top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Geometry and vision : first International Symposium, ISGV 2021, Auckland, New Zealand, January 28-29, 2021, Revised Selected Papers / / edited by Minh Nguyen, Wei Qi Yan, and Harvey Ho
Geometry and vision : first International Symposium, ISGV 2021, Auckland, New Zealand, January 28-29, 2021, Revised Selected Papers / / edited by Minh Nguyen, Wei Qi Yan, and Harvey Ho
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (407 pages) : illustrations
Disciplina 006.37
Collana Communications in Computer and Information Science
Soggetto topico Computer vision
ISBN 3-030-72073-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- A New Noise Generating Method Based on Gaussian Sampling for Privacy Preservation -- 1 Introduction -- 2 Related Work -- 2.1 Gaussian Noise Generating -- 2.2 Whittle's Noise Estimator -- 2.3 The Method Based on Fourier Transform -- 2.4 Distributed SGD for Differential Privacy -- 3 Our Methods -- 3.1 Contribution -- 3.2 The Process of Our Methods -- 3.3 Noise Variant in Stochastic Gradient Descent -- 3.4 Gaussian Distribution for Subsampling -- 4 Evaluations -- 4.1 Our Experiments for Comparing Learning Rates -- 4.2 Experiments for Gradient Clipping and Noise Levels -- 5 Conclusions -- References -- Traffic-Sign Recognition Using Deep Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Collection -- 3.2 Research Design for Training Faster R-CNN -- 3.3 Research Design for Training Faster YOLOv5 -- 4 Results -- 4.1 Experiment Results of Faster R-CNN -- 4.2 Experiment Results of YOLOv5 -- 5 Analysis -- 6 Conclusion and Future Work -- References -- Tree Leaves Detection Based on Deep Learning -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Contribution -- 2 Literature Review -- 3 Methodology -- 3.1 Working Principle and Structure Analysis of YOLO -- 3.2 Analysis of the Working Principle of Faster R-CNN -- 3.3 Environmental Deployment -- 3.4 Data Set Preparation -- 3.5 Evaluation Methods -- 4 Analysis and Discussions -- 4.1 Comparison of Object Detection Results -- 4.2 Comparative Analysis of the Two Proposed Models -- 4.3 Discussions -- 5 Conclusion and Future Work -- References -- Deep Learning in Medical Applications: Lesion Segmentation in Skin Cancer Images Using Modified and Improved Encoder-Decoder Architecture -- 1 Introduction -- 2 Related Study -- 3 Materials and Methods -- 3.1 Encoder-Decoder Framework -- 3.2 Network Architecture Details.
4 Simulations and Results Discussion -- 4.1 Dataset Preparation -- 4.2 Quality Metrics -- 4.3 Comparison with Other State-of-the-Art Methods -- 5 Discussion and Conclusion -- References -- Apple Ripeness Identification Using Deep Learning -- 1 Introduction -- 2 Related Work -- 3 Our Approaches -- 4 Our Experiments -- 5 Conclusion -- References -- A Hand-Held Sensor System for Exploration and Thermal Mapping of Volcanic Fumarole Fields -- 1 Introduction -- 2 Related Work -- 3 Data Acquisition -- 3.1 Sensor System and Registration -- 3.2 Datasets -- 3.3 Thermal Sensing Quality -- 4 Methods -- 4.1 Localization -- 4.2 3D Reconstruction - Direct -- 4.3 3D Reconstruction - Indirect -- 5 Results -- 6 Discussion -- 7 Conclusion -- References -- Traffic Sign Recognition Using Guided Image Filtering -- 1 Introduction -- 2 Literature Review -- 3 Network Design -- 3.1 Guided Image Filtering -- 3.2 Improved Faster R-CNN -- 3.3 Improved YOLOv5 -- 4 Results -- 4.1 Improved Faster R-CNN -- 4.2 Improved YOLOv5 -- 4.3 Comparsions of YOLOv5 and Faster R-CNN -- 4.4 Guided Image Filtering -- 5 Conclusion -- References -- Towards a Generic Bicubic Hermite Mesh Template for Cow Udders -- 1 Introduction -- 2 Methods -- 2.1 Data Cloud of Cow Udders -- 2.2 Bicubic Hermite Mesh -- 2.3 Coherent Point Drifting -- 3 Results -- 3.1 Morphing the CH Mesh of the Udder -- 3.2 Geometric Modelling for the Teat -- 4 Discussion -- 5 Conclusion -- References -- Sign Language Recognition from Digital Videos Using Deep Learning Methods -- 1 Introduction -- 2 Related Work -- 3 Our Method -- 4 Experimental Results -- 5 Conclusion and Future Work -- References -- New Zealand Shellfish Detection, Recognition and Counting: A Deep Learning Approach on Mobile Devices -- 1 Introduction and Backgrounds -- 2 Conceptualisation of Implementation Method -- 2.1 Overall System Design.
2.2 Dataset Preparation -- 2.3 Detection Model Design -- 2.4 Web Application Deployment Design -- 3 Experiment -- 3.1 Data Pre-processing -- 3.2 Model Implementation -- 4 Analysis and Discussion -- 4.1 Model Comparison -- 4.2 Results Demonstration -- 5 Conclusion and Future Work -- References -- Coverless Video Steganography Based on Inter Frame Combination -- 1 Introduction -- 2 The Proposed Method -- 2.1 Generating Hash Sequence -- 2.2 Mapping Rule -- 2.3 Information Hiding -- 2.4 Information Extraction -- 3 Experiment Results and Analysis -- 3.1 Capacity -- 3.2 Robustness -- 3.3 Security Analysis -- 4 Conclusion -- References -- Character Photo Selection for Mobile Platform -- 1 Introduction -- 2 Related Work -- 2.1 Feature Extraction for Person -- 2.2 Photo Selection -- 3 Method -- 3.1 Proposed Framework -- 3.2 Elimination Stage -- 3.3 Selection Stage -- 4 Experiments and Analysis -- 4.1 Dataset -- 4.2 Features Importance Ranking -- 4.3 Experimental Comparison and Analysis -- 5 Conclusion -- References -- Close Euclidean Shortest Path Crossing an Ordered 3D Skew Segment Sequence -- 1 Introduction -- 2 Preliminaries -- 3 Euclidean Shortest Path Crossing a Sequence of 3D Skew Segments -- 4 Conclusion -- References -- A Lane Line Detection Algorithm Based on Convolutional Neural Network -- 1 Introduction -- 2 Method -- 2.1 Algorithm Framework -- 2.2 The Encoder -- 2.3 The Decoder -- 3 The Implementation Process -- 3.1 Remove the Full Connection Layer -- 3.2 Increase the Cavity Convolution -- 3.3 Instance Segmentation -- 3.4 Afterprocessing -- 4 Experimental Results and Analysis -- 4.1 Lane Line Detection Results -- 5 Conclusion -- References -- Segment- and Arc-Based Vectorizations by Multi-scale/Irregular Tangential Covering -- 1 Introduction -- 2 Reconstructions into Maximal Primitives -- 2.1 Multi-scale Noise Detection.
2.2 Irregular Isothetic Cyclic Representation -- 2.3 Recognition of Line Segments and Circular Arcs -- 3 Adapted Tangential Covering -- 3.1 The minDSS Algorithm -- 3.2 Adaptation of minDSS -- 4 Experimental Results -- 4.1 Global Overview of the Method -- 4.2 Visual Inspection of Results with Synthetic Images -- 4.3 Visual Inspection of Results with a Real Image -- 5 Conclusion and Future Works -- References -- Algorithms for Computing Topological Invariants in Digital Spaces -- 1 Introduction -- 2 Background Concepts of Digital Spaces -- 3 Hole Counting Algorithms in 2D -- 3.1 The Simple Formula for the Number of Holes in S -- 3.2 Algorithms for Hole Counting -- 4 Algorithms and Implementations for the Genus of Digital Surfaces in 3D -- 4.1 Practical Algorithms and Implementations -- 4.2 Implementations and Data Samples -- 5 Remarks on Programming -- 6 Summary and Discussion -- References -- Discrete Linear Geometry on Non-square Grid -- 1 Introduction -- 2 Hexagonal Grid System on a Plane -- 3 Reconstruction of Euclidean Line -- 4 Polygonalisation from Hexels -- 5 Numerical Examples -- 6 Conclusions -- References -- Electric Scooter and Its Rider Detection Framework Based on Deep Learning for Supporting Scooter-Related Injury Emergency Services -- 1 Introduction -- 1.1 Motivation -- 1.2 Proposed Idea -- 2 Background -- 2.1 Traditional Object Detection Algorithms -- 2.2 Deep Learning-Based Object Detection Algorithms -- 3 Design and Implementation -- 3.1 E-Scooter and Its Rider Detection Framework -- 3.2 E-Scooter and Its Rider Detection Model Training and Deploying -- 3.3 Fall Detection Implementation -- 4 Results and Evaluations -- 4.1 Training Model Process -- 4.2 Evaluation Model Process -- 5 Conclusion and Future Work -- References -- Tracking Livestock Using a Fully Connected Network and Kalman Filter -- 1 Introduction -- 2 Related Work.
3 Methodology -- 3.1 Object Tracker -- 3.2 Data Association -- 3.3 New and Old Tracks -- 4 Experimental Evaluation -- 4.1 Parameter Selection -- 4.2 Metrics -- 4.3 Results -- 5 Conclusion -- References -- A Comparison of Approaches for Synchronizing Events in Video Streams Using Audio -- 1 Introduction -- 2 Background -- 2.1 The Mel Spectrogram -- 2.2 Template Matching with Cross-Correlation -- 3 Data Collection -- 3.1 Database of Videos -- 3.2 Manual Annotation for Training -- 4 Methods -- 4.1 Deep Learning Model -- 4.2 Template Matching Model -- 4.3 Re-creation of Trial and Evaluation Metric -- 5 Results and Discussions -- 5.1 Deep Learning Outcome -- 5.2 Template Matching Outcome -- 5.3 Reconstruction of Trial Times from Detected Events -- 6 Conclusion -- References -- Union-Retire: A New Paradigm for Single-Pass Connected Component Analysis -- 1 Introduction -- 1.1 Union-Find Algorithms -- 1.2 Contributions -- 2 Prior Work -- 3 Union-Retire Algorithm -- 3.1 Data Structures -- 3.2 Algorithm Description -- 3.3 Example -- 4 Analysis -- 4.1 Correctness -- 4.2 Validation -- 4.3 Memory Requirements -- 4.4 Computational Complexity -- 5 Summary and Conclusion -- References -- Improving Object Detection in Real-World Traffic Scenes -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Precision and Recall -- 3.2 Score System -- 3.3 SSD Based Models -- 4 Results and Discussion -- 4.1 Model 1: Suitable CT Identification Using Default SSD -- 4.2 Model 2: Suitable Resolution Using Default SSD and CT = 0.3 -- 4.3 Model 3: Preprocessing Comparison on SSD Models with CT = 0.3 and Resolution = [800 × 600] Pixels -- 5 Conclusions -- References -- Comparison of Red versus Blue Laser Light for Accurate 3D Measurement of Highly Specular Surfaces in Ambient Lighting Conditions -- 1 Introduction -- 2 Commercial Solutions -- 3 Methodology.
4 Experiments and Results.
Record Nr. UNISA-996464395003316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Geometry and vision : first International Symposium, ISGV 2021, Auckland, New Zealand, January 28-29, 2021, Revised Selected Papers / / edited by Minh Nguyen, Wei Qi Yan, and Harvey Ho
Geometry and vision : first International Symposium, ISGV 2021, Auckland, New Zealand, January 28-29, 2021, Revised Selected Papers / / edited by Minh Nguyen, Wei Qi Yan, and Harvey Ho
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (407 pages) : illustrations
Disciplina 006.37
Collana Communications in Computer and Information Science
Soggetto topico Computer vision
ISBN 3-030-72073-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- A New Noise Generating Method Based on Gaussian Sampling for Privacy Preservation -- 1 Introduction -- 2 Related Work -- 2.1 Gaussian Noise Generating -- 2.2 Whittle's Noise Estimator -- 2.3 The Method Based on Fourier Transform -- 2.4 Distributed SGD for Differential Privacy -- 3 Our Methods -- 3.1 Contribution -- 3.2 The Process of Our Methods -- 3.3 Noise Variant in Stochastic Gradient Descent -- 3.4 Gaussian Distribution for Subsampling -- 4 Evaluations -- 4.1 Our Experiments for Comparing Learning Rates -- 4.2 Experiments for Gradient Clipping and Noise Levels -- 5 Conclusions -- References -- Traffic-Sign Recognition Using Deep Learning -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Data Collection -- 3.2 Research Design for Training Faster R-CNN -- 3.3 Research Design for Training Faster YOLOv5 -- 4 Results -- 4.1 Experiment Results of Faster R-CNN -- 4.2 Experiment Results of YOLOv5 -- 5 Analysis -- 6 Conclusion and Future Work -- References -- Tree Leaves Detection Based on Deep Learning -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Contribution -- 2 Literature Review -- 3 Methodology -- 3.1 Working Principle and Structure Analysis of YOLO -- 3.2 Analysis of the Working Principle of Faster R-CNN -- 3.3 Environmental Deployment -- 3.4 Data Set Preparation -- 3.5 Evaluation Methods -- 4 Analysis and Discussions -- 4.1 Comparison of Object Detection Results -- 4.2 Comparative Analysis of the Two Proposed Models -- 4.3 Discussions -- 5 Conclusion and Future Work -- References -- Deep Learning in Medical Applications: Lesion Segmentation in Skin Cancer Images Using Modified and Improved Encoder-Decoder Architecture -- 1 Introduction -- 2 Related Study -- 3 Materials and Methods -- 3.1 Encoder-Decoder Framework -- 3.2 Network Architecture Details.
4 Simulations and Results Discussion -- 4.1 Dataset Preparation -- 4.2 Quality Metrics -- 4.3 Comparison with Other State-of-the-Art Methods -- 5 Discussion and Conclusion -- References -- Apple Ripeness Identification Using Deep Learning -- 1 Introduction -- 2 Related Work -- 3 Our Approaches -- 4 Our Experiments -- 5 Conclusion -- References -- A Hand-Held Sensor System for Exploration and Thermal Mapping of Volcanic Fumarole Fields -- 1 Introduction -- 2 Related Work -- 3 Data Acquisition -- 3.1 Sensor System and Registration -- 3.2 Datasets -- 3.3 Thermal Sensing Quality -- 4 Methods -- 4.1 Localization -- 4.2 3D Reconstruction - Direct -- 4.3 3D Reconstruction - Indirect -- 5 Results -- 6 Discussion -- 7 Conclusion -- References -- Traffic Sign Recognition Using Guided Image Filtering -- 1 Introduction -- 2 Literature Review -- 3 Network Design -- 3.1 Guided Image Filtering -- 3.2 Improved Faster R-CNN -- 3.3 Improved YOLOv5 -- 4 Results -- 4.1 Improved Faster R-CNN -- 4.2 Improved YOLOv5 -- 4.3 Comparsions of YOLOv5 and Faster R-CNN -- 4.4 Guided Image Filtering -- 5 Conclusion -- References -- Towards a Generic Bicubic Hermite Mesh Template for Cow Udders -- 1 Introduction -- 2 Methods -- 2.1 Data Cloud of Cow Udders -- 2.2 Bicubic Hermite Mesh -- 2.3 Coherent Point Drifting -- 3 Results -- 3.1 Morphing the CH Mesh of the Udder -- 3.2 Geometric Modelling for the Teat -- 4 Discussion -- 5 Conclusion -- References -- Sign Language Recognition from Digital Videos Using Deep Learning Methods -- 1 Introduction -- 2 Related Work -- 3 Our Method -- 4 Experimental Results -- 5 Conclusion and Future Work -- References -- New Zealand Shellfish Detection, Recognition and Counting: A Deep Learning Approach on Mobile Devices -- 1 Introduction and Backgrounds -- 2 Conceptualisation of Implementation Method -- 2.1 Overall System Design.
2.2 Dataset Preparation -- 2.3 Detection Model Design -- 2.4 Web Application Deployment Design -- 3 Experiment -- 3.1 Data Pre-processing -- 3.2 Model Implementation -- 4 Analysis and Discussion -- 4.1 Model Comparison -- 4.2 Results Demonstration -- 5 Conclusion and Future Work -- References -- Coverless Video Steganography Based on Inter Frame Combination -- 1 Introduction -- 2 The Proposed Method -- 2.1 Generating Hash Sequence -- 2.2 Mapping Rule -- 2.3 Information Hiding -- 2.4 Information Extraction -- 3 Experiment Results and Analysis -- 3.1 Capacity -- 3.2 Robustness -- 3.3 Security Analysis -- 4 Conclusion -- References -- Character Photo Selection for Mobile Platform -- 1 Introduction -- 2 Related Work -- 2.1 Feature Extraction for Person -- 2.2 Photo Selection -- 3 Method -- 3.1 Proposed Framework -- 3.2 Elimination Stage -- 3.3 Selection Stage -- 4 Experiments and Analysis -- 4.1 Dataset -- 4.2 Features Importance Ranking -- 4.3 Experimental Comparison and Analysis -- 5 Conclusion -- References -- Close Euclidean Shortest Path Crossing an Ordered 3D Skew Segment Sequence -- 1 Introduction -- 2 Preliminaries -- 3 Euclidean Shortest Path Crossing a Sequence of 3D Skew Segments -- 4 Conclusion -- References -- A Lane Line Detection Algorithm Based on Convolutional Neural Network -- 1 Introduction -- 2 Method -- 2.1 Algorithm Framework -- 2.2 The Encoder -- 2.3 The Decoder -- 3 The Implementation Process -- 3.1 Remove the Full Connection Layer -- 3.2 Increase the Cavity Convolution -- 3.3 Instance Segmentation -- 3.4 Afterprocessing -- 4 Experimental Results and Analysis -- 4.1 Lane Line Detection Results -- 5 Conclusion -- References -- Segment- and Arc-Based Vectorizations by Multi-scale/Irregular Tangential Covering -- 1 Introduction -- 2 Reconstructions into Maximal Primitives -- 2.1 Multi-scale Noise Detection.
2.2 Irregular Isothetic Cyclic Representation -- 2.3 Recognition of Line Segments and Circular Arcs -- 3 Adapted Tangential Covering -- 3.1 The minDSS Algorithm -- 3.2 Adaptation of minDSS -- 4 Experimental Results -- 4.1 Global Overview of the Method -- 4.2 Visual Inspection of Results with Synthetic Images -- 4.3 Visual Inspection of Results with a Real Image -- 5 Conclusion and Future Works -- References -- Algorithms for Computing Topological Invariants in Digital Spaces -- 1 Introduction -- 2 Background Concepts of Digital Spaces -- 3 Hole Counting Algorithms in 2D -- 3.1 The Simple Formula for the Number of Holes in S -- 3.2 Algorithms for Hole Counting -- 4 Algorithms and Implementations for the Genus of Digital Surfaces in 3D -- 4.1 Practical Algorithms and Implementations -- 4.2 Implementations and Data Samples -- 5 Remarks on Programming -- 6 Summary and Discussion -- References -- Discrete Linear Geometry on Non-square Grid -- 1 Introduction -- 2 Hexagonal Grid System on a Plane -- 3 Reconstruction of Euclidean Line -- 4 Polygonalisation from Hexels -- 5 Numerical Examples -- 6 Conclusions -- References -- Electric Scooter and Its Rider Detection Framework Based on Deep Learning for Supporting Scooter-Related Injury Emergency Services -- 1 Introduction -- 1.1 Motivation -- 1.2 Proposed Idea -- 2 Background -- 2.1 Traditional Object Detection Algorithms -- 2.2 Deep Learning-Based Object Detection Algorithms -- 3 Design and Implementation -- 3.1 E-Scooter and Its Rider Detection Framework -- 3.2 E-Scooter and Its Rider Detection Model Training and Deploying -- 3.3 Fall Detection Implementation -- 4 Results and Evaluations -- 4.1 Training Model Process -- 4.2 Evaluation Model Process -- 5 Conclusion and Future Work -- References -- Tracking Livestock Using a Fully Connected Network and Kalman Filter -- 1 Introduction -- 2 Related Work.
3 Methodology -- 3.1 Object Tracker -- 3.2 Data Association -- 3.3 New and Old Tracks -- 4 Experimental Evaluation -- 4.1 Parameter Selection -- 4.2 Metrics -- 4.3 Results -- 5 Conclusion -- References -- A Comparison of Approaches for Synchronizing Events in Video Streams Using Audio -- 1 Introduction -- 2 Background -- 2.1 The Mel Spectrogram -- 2.2 Template Matching with Cross-Correlation -- 3 Data Collection -- 3.1 Database of Videos -- 3.2 Manual Annotation for Training -- 4 Methods -- 4.1 Deep Learning Model -- 4.2 Template Matching Model -- 4.3 Re-creation of Trial and Evaluation Metric -- 5 Results and Discussions -- 5.1 Deep Learning Outcome -- 5.2 Template Matching Outcome -- 5.3 Reconstruction of Trial Times from Detected Events -- 6 Conclusion -- References -- Union-Retire: A New Paradigm for Single-Pass Connected Component Analysis -- 1 Introduction -- 1.1 Union-Find Algorithms -- 1.2 Contributions -- 2 Prior Work -- 3 Union-Retire Algorithm -- 3.1 Data Structures -- 3.2 Algorithm Description -- 3.3 Example -- 4 Analysis -- 4.1 Correctness -- 4.2 Validation -- 4.3 Memory Requirements -- 4.4 Computational Complexity -- 5 Summary and Conclusion -- References -- Improving Object Detection in Real-World Traffic Scenes -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Precision and Recall -- 3.2 Score System -- 3.3 SSD Based Models -- 4 Results and Discussion -- 4.1 Model 1: Suitable CT Identification Using Default SSD -- 4.2 Model 2: Suitable Resolution Using Default SSD and CT = 0.3 -- 4.3 Model 3: Preprocessing Comparison on SSD Models with CT = 0.3 and Resolution = [800 × 600] Pixels -- 5 Conclusions -- References -- Comparison of Red versus Blue Laser Light for Accurate 3D Measurement of Highly Specular Surfaces in Ambient Lighting Conditions -- 1 Introduction -- 2 Commercial Solutions -- 3 Methodology.
4 Experiments and Results.
Record Nr. UNINA-9910484794803321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Image and vision computing : 37th international conference, IVCNZ 2022, Auckland, New Zealand, November 24-25, 2022, revised selected papers / / Wei Qi Yan, Minh Nguyen, Martin Stommel (editors)
Image and vision computing : 37th international conference, IVCNZ 2022, Auckland, New Zealand, November 24-25, 2022, revised selected papers / / Wei Qi Yan, Minh Nguyen, Martin Stommel (editors)
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (537 pages)
Disciplina 006.37
Collana Lecture notes in computer science
Soggetto topico Computer vision
Image processing - Digital techniques
ISBN 3-031-25825-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Convolutional neural networks -- Generative adversarial networks -- Vision transformers -- U-Nets -- YOLO -- Imaging sensors -- Segmentation -- Visual odometry -- Image reconstruction.
Record Nr. UNISA-996511871903316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Image and vision computing : 37th international conference, IVCNZ 2022, Auckland, New Zealand, November 24-25, 2022, revised selected papers / / Wei Qi Yan, Minh Nguyen, Martin Stommel (editors)
Image and vision computing : 37th international conference, IVCNZ 2022, Auckland, New Zealand, November 24-25, 2022, revised selected papers / / Wei Qi Yan, Minh Nguyen, Martin Stommel (editors)
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (537 pages)
Disciplina 006.37
Collana Lecture notes in computer science
Soggetto topico Computer vision
Image processing - Digital techniques
ISBN 3-031-25825-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Convolutional neural networks -- Generative adversarial networks -- Vision transformers -- U-Nets -- YOLO -- Imaging sensors -- Segmentation -- Visual odometry -- Image reconstruction.
Record Nr. UNINA-9910647773703321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pattern Recognition [[electronic resource] ] : 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected Papers, Part II / / edited by Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
Pattern Recognition [[electronic resource] ] : 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected Papers, Part II / / edited by Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXV, 767 p. 352 illus., 292 illus. in color.)
Disciplina 006.4
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Pattern recognition
Optical data processing
Machine learning
Computers
Application software
Pattern Recognition
Computer Imaging, Vision, Pattern Recognition and Graphics
Machine Learning
Computing Milieux
Information Systems Applications (incl. Internet)
ISBN 3-030-41299-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996418208103316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pattern Recognition [[electronic resource] ] : 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected Papers, Part I / / edited by Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
Pattern Recognition [[electronic resource] ] : 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected Papers, Part I / / edited by Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXV, 931 p. 427 illus., 360 illus. in color.)
Disciplina 006.4
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Pattern recognition
Computers
Optical data processing
Application software
Computer organization
Education—Data processing
Pattern Recognition
Information Systems and Communication Service
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer Applications
Computer Systems Organization and Communication Networks
Computers and Education
ISBN 3-030-41404-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Classification, Action and Video and Motion -- Object Detection and Anomaly Detection -- Segmentation, Grouping and Shape -- Face and Body and Biometrics -- Adversarial Learning and Networks -- Computational Photography -- Learning Theory and Optimization -- Applications, Medical and Robotics -- Computer Vision and Robot Vision.
Record Nr. UNISA-996418207503316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pattern Recognition [[electronic resource] ] : ACPR 2019 Workshops, Auckland, New Zealand, November 26, 2019, Proceedings / / edited by Michael Cree, Fay Huang, Junsong Yuan, Wei Qi Yan
Pattern Recognition [[electronic resource] ] : ACPR 2019 Workshops, Auckland, New Zealand, November 26, 2019, Proceedings / / edited by Michael Cree, Fay Huang, Junsong Yuan, Wei Qi Yan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIII, 278 p. 133 illus., 109 illus. in color.)
Disciplina 006.4
Collana Communications in Computer and Information Science
Soggetto topico Pattern recognition
Computers
Computer organization
Machine learning
Optical data processing
Application software
Pattern Recognition
Information Systems and Communication Service
Computer Systems Organization and Communication Networks
Machine Learning
Image Processing and Computer Vision
Computer Applications
ISBN 981-15-3651-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Computer Vision for Modern Vehicles -- Advances and Applications on Generative Deep Learning Models -- Image and Pattern Analysis for Multidisciplinary Computational Anatomy -- Multi-Sensor for Action and Gesture Recognition -- Towards an Automatic Data Processing Chain for Airborne and Spaceborne Sensors. .
Record Nr. UNISA-996465350203316
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pattern Recognition : 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected Papers, Part II / / edited by Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
Pattern Recognition : 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected Papers, Part II / / edited by Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXV, 767 p. 352 illus., 292 illus. in color.)
Disciplina 006.4
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Pattern recognition
Optical data processing
Machine learning
Computers
Application software
Pattern Recognition
Computer Imaging, Vision, Pattern Recognition and Graphics
Machine Learning
Computing Milieux
Information Systems Applications (incl. Internet)
ISBN 3-030-41299-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910380748303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pattern Recognition : 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected Papers, Part I / / edited by Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
Pattern Recognition : 5th Asian Conference, ACPR 2019, Auckland, New Zealand, November 26–29, 2019, Revised Selected Papers, Part I / / edited by Shivakumara Palaiahnakote, Gabriella Sanniti di Baja, Liang Wang, Wei Qi Yan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XXV, 931 p. 427 illus., 360 illus. in color.)
Disciplina 006.4
Collana Image Processing, Computer Vision, Pattern Recognition, and Graphics
Soggetto topico Pattern recognition systems
Computer networks
Image processing - Digital techniques
Computer vision
Application software
Computer engineering
Education - Data processing
Automated Pattern Recognition
Computer Communication Networks
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer and Information Systems Applications
Computer Engineering and Networks
Computers and Education
ISBN 3-030-41404-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Classification, Action and Video and Motion -- Object Detection and Anomaly Detection -- Segmentation, Grouping and Shape -- Face and Body and Biometrics -- Adversarial Learning and Networks -- Computational Photography -- Learning Theory and Optimization -- Applications, Medical and Robotics -- Computer Vision and Robot Vision.
Record Nr. UNINA-9910380748203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pattern Recognition : ACPR 2019 Workshops, Auckland, New Zealand, November 26, 2019, Proceedings / / edited by Michael Cree, Fay Huang, Junsong Yuan, Wei Qi Yan
Pattern Recognition : ACPR 2019 Workshops, Auckland, New Zealand, November 26, 2019, Proceedings / / edited by Michael Cree, Fay Huang, Junsong Yuan, Wei Qi Yan
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIII, 278 p. 133 illus., 109 illus. in color.)
Disciplina 006.4
Collana Communications in Computer and Information Science
Soggetto topico Pattern recognition
Computers
Computer organization
Machine learning
Optical data processing
Application software
Pattern Recognition
Information Systems and Communication Service
Computer Systems Organization and Communication Networks
Machine Learning
Image Processing and Computer Vision
Computer Applications
ISBN 981-15-3651-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Computer Vision for Modern Vehicles -- Advances and Applications on Generative Deep Learning Models -- Image and Pattern Analysis for Multidisciplinary Computational Anatomy -- Multi-Sensor for Action and Gesture Recognition -- Towards an Automatic Data Processing Chain for Airborne and Spaceborne Sensors. .
Record Nr. UNINA-9910410035303321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui