top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Medical image understanding and analysis : 26th annual conference, MIUA 2022, Cambridge, UK, July 27-29, 2022, proceedings / / Guang Yang [and three others] editors
Medical image understanding and analysis : 26th annual conference, MIUA 2022, Cambridge, UK, July 27-29, 2022, proceedings / / Guang Yang [and three others] editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (913 pages)
Disciplina 616.0754
Collana Lecture notes in computer science
Soggetto topico Diagnostic imaging
Diagnostic imaging - Data processing
ISBN 3-031-12053-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996483159903316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Medical Image Understanding and Analysis : 26th Annual Conference, MIUA 2022, Cambridge, UK, July 27–29, 2022, Proceedings / / edited by Guang Yang, Angelica Aviles-Rivero, Michael Roberts, Carola-Bibiane Schönlieb
Medical Image Understanding and Analysis : 26th Annual Conference, MIUA 2022, Cambridge, UK, July 27–29, 2022, Proceedings / / edited by Guang Yang, Angelica Aviles-Rivero, Michael Roberts, Carola-Bibiane Schönlieb
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (913 pages)
Disciplina 616.0754
Collana Lecture Notes in Computer Science
Soggetto topico Computer vision
Artificial intelligence
Computers
Application software
Computer Vision
Artificial Intelligence
Computing Milieux
Computer and Information Systems Applications
ISBN 9783031120534
3031120531
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910585782803321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Paths in Heidegger's later thought / edited by Günter Figal, Diego D'Angelo, Tobias Keiling, and Guang Yang
Paths in Heidegger's later thought / edited by Günter Figal, Diego D'Angelo, Tobias Keiling, and Guang Yang
Edizione [1st ed.]
Pubbl/distr/stampa Bloomington, Indiana : , : Indiana University Press, , [2020]
Descrizione fisica 1 online resource (314 pages)
Disciplina 193
Collana Studies in continental thought
ISBN 0-253-04721-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ; I: Language, logos, and rhythm. "The House of Being" : poetry, language, place / Jeff Malpas -- Heidegger and Trakl : language speaks in the poet's poem / Markus Wild -- Towards a hermeneutic interpretation of greeting and destiny in Heidegger's thinking / Diego D'Angelo -- Later Heidegger's naturalism / Tristan Moyle -- ; II: Heidegger's physics. Why is Heidegger interested in physis? / Thomas Buchheim -- Being as physis : the belonging together of movement and rest in the Greek experience of physis / Guang Yang -- The end of philosophy and the experience of unending physis / Claudia Baracchi -- Thinking at the first beginning : Heidegger's interpretation of the early Greek physis / Damir Barbarić -- ; III: Phenomenology, the thing, and the fourfold. Tautóphasis : Heidegger and Parmenides / Günter Figal -- Radical contextuality in Heidegger's postmetaphysics : the singularity of being and the fourfold / Jussi Backman -- The phenomenon of shining / Nikola Mirković -- A brief history of things : Heidegger and the tradition / Andrew J. Mitchell -- ; IV: Ground, non-ground, and abyss. Heidegger, Leibniz, and the abyss of reason / Hans Ruin -- Ground, abyss, and the primordial ground : Heidegger in the wake of Schelling / Sylvaine Gourdain -- Erklüftung : Heidegger's thinking of projection in Contributions to Philosophy / Tobias Keiling.
Record Nr. UNINA-9910793913603321
Bloomington, Indiana : , : Indiana University Press, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Paths in Heidegger's later thought / edited by Günter Figal, Diego D'Angelo, Tobias Keiling, and Guang Yang
Paths in Heidegger's later thought / edited by Günter Figal, Diego D'Angelo, Tobias Keiling, and Guang Yang
Edizione [1st ed.]
Pubbl/distr/stampa Bloomington, Indiana : , : Indiana University Press, , [2020]
Descrizione fisica 1 online resource (314 pages)
Disciplina 193
Collana Studies in continental thought
ISBN 9780253047212
0253047218
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ; I: Language, logos, and rhythm. "The House of Being" : poetry, language, place / Jeff Malpas -- Heidegger and Trakl : language speaks in the poet's poem / Markus Wild -- Towards a hermeneutic interpretation of greeting and destiny in Heidegger's thinking / Diego D'Angelo -- Later Heidegger's naturalism / Tristan Moyle -- ; II: Heidegger's physics. Why is Heidegger interested in physis? / Thomas Buchheim -- Being as physis : the belonging together of movement and rest in the Greek experience of physis / Guang Yang -- The end of philosophy and the experience of unending physis / Claudia Baracchi -- Thinking at the first beginning : Heidegger's interpretation of the early Greek physis / Damir Barbarić -- ; III: Phenomenology, the thing, and the fourfold. Tautóphasis : Heidegger and Parmenides / Günter Figal -- Radical contextuality in Heidegger's postmetaphysics : the singularity of being and the fourfold / Jussi Backman -- The phenomenon of shining / Nikola Mirković -- A brief history of things : Heidegger and the tradition / Andrew J. Mitchell -- ; IV: Ground, non-ground, and abyss. Heidegger, Leibniz, and the abyss of reason / Hans Ruin -- Ground, abyss, and the primordial ground : Heidegger in the wake of Schelling / Sylvaine Gourdain -- Erklüftung : Heidegger's thinking of projection in Contributions to Philosophy / Tobias Keiling.
Record Nr. UNINA-9910963219503321
Bloomington, Indiana : , : Indiana University Press, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Risks, Resilience and Interdependency : Developing Countries in the Age of Uncertainties / / edited by Guang Yang, Jing Zhang, Xinghan Xiong, Lanyu Liu
Risks, Resilience and Interdependency : Developing Countries in the Age of Uncertainties / / edited by Guang Yang, Jing Zhang, Xinghan Xiong, Lanyu Liu
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Palgrave Macmillan, , 2025
Descrizione fisica 1 online resource (XII, 289 p. 11 illus., 9 illus. in color.)
Disciplina 306.091
Soggetto topico Ethnology
Culture
Religion and politics
Peace
Age distribution (Demography)
Regional Cultural Studies
Politics and Religion
Peace and Conflict Studies
Aging Population
ISBN 981-9671-67-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Risks -- 1. On the Profound Impact of Nigeria’s Oil Boom on Politics and Economy (1973-1979) -- 2. A political economy analysis of modern state development in Southeast Asia -- 3. Climate change adaptation implementation and governance in Thailand: Increased resilience and potential conflicts -- Part II. Resilience -- 4. Poverty and education in times of COVID-19: The implementation of education programs in southeastern Chiapas, Mexico -- 5. Eastern Orthodox churches and nation-state building in Eurasia: a case study based on fieldwork in Ukraine and Belarus -- 6. Black Feminists’ Resistance and the Intersectional Agenda in the #MustFall Movements in South Africa -- 7. Iranian Political Culture and Social Movements (1979-2022) -- Part III. Interdependency -- 8. Farghānah between the Seventh and Ninth Centuries CE as a Military Vassal of the Big Powers -- 9. The Multiple Layers of Morocco’s Normalization with Israel -- 10. Corporate lobbying and its influence on public policy in Brazil.
Record Nr. UNINA-9911016079803321
Singapore : , : Springer Nature Singapore : , : Imprint : Palgrave Macmillan, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spatiotemporal Dynamics of Meteorological and Agricultural Drought in China / / by Yi Li, Faliang Yuan, Qiang Zhou, Fenggui Liu, Asim Biswas, Guang Yang, Zhihao Liao
Spatiotemporal Dynamics of Meteorological and Agricultural Drought in China / / by Yi Li, Faliang Yuan, Qiang Zhou, Fenggui Liu, Asim Biswas, Guang Yang, Zhihao Liao
Autore Li Yi
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (250 pages)
Disciplina 551
363.34
Altri autori (Persone) YuanFaliang
ZhouQiang
LiuFenggui
BiswasAsim
YangGuang
LiaoZhihao
Soggetto topico Natural disasters
Climatology
Water
Hydrology
Forestry
Atmospheric science
Natural Hazards
Climate Sciences
Atmospheric Science
ISBN 9789819742141
9789819742134
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Spatiotemporal Analysis and Impacts Assessment of Agricultural Drought in China -- Materials and Methodology -- Spatial and Temporal Variations of SPI and SSI -- Multivariate Frequency Analysis of Drought Events Using Drought Indices and Copula Functions in China -- Study Area and Data Source -- Drought Indices and Univariate Analysis -- Frequency Analysis Using 2-Variate Archimedean Copula -- Frequency Analysis Using 3-Variate Archimedean Copula -- Frequency Analysis Using Four-Variate Archimedean Copula -- Spatiotemporal Analysis and Impacts Assessment of Agricultural Drought in China -- Study Area and Data -- Drought Evolutions Over Different Land Cover Types -- The Response of Vegetation Phenology and Productivity to Extreme Climatic -- Drought Indices Performance for Predicting Agriculture Drought -- The Effects of Agricultural Drought on Crop Production -- Conclusions.
Record Nr. UNINA-9910878056103321
Li Yi  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges [[electronic resource] ] : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges [[electronic resource] ] : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XIII, 260 p. 94 illus.)
Disciplina 611.12
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Optical data processing
Artificial intelligence
Image Processing and Computer Vision
Artificial Intelligence
ISBN 3-319-75541-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Regular Papers -- Multiview Machine Learning Using an Atlas of Cardiac Cycle Motion -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Motion Atlas Formation -- 3.2 Multiview Classification -- 4 Experiments and Results -- 5 Discussion -- References -- Joint Myocardial Registration and Segmentation of Cardiac BOLD MRI -- 1 Introduction -- 2 Background -- 3 Methods -- 3.1 Dictionary Learning Based Image Segmentation -- 3.2 Graph-Based Joint Optimization -- 3.3 Dictionary Update -- 4 Experimental Results -- 4.1 Data Preparation and Implementation Details -- 4.2 Visual Evaluation -- 4.3 Quantitative Comparison -- 4.4 CAP Dataset -- 5 Conclusion -- References -- Transfer Learning for the Fully Automatic Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images -- Abstract -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Image Preprocessing -- 2.3 CNN Architecture and Training Setup -- 2.4 Transfer Learning -- 3 Experiments and Results -- 4 Conclusion and Discussions -- References -- Left Atrial Appendage Neck Modeling for Closure Surgery -- 1 Introduction -- 2 LAA Segmentation -- 3 LAA Neck Modeling -- 3.1 Auto-Detection of the Ostium of the LAA -- 3.2 Establishment of the Standard Coordinate System Based on the Ostium Plane -- 3.3 Auto-Building of Circumscribed Cylindrical Model of LAA Neck -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Ground Truth -- 4.3 Evaluation -- 5 Conclusion -- References -- Detection of Substances in the Left Atrial Appendage by Spatiotemporal Motion Analysis Based on 4D-CT -- 1 Introduction -- 2 Method -- 2.1 Extraction of Optical Flow Fields of Adjacent Phase -- 2.2 The Tracking of Key Voxels in Whole Cardiac Cycle -- 2.3 Hierarchical Clustering of All Trajectory Curves.
2.4 Time-Frequency Analysis of the Track Curve of Critical Lumps - to Realize the Stress and Strain Detection of Lumps -- 3 Experiment and Discussion -- 3.1 Dataset -- 3.2 Evaluation and Results -- 4 Conclusion -- References -- Estimation of Healthy and Fibrotic Tissue Distributions in DE-CMR Incorporating CINE-CMR in an EM Algorithm -- 1 Introduction -- 2 Methods -- 3 Experimental Results -- 4 Conclusions -- References -- Multilevel Non-parametric Groupwise Registration in Cardiac MRI: Application to Explanted Porcine Hearts -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition -- 2.2 Pairwise Registration of the Anatomical MR Images -- 3 Groupwise Registration -- 4 Results -- 5 Future Work and Conclusions -- References -- ACDC Challenge -- GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation -- 1 Introduction -- 2 Our Method -- 2.1 Shape Prior -- 2.2 Loss -- 2.3 Proposed Network -- 3 Experimental Setup and Results -- 3.1 Dataset, Evaluation Criteria, and Other Methods -- 3.2 Experimental Results -- 4 Conclusion -- References -- A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Semi-automatic Segmentation -- 2.3 Radiomics Features for Cardiac Diagnosis -- 2.4 Classification Method -- 2.5 Radiomic Feature Selection -- 3 Results -- 4 Conclusions -- References -- Fast Fully-Automatic Cardiac Segmentation in MRI Using MRF Model Optimization, Substructures Tracking and B-Spline Smoothing -- 1 Introduction -- 2 Automatic Localization of the Heart -- 3 Segmentation of an ED Phase Slice in Between Base and Mid-Ventricle -- 4 Segmentation Based on Tracking the Cardiac Substructures in ED Phase -- 5 Segmentation in the ES Phase -- 6 Left Ventricle Epicardial Boundary Smoothing -- 7 Global Results and First Conclusions -- References.
Automatic Segmentation and Disease Classification Using Cardiac Cine MR Images -- 1 Introduction -- 2 Data -- 3 Methods -- 3.1 Segmentation -- 3.2 Diagnosis -- 4 Experiments and Results -- 4.1 Segmentation Results -- 4.2 Diagnosis Results -- 5 Discussion and Conclusion -- References -- An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Pre-Processing -- 2.2 Network Architectures -- 2.3 Optimisation -- 2.4 Post-Processing -- 3 Experiments and Results -- 3.1 Data -- 3.2 Evaluation Measures -- 3.3 Experiment 1: Comparison of Loss Functions -- 3.4 Experiment 2: Comparison of Network Architectures -- 3.5 Discussion and Conclusion -- References -- Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features -- 1 Introduction -- 2 Methods -- 2.1 Cardiac cine-MRI Dataset -- 2.2 Segmentation -- 2.3 Cardiac Disease Classification -- 3 Results -- 4 Discussion -- References -- 2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation -- 1 Introduction -- 2 Method -- 2.1 Network Architecture -- 2.2 Dataset, Preprocessing and Augmentation -- 2.3 Training -- 2.4 Optimization Function -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Densely Connected Fully Convolutional Network for Short-Axis Cardiac Cine MR Image Segmentation and Heart Diagnosis Using Random Forest -- 1 Introduction and Related Work -- 2 Our Method -- 2.1 Data Pre-processing Pipeline -- 2.2 Proposed Network Architecture: Densely Connected Fully Convolutional Network (DFCN) -- 2.3 Loss Function -- 2.4 Post-processing -- 2.5 Cardiac Disease Diagnosis -- 3 Experimental Setup and Results -- 3.1 Dataset and Evaluation Criteria -- 3.2 Experimental Results -- 3.3 Conclusion -- References.
Class-Balanced Deep Neural Network for Automatic Ventricular Structure Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Efficient Semantic Labeling with 3D FCN -- 2.2 Transfer Learning from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Investigation of Class-Balanced Loss -- 3 Experimental Results -- 4 Conclusions -- References -- Automatic Segmentation of LV and RV in Cardiac MRI -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Architecture -- 3 Experimental Results -- 3.1 Implemented Details -- 3.2 Results and Quantitative Analysis with Other Methods -- 4 Conclusion and Discussion -- Acknowledgement -- References -- Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net -- 1 Introduction -- 2 Rigid Alignment by Landmarks Detection -- 3 Non-rigid Diffeomorphic Registration with SVF-Net -- 4 Label Fusion Method -- 5 Results and Discussion -- 6 Conclusion -- References -- MM-WHS Challenge -- 3D Convolutional Networks for Fully Automatic Fine-Grained Whole Heart Partition -- 1 Introduction -- 2 Methodology -- 2.1 Dense Semantic Labeling with 3D FCN -- 2.2 Knowledge Transfer from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Multi-class Balanced Loss Function -- 3 Experimental Results -- 4 Conclusions -- References -- Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations -- 1 Introduction -- 2 Method -- 3 Experimental Setup -- 4 Results and Discussion -- 5 Conclusion -- References -- Multi-Planar Deep Segmentation Networks for Cardiac Substructures from MRI and CT -- 1 Introduction -- 2 Multi-Object Multi-Planar CNN (MO-MP-CNN) -- 3 Experimental Results -- 4 Discussion and Conclusion -- References -- Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images -- 1 Introduction -- 2 Methods.
2.1 Construction of the a Priori Information -- 2.2 Segmentation -- 2.3 A Posteriori Correction -- 3 Experiments -- 4 Results -- 5 Conclusion -- References -- Hybrid Loss Guided Convolutional Networks for Whole Heart Parsing -- 1 Introduction -- 2 Methodology -- 2.1 Intensity Calibration as Preprocessing -- 2.2 Enhance the Training of 3D FCN -- 2.3 Hybrid Loss Guided Class-Balanced Segmentation -- 3 Experimental Results -- 4 Conclusions -- References -- 3D Deeply-Supervised U-Net Based Whole Heart Segmentation -- 1 Introduction -- 2 Method -- 2.1 Data Pre-processing -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Data -- 3.2 Performance on Training Set -- 3.3 Performance on Testing Set -- 4 Discussion and Conclusion -- References -- MRI Whole Heart Segmentation Using Discrete Nonlinear Registration and Fast Non-local Fusion -- 1 Introduction and Related Work -- 2 Discrete Registration -- 3 Non-local Label Fusion -- 4 Multi-label Random Walk Regularisation -- 5 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation Using Deep Learning and Shape Context -- 1 Introduction -- 2 Methods -- 2.1 2.5D Segmentation Using Orthogonal U-Nets -- 2.2 Shape Context Generation -- 2.3 Shape-Context Guided U-Net -- 2.4 Implementation Details -- 3 Results -- 4 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation in CT Images Based on Multi-atlas Image Registration -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 A Three-Step Multi-atlas-Based Whole Heart Segmentation -- 2.2 Multiple Atlas Images -- 3 Experimental Results -- 4 Conclusion -- References -- Author Index.
Record Nr. UNISA-996465519703316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges : 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers / / edited by Mihaela Pop, Maxime Sermesant, Pierre-Marc Jodoin, Alain Lalande, Xiahai Zhuang, Guang Yang, Alistair Young, Olivier Bernard
Edizione [1st ed. 2018.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Descrizione fisica 1 online resource (XIII, 260 p. 94 illus.)
Disciplina 611.12
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Computer vision
Artificial intelligence
Computer Vision
Artificial Intelligence
ISBN 9783319755410
3319755412
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Regular Papers -- Multiview Machine Learning Using an Atlas of Cardiac Cycle Motion -- 1 Introduction -- 2 Materials -- 3 Methods -- 3.1 Motion Atlas Formation -- 3.2 Multiview Classification -- 4 Experiments and Results -- 5 Discussion -- References -- Joint Myocardial Registration and Segmentation of Cardiac BOLD MRI -- 1 Introduction -- 2 Background -- 3 Methods -- 3.1 Dictionary Learning Based Image Segmentation -- 3.2 Graph-Based Joint Optimization -- 3.3 Dictionary Update -- 4 Experimental Results -- 4.1 Data Preparation and Implementation Details -- 4.2 Visual Evaluation -- 4.3 Quantitative Comparison -- 4.4 CAP Dataset -- 5 Conclusion -- References -- Transfer Learning for the Fully Automatic Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images -- Abstract -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Image Preprocessing -- 2.3 CNN Architecture and Training Setup -- 2.4 Transfer Learning -- 3 Experiments and Results -- 4 Conclusion and Discussions -- References -- Left Atrial Appendage Neck Modeling for Closure Surgery -- 1 Introduction -- 2 LAA Segmentation -- 3 LAA Neck Modeling -- 3.1 Auto-Detection of the Ostium of the LAA -- 3.2 Establishment of the Standard Coordinate System Based on the Ostium Plane -- 3.3 Auto-Building of Circumscribed Cylindrical Model of LAA Neck -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Ground Truth -- 4.3 Evaluation -- 5 Conclusion -- References -- Detection of Substances in the Left Atrial Appendage by Spatiotemporal Motion Analysis Based on 4D-CT -- 1 Introduction -- 2 Method -- 2.1 Extraction of Optical Flow Fields of Adjacent Phase -- 2.2 The Tracking of Key Voxels in Whole Cardiac Cycle -- 2.3 Hierarchical Clustering of All Trajectory Curves.
2.4 Time-Frequency Analysis of the Track Curve of Critical Lumps - to Realize the Stress and Strain Detection of Lumps -- 3 Experiment and Discussion -- 3.1 Dataset -- 3.2 Evaluation and Results -- 4 Conclusion -- References -- Estimation of Healthy and Fibrotic Tissue Distributions in DE-CMR Incorporating CINE-CMR in an EM Algorithm -- 1 Introduction -- 2 Methods -- 3 Experimental Results -- 4 Conclusions -- References -- Multilevel Non-parametric Groupwise Registration in Cardiac MRI: Application to Explanted Porcine Hearts -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition -- 2.2 Pairwise Registration of the Anatomical MR Images -- 3 Groupwise Registration -- 4 Results -- 5 Future Work and Conclusions -- References -- ACDC Challenge -- GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation -- 1 Introduction -- 2 Our Method -- 2.1 Shape Prior -- 2.2 Loss -- 2.3 Proposed Network -- 3 Experimental Setup and Results -- 3.1 Dataset, Evaluation Criteria, and Other Methods -- 3.2 Experimental Results -- 4 Conclusion -- References -- A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI -- 1 Introduction -- 2 Method -- 2.1 Data Description -- 2.2 Semi-automatic Segmentation -- 2.3 Radiomics Features for Cardiac Diagnosis -- 2.4 Classification Method -- 2.5 Radiomic Feature Selection -- 3 Results -- 4 Conclusions -- References -- Fast Fully-Automatic Cardiac Segmentation in MRI Using MRF Model Optimization, Substructures Tracking and B-Spline Smoothing -- 1 Introduction -- 2 Automatic Localization of the Heart -- 3 Segmentation of an ED Phase Slice in Between Base and Mid-Ventricle -- 4 Segmentation Based on Tracking the Cardiac Substructures in ED Phase -- 5 Segmentation in the ES Phase -- 6 Left Ventricle Epicardial Boundary Smoothing -- 7 Global Results and First Conclusions -- References.
Automatic Segmentation and Disease Classification Using Cardiac Cine MR Images -- 1 Introduction -- 2 Data -- 3 Methods -- 3.1 Segmentation -- 3.2 Diagnosis -- 4 Experiments and Results -- 4.1 Segmentation Results -- 4.2 Diagnosis Results -- 5 Discussion and Conclusion -- References -- An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation -- 1 Introduction -- 2 Method -- 2.1 Pre-Processing -- 2.2 Network Architectures -- 2.3 Optimisation -- 2.4 Post-Processing -- 3 Experiments and Results -- 3.1 Data -- 3.2 Evaluation Measures -- 3.3 Experiment 1: Comparison of Loss Functions -- 3.4 Experiment 2: Comparison of Network Architectures -- 3.5 Discussion and Conclusion -- References -- Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features -- 1 Introduction -- 2 Methods -- 2.1 Cardiac cine-MRI Dataset -- 2.2 Segmentation -- 2.3 Cardiac Disease Classification -- 3 Results -- 4 Discussion -- References -- 2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation -- 1 Introduction -- 2 Method -- 2.1 Network Architecture -- 2.2 Dataset, Preprocessing and Augmentation -- 2.3 Training -- 2.4 Optimization Function -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Densely Connected Fully Convolutional Network for Short-Axis Cardiac Cine MR Image Segmentation and Heart Diagnosis Using Random Forest -- 1 Introduction and Related Work -- 2 Our Method -- 2.1 Data Pre-processing Pipeline -- 2.2 Proposed Network Architecture: Densely Connected Fully Convolutional Network (DFCN) -- 2.3 Loss Function -- 2.4 Post-processing -- 2.5 Cardiac Disease Diagnosis -- 3 Experimental Setup and Results -- 3.1 Dataset and Evaluation Criteria -- 3.2 Experimental Results -- 3.3 Conclusion -- References.
Class-Balanced Deep Neural Network for Automatic Ventricular Structure Segmentation -- 1 Introduction -- 2 Methodology -- 2.1 Efficient Semantic Labeling with 3D FCN -- 2.2 Transfer Learning from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Investigation of Class-Balanced Loss -- 3 Experimental Results -- 4 Conclusions -- References -- Automatic Segmentation of LV and RV in Cardiac MRI -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Architecture -- 3 Experimental Results -- 3.1 Implemented Details -- 3.2 Results and Quantitative Analysis with Other Methods -- 4 Conclusion and Discussion -- Acknowledgement -- References -- Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net -- 1 Introduction -- 2 Rigid Alignment by Landmarks Detection -- 3 Non-rigid Diffeomorphic Registration with SVF-Net -- 4 Label Fusion Method -- 5 Results and Discussion -- 6 Conclusion -- References -- MM-WHS Challenge -- 3D Convolutional Networks for Fully Automatic Fine-Grained Whole Heart Partition -- 1 Introduction -- 2 Methodology -- 2.1 Dense Semantic Labeling with 3D FCN -- 2.2 Knowledge Transfer from C3D Model -- 2.3 Promote Training with Deep Supervision -- 2.4 Multi-class Balanced Loss Function -- 3 Experimental Results -- 4 Conclusions -- References -- Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations -- 1 Introduction -- 2 Method -- 3 Experimental Setup -- 4 Results and Discussion -- 5 Conclusion -- References -- Multi-Planar Deep Segmentation Networks for Cardiac Substructures from MRI and CT -- 1 Introduction -- 2 Multi-Object Multi-Planar CNN (MO-MP-CNN) -- 3 Experimental Results -- 4 Discussion and Conclusion -- References -- Local Probabilistic Atlases and a Posteriori Correction for the Segmentation of Heart Images -- 1 Introduction -- 2 Methods.
2.1 Construction of the a Priori Information -- 2.2 Segmentation -- 2.3 A Posteriori Correction -- 3 Experiments -- 4 Results -- 5 Conclusion -- References -- Hybrid Loss Guided Convolutional Networks for Whole Heart Parsing -- 1 Introduction -- 2 Methodology -- 2.1 Intensity Calibration as Preprocessing -- 2.2 Enhance the Training of 3D FCN -- 2.3 Hybrid Loss Guided Class-Balanced Segmentation -- 3 Experimental Results -- 4 Conclusions -- References -- 3D Deeply-Supervised U-Net Based Whole Heart Segmentation -- 1 Introduction -- 2 Method -- 2.1 Data Pre-processing -- 2.2 Network Architecture -- 3 Experiments and Results -- 3.1 Data -- 3.2 Performance on Training Set -- 3.3 Performance on Testing Set -- 4 Discussion and Conclusion -- References -- MRI Whole Heart Segmentation Using Discrete Nonlinear Registration and Fast Non-local Fusion -- 1 Introduction and Related Work -- 2 Discrete Registration -- 3 Non-local Label Fusion -- 4 Multi-label Random Walk Regularisation -- 5 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation Using Deep Learning and Shape Context -- 1 Introduction -- 2 Methods -- 2.1 2.5D Segmentation Using Orthogonal U-Nets -- 2.2 Shape Context Generation -- 2.3 Shape-Context Guided U-Net -- 2.4 Implementation Details -- 3 Results -- 4 Discussion and Conclusion -- References -- Automatic Whole Heart Segmentation in CT Images Based on Multi-atlas Image Registration -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 A Three-Step Multi-atlas-Based Whole Heart Segmentation -- 2.2 Multiple Atlas Images -- 3 Experimental Results -- 4 Conclusion -- References -- Author Index.
Record Nr. UNINA-9910349458403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Trustworthy AI in Cancer Imaging Research / / edited by Ioanna Chouvarda, Sara Colantonio, Gianna Tsakou, Guang Yang
Trustworthy AI in Cancer Imaging Research / / edited by Ioanna Chouvarda, Sara Colantonio, Gianna Tsakou, Guang Yang
Autore Chouvarda Ioanna
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (371 pages)
Disciplina 610.28
Altri autori (Persone) ColantonioSara
TsakouGianna
YangGuang
Soggetto topico Biomedical engineering
Artificial intelligence
Cancer - Imaging
Machine learning
Cancer
Medical screening
Biomedical Engineering and Bioengineering
Artificial Intelligence
Cancer Imaging
Machine Learning
Cancer Screening
ISBN 3-031-89963-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Section 1. Overall Considerations -- 1. Generating the FUTURE AI. describing the process for reaching consensus on the FUTURE-AI recommendations and how these contribute/relate to trustworthy AI (make some kind of correspondence to the trustworthy AI principles of the EC and others) Martijn Starmans, Richard Osuala, Oliver Díaz, Karim Lekadir, and contributors -- 2. The Clinical Viewpoint / Considerations for Clinical Impact of AI in Oncologic Imaging Luis Marti-Bonmati (clinical Ai4HI WG), and contributors from all AI4HI -- 3. Socio-ethical and legal implications of Trustworthy AI – the AI4HI ELSI Mónica Cano Abadía(BBMRI-ERIC, EuCanImage), Ricard Martínez (Primage and Chaimeleon) and Mario Aznar +ProCancerI legal colleague , and provisionally Magda Kogut (INCISIVE) -- Section 2. Preparing for trustworthy AI: The Data and Metadata for quality, transparency and traceability -- 4. Data harmonization and challenges towards generation of repositories: sharing practices and approaches- ( Include Data de-identification / Include Data annotation and segmentation / compare commonalities and differences in the projects/ Data quality) Leonor Cerdá (Primage), Oliver Diaz( EUCANIMAGE), Guang Yang (Imperial, Chaimeleon), Ana Jimenez -Quibim /UNS/ Alexandra Kosvyra [AUTH] , Ch Kondylakis FORTH, provisionally co-authors from CERTH -- 5. Standardising Data and Metadata (this will include Data models/AI metadata / AI Passport /Transparency of Data, Models, and Decisions) Ch Kondylakis (FORTH), S Colantonio–(CNR) Gianna Tsakou (MAG) + Alexandra Kosvyra [AUTH] + provisionally inputs from ( Ticsalud/ED/ Medexprim/) Pedro Mallol (Chaimeleon) -- 6. Generatic synthetic data in Cancer Research Yang (Imperial College)/ Leonor Cerdá, Richard Osuala , provisionally Karim Lekadir / Adrián Galiana (Primage) -- Section 3. Implementing trustworthy AI: The Algorithms and DSS -- 7. Architectures and platforms for trustworthy AI: cloud technologies and federated approaches (this includes The privacy preserving methods / challenges with federated learning , Cloud technologies for supporting centralized trustworthy AI training ) Alberto Gutierrez (BSC) and Chrysostomos Symvoulidis (INCISIVE)/ Martijn Pieter Anton Starmans EUCANIMAGE / Ignacio Blanquer (CHAIMELEON ) -- 8. AI robustness, generalizability and explainability Sara Colantonio, Alberto Gutierrez-Torre [BSC], And inputs from Nikos Papanikolaou. Ysroel Mirsky (Israel, Chaimeleon), Henry Woodruff (Maastrich, Chaimeleon), D Dominguez Herrera (Ticsalud) / D Fotopoulos (AUTH) / Manikis/KMarias (FORTH) -- 9. AI Models in cancer diagnosis and prognosis Leonor Cerdá (Chaimeleon), D Filos and I Chouvarda (AUTH), Turukalo, Tatjana (UNS) and contributors from all projects (including ICCS fromINCISIVE project) -- Section 4. Validating trustworthy AI: The Validation and User perspective -- 10. Doing Technical validation for real. Experiences from a multisite effort Inputs from the AI4HI WG survey work and relation to project work / AUTH and UNS can contribute the INCISIVE prevalidation method and efforts here (Olga Tsave/Chouvarda – AUTH) and (Tatjana Turukalo and UNS team), with contributors from all projects -- 11. Clinical Validation – (including material from previous AI4HI paper, User perspective/feedback and lessons learnt / experience difficulties from all projects) Luis Bonmati, Katrine Riklund , Shereen Nabhani-Gebara, Lithin Zacharias, Maciej Bobowicz, -- 12. Real-life deployment of AI services: practical implications (focusing on real-life deployment of AI services: practical implications, patents, fast-track for clinical usefulness, Towards certification) ( Ana Blanco, Ana Jimenez, Fuensanta Bellvis , Quibim) + legal partners from all teams on AI related requirements.
Record Nr. UNINA-9911015865803321
Chouvarda Ioanna  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui