas-Controlled Nucleation and Growth of UNCD Thin Films -- 5.2.3.1.1.1 Using H2 as a Diluent to the Precursor Gas -- 5.2.3.1.1.2 Using Ar as a Diluent to the Precursor Gas -- 5.2.3.1.2 Bias-Enhanced Nucleation and Growth of UNCD Thin Films -- 5.2.3.1.3 Doped (Boron) UNCD From H-Rich/Ar-Lean Gas System -- 5.3 Characteristics and Applications of Nanocrystalline Diamond -- 5.3.1 Bulk and Surface Properties of UNCD -- 5.3.2 Thermal Properties of UNCD -- 5.3.3 Dielectric Properties of UNCD -- 5.3.4 Electrical Properties of UNCD -- 5.3.5 Electron Emission Properties of UNCD -- 5.3.6 Diamond Nanostructures in Energy Storage Devices -- 5.3.7 Properties of UNCD Films as Bio-Inert Coating for Biomedical Applications -- 5.3.7.1 UNCD for Developmental Biology -- 5.3.7.2 Growth of Neurons on Diamond -- 5.3.7.3 Nanodiamond as a Drug Delivery System -- 5.3.7.4 Nanodiamond in the Polymeric System -- 5.3.7.5 Future Prospects -- 5.4 Summary and Conclusion -- References -- 6. Synthesis, Characterization, and Applications of Diamond Films -- 6.1 Introduction -- 6.2 Crystalline Forms of Carbon -- 6.2.1 Crystal Structure of Diamond -- 6.2.2 Crystal Structure of Graphite -- 6.3 Synthesis of Diamond -- 6.3.1 Natural Diamonds -- 6.3.2 High-Pressure High-Temperature Method -- 6.3.3 Detonation Nanodiamond -- 6.3.4 Chemical Vapor Deposition -- 6.4 The Substrate Materials -- 6.4.1 Substrates With Little Carbon Solubility -- 6.4.2 Substrates With Large Carbon Solubility. 6.4.3 Substrates Form Carbides -- 6.5 Diamond Deposition -- 6.5.1 Seeding -- 6.5.2 Hot Filament CVD -- 6.5.3 Growth Mechanism -- 6.5.4 Role of Hydrogen -- 6.6 SCD, MCD, and NCD -- 6.7 Physical Properties of Diamond -- 6.7.1 Mechanical Properties -- 6.7.2 Electrical Properties -- 6.7.3 Thermal Properties -- 6.7.4 Acoustic Properties -- 6.7.5 Optical Properties -- 6.8 Characterization of Diamond -- 6.8.1 X-Ray Diffraction -- 6.8.2 Raman Spectroscopy -- 6.8.3 Atomic Force Microscopy -- 6.8.4 Nanoindentation -- 6.8.5 Pin-on-Disc Test -- 6.9 Applications of Diamond -- 6.9.1 Mechanical Applications -- 6.9.2 Electronic Applications -- 6.9.3 Thermal Applications -- 6.9.4 Acoustic Applications -- 6.9.5 Optical Applications -- 6.9.6 Future Prospects -- 6.10 Summary -- References -- 7. Synthesis and Electrochemical Performance of Transition Metal-Coated Carbon Nanofibers on Ni Foam as Anode Materials ... -- 7.1 Introduction -- 7.2 Synthesis and Electrochemical Performance of Ruthenium Oxide-Coated CNFs on Ni Foam -- 7.2.1 Synthesis of Carbon Nanofibers -- 7.2.2 Preparation of Ruthenium Oxide-Coated Carbon Nanofibers -- 7.2.3 Fabrication Process of Anode Materials for Lithium Secondary Batteries -- 7.3 Analyses -- 7.3.1 Scanning Electron Microscopy -- 7.3.2 Raman Spectroscopy -- 7.3.3 X-Ray Photoelectron Spectroscopy -- 7.3.4 Cyclic Voltammetry -- 7.3.5 Cycle Performances -- 7.4 Synthesis and Electrochemical Performance of Transition Metals Oxide-Coated Carbon Nanofibers on Ni Foam -- 7.4.1 Transition Metal-Coated Carbon Nanofibers -- 7.4.2 Fabrication Process of Anode Materials for Lithium Secondary Batteries -- 7.5 Analyses -- 7.5.1 Scanning Electron Microscopy -- 7.5.2 Raman Spectroscopy -- 7.5.3 X-Ray Photoelectron Spectroscopy -- 7.5.4 Cyclic Voltammetry -- 7.5.5 Cycle Performances -- 7.6 Conclusion -- References. 8. Synthesis, Characterization, and Applications Carbon Nanofibers -- 8.1 Introduction -- 8.2 Synthesis of Carbon Nanofibers -- 8.2.1 Catalytic Chemical Vapor Deposition -- 8.2.2 Electrospinning -- 8.2.3 Templating -- 8.2.4 Drawing -- 8.2.5 Phase Separation -- 8.3 Comparison of VGCNFs and ECNFs -- 8.4 Properties of Carbon Nanofibers -- 8.5 Applications of Carbon Nanofibers -- 8.6 Conclusions and Future Perspectives -- References -- 9. Synthesis, Characterization, and Applications of Graphene and Derivatives -- 9.1 Introduction -- 9.2 Structure of Graphene -- 9.3 Electronic Properties of Graphene -- 9.4 Graphene and Derivatives Synthesis Techniques -- 9.4.1 Chemical Exfoliation by Modified Hummers Method -- 9.4.2 Electrochemical Exfoliation Method -- 9.4.3 Chemical Vapor Deposition -- 9.4.4 Microwave Irradiation Method -- 9.5 Characterizations of Graphene -- 9.5.1 Raman Spectroscopy -- 9.5.2 Ultraviolet Visible Spectroscopy (UV-Vis) -- 9.5.3 Transmission Electron Microscopy (TEM) -- 9.5.4 Scanning Electron Microscopy -- 9.5.5 X-Ray Diffraction (XRD) -- 9.6 Applications of Graphene and Its Derivatives -- 9.6.1 Sensors -- 9.6.2 Transistors -- 9.6.3 Energy Storage -- 9.6.4 Water Filtration -- 9.6.5 Solar Cells -- 9.6.6 Graphene-Based Elastomeric -- 9.7 Future Prospects and Conclusion -- Acknowledgments -- References -- 10. Wet Functionalization of Graphene and Its Applications in Rubber Composites -- 10.1 Introduction of Graphene -- 10.2 Wet Functionalization of Graphene -- 10.2.1 Physical Functionalization -- 10.2.2 Chemical Functionalization -- 10.3 Application of Wet-Functionalized Graphene in Rubber Composites -- 10.3.1 Mechanical Properties -- 10.3.2 Thermal Properties -- 10.3.3 Electrical Properties -- 10.4 Conclusions and Perspectives -- References. 11. Computational Homogenization of Anisotropic Carbon/Rubber Composites With Stochastic Interface Defects. |
Record Nr. | UNINA-9910583455703321 |
Amsterdam, Netherlands : , : Elsevier, , 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Polymers for packaging applications / / edited by Sajid Alavi, PhD, Sabu Thomas, PhD, K.P. Sandeep, PhD, Nandakumar Kalarikkal, PhD, Jini Varghese, and Srinivasarao Yaragalla |
Edizione | [First edition.] |
Pubbl/distr/stampa | Waretown, NJ : , : Apple Academic Press, Inc. |
Descrizione fisica | 1 online resource (478 p.) |
Disciplina | 664/.09 |
Soggetto topico |
Packaging
Polymers |
ISBN |
0-429-15686-3
1-926895-77-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; ABOUT THE EDITORS; CONTENTS; LIST OF CONTRIBUTORS; LIST OF ABBREVIATIONS; PREFACE; Part I: Conventional Plastics in Packaging Applications; CHAPTER 1: PROPERTIES OF PLASTICS FOR PACKAGING APPLICATIONS; CHAPTER 2: INTERACTION PHENOMENA BETWEEN PACKAGING AND PRODUCT; CHAPTER 3: SPECIFIC MIGRATION OF ANTIOXIDANTS BHT, IRGANOX 1076, AND IRGAFOS 168 INTO TYPICAL EDIBLE OILS UNDER MICROWAVE HEATING CONDITIONS; CHAPTER 4: SUITABILITY OF POLYMER-BASED RETORTABLE POUCHES FOR PACKAGING OF FISH PRODUCTS; Part II: Bio-Based and Biodegradable Materials for Packaging
CHAPTER 5: A VIEW ON ECO-FRIENDLY NATURAL FIBERS FOR PACKAGINGCHAPTER 6: ENVIRONMENT FRIENDLY PACKAGING PLASTICS; CHAPTER 7: BIOPOLYMERS: POTENTIAL BIODEGRADABLE PACKAGING MATERIAL FOR FOOD INDUSTRY; CHAPTER 8: EDIBLE FILMS AND COATINGS FOR PACKAGING APPLICATIONS; CHAPTER 9: ENVIRONMENTAL FRIENDLY MICROBIAL POLYMERS, POLYHYDROXYALKANOATES (PHAs) FOR PACKAGING AND BIOMEDICAL APPLICATIONS; Part III: Bio-Nanocomposites in Packaging Applications; CHAPTER 10: BIO-NANOCOMPOSITES AND THEIR POTENTIAL APPLICATIONS IN FOOD PACKAGING CHAPTER 11: BIO-BASED NANOCOMPOSITES: PROSPECTS IN GREEN PACKAGING APPLICATIONSCHAPTER 12: UNDERSTANDING OF MECHANICAL AND BARRIER PROPERTIES OF STARCH, POLYVINYL ALCOHOL AND LAYERED SILICATE NANOCOMPOSITE FILMS UTILIZING MATHEMATICAL MODELS; CHAPTER 13: ANALYTICAL TECHNIQUES FOR STRUCTURAL CHARACTERIZATION OF BIOPOLYMER-BASED NANOCOMPOSITES; Part IV: Modified Atmosphere Packaging for Foods and Other Applications; CHAPTER 14: MODIFIED ATMOSPHERE PACKAGING OF FOOD; CHAPTER 15: APPLICATION OF MODIFIED ATMOSPHERE PACKAGING FOR EXTENSION OF SHELF-LIFE OF FOOD COMMODITIES CHAPTER 16: ACTIVE AND INTELLIGENT PACKAGINGCHAPTER 17: CONDUCTIVE POLYMERS FOR PACKAGING APPLICATIONS; Back Cover |
Record Nr. | UNINA-9910787848203321 |
Waretown, NJ : , : Apple Academic Press, Inc. | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|